Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(17): e2216016120, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068245

RESUMEN

During migration, long-distance migratory songbirds may fly nonstop for days, whereas shorter-distance migrants complete flights of 6 to 10 h. Fat is the primary fuel source, but protein is also assumed to provide a low, consistent amount of energy for flight. However, little is known about how the use of these fuel sources differs among bird species and in response to flight duration. Current models predict that birds can fly until fat stores are exhausted, with little consideration of protein's limits on flight range or duration. We captured two related migratory species-ultra long-distance blackpoll warblers (Setophaga striata) and short-distance yellow-rumped warblers (Setophaga coronata)-during fall migration and flew them in a wind tunnel to examine differences in energy expenditure, overall fuel use, and fuel mixture. We measured fat and fat-free body mass before and after flight using quantitative magnetic resonance and calculated energy expenditure from body composition changes and doubly labeled water. Three blackpolls flew voluntarily for up to 28 h-the longest wind tunnel flight to date-and ended flights with substantial fat reserves but concave flight muscle, indicating that protein loss, rather than fat, may actually limit flight duration. Interestingly, while blackpolls had significantly lower mass-specific metabolic power in flight than that of yellow-rumped warblers and fuel use was remarkably similar in both species, with consistent fat use but exceptionally high rates of protein loss at the start of flight that declined exponentially over time. This suggests that protein may be a critical, dynamic, and often overlooked fuel for long-distance migratory birds.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Pájaros Cantores/fisiología , Composición Corporal , Proteínas/metabolismo , Metabolismo Energético , Migración Animal/fisiología , Vuelo Animal/fisiología
2.
Horm Behav ; 141: 105139, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35299118

RESUMEN

Twice a year, billions of birds take on drastic physiological and behavioural changes to migrate between breeding and wintering areas. On migration, most passerine birds regularly stop over along the way to rest and refuel. Endogenous energy stores are not only the indispensable fuel to complete long distance flights, but are also important peripheral signals that once integrated in the brain modulate crucial behavioural decisions, such as the decision to resume migration after a stopover. A network of hormones signals metabolic fuel availability to the brain in vertebrates, including the recently discovered gut-hormone ghrelin. Here, we show that ghrelin takes part in the control of migratory behaviour during spring migration in a wild migratory passerine. We manipulated blood concentrations of ghrelin of 53 yellow-rumped warblers (Setophaga coronata coronata) caught during stopover and automatically radio-tracked their migratory behaviour following release. We found that injections of acylated and unacylated ghrelin rapidly induced movements away from the release site, indicating that the ghrelin system acts centrally to mediate stopover departure decisions. The effects of the hormone manipulation declined within 8 h following release, and did not affect the overall rate of migration. These results provide experimental evidence for a pivotal role of ghrelin in the modulation of behavioural decisions during migration. In addition, this study offers insights into the regulatory functions of metabolic hormones in the dialogue between gut and brain in birds.


Asunto(s)
Passeriformes , Pájaros Cantores , Migración Animal/fisiología , Animales , Ghrelina/farmacología , Estaciones del Año , Pájaros Cantores/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-26626955

RESUMEN

Dietary shifting, for example from insects to fruits, is a common mechanism used in migratory songbirds to accumulate fat to fuel migratory flights. We examined a potential underlying cause of dietary shifting in yellow-rumped warblers (Setophaga coronata) by comparing energy and protein intake goals of birds during fall migration and winter. We offered captive warblers pairs of three diets differing in macronutrient composition in both the fall and winter. Using the principles of the geometric framework of nutrition we evaluated protein and energy intake to determine if consumption of the diet pairs was adjusted to meet an energy or protein intake target, and if the target differed seasonally. Regardless of season, the warblers preferred the diet with the lowest protein content and highest carbohydrate content. Total energy intake was maintained relatively constant during migration, at around 60 kJ/day, regardless of diet combination, and at about 50 kJ/day during winter. This suggests that warblers consume macronutrients available to them without protein limitations to reach their total energy intake target. When the diet combination offered allows, the warblers mixed their diet intake to consume roughly 0.5 g/day of protein, regardless of season, which suggested a constant protein target. Our findings suggest that songbirds prefer to alter non-protein energy intake proportionally to meet changing energy demand, rather than an overall increase in macronutrient intake. Additionally, they have the ability to shift their diet based on availability, resulting in high flexibility in their macronutrient intakes to maintain energy intake.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta , Ingestión de Energía/fisiología , Estaciones del Año , Pájaros Cantores/fisiología , Migración Animal/fisiología , Animales , Conducta Alimentaria/fisiología , Alimentos , Frutas , Objetivos , Insectos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA