Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Funct Integr Genomics ; 24(3): 81, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709433

RESUMEN

One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ganado , Edición Génica/métodos , Animales , Ganado/genética , Resistencia a la Enfermedad/genética
2.
Indian J Microbiol ; 64(1): 59-69, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468733

RESUMEN

Plant crops serve as essential sources of nutritional sustenance, supplying vital nutrients to human diets. However, their productivity and quality are severely jeopardized by factors such as pests, diseases, and adverse abiotic conditions. Addressing these challenges using innovative biotechnological approaches is imperative for advancing sustainable agriculture. In recent years, genome editing technologies have emerged as pivotal genetic tools, revolutionizing plant molecular biology. Among these, the CRISPR-Cas9 system has gained prominence due to its unparalleled precision, streamlined design, and heightened success rates. This review article highlights the profound impact of CRISPR/Cas9 technology on crop improvement. The article critically examines the breakthroughs, ongoing enhancements, and future prospects associated with this cutting-edge technology. In conclusion, the utilization of CRISPR/Cas9 presents a transformative shift in agricultural biotechnology, holding the potential to mitigate longstanding agricultural challenges.

3.
Mol Ther Methods Clin Dev ; 30: 83-89, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37435043

RESUMEN

Ex vivo gene editing in hematopoietic stem and progenitor cells (HSPCs) represents a promising curative treatment strategy for monogenic blood disorders. Gene editing using the homology-directed repair (HDR) pathway enables precise genetic modifications ranging from single base pair correction to replacement or insertion of large DNA segments. Hence, HDR-based gene editing could facilitate broad application of gene editing across monogenic disorders, but the technology still faces challenges for clinical translation. Among these, recent studies demonstrate induction of a DNA damage response (DDR) and p53 activation caused by DNA double-strand breaks and exposure to recombinant adeno-associated virus vector repair templates, resulting in reduced proliferation, engraftment, and clonogenic capacity of edited HSPCs. While different mitigation strategies can reduce this DDR, more research is needed on this phenomenon to ensure safe and efficient implementation of HDR-based gene editing in the clinic.

4.
Biotechnol J ; 18(8): e2200642, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37166088

RESUMEN

Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Reproducibilidad de los Resultados , Plantas/genética , Genoma de Planta/genética , ADN , Endonucleasas/genética
5.
Genes (Basel) ; 14(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36672870

RESUMEN

In October 2020, the chemistry Nobel Prize was awarded to Emmanuelle Charpentier and Jennifer A. Doudna for the discovery of a new promising genome-editing tool: the genetic scissors of CRISPR-Cas9. The identification of CRISPR arrays and the subsequent identification of cas genes, which together represent an adaptive immunological system that exists not only in bacteria but also in archaea, led to the development of diverse strategies used for precise DNA editing, providing new insights in basic research and in clinical practice. Due to their advantageous features, the CRISPR-Cas systems are already employed in several biological and medical research fields as the most suitable technique for genome engineering. In this review, we aim to describe the CRISPR-Cas systems that have been identified among prokaryotic organisms and engineered for genome manipulation studies. Furthermore, a comprehensive comparison between the innovative CRISPR-Cas methodology and the previously utilized ZFN and TALEN editing nucleases is also discussed. Ultimately, we highlight the contribution of CRISPR-Cas methodology in modern biomedicine and the current plethora of available applications for gene KO, repression and/or overexpression, as well as their potential implementation in therapeutical strategies that aim to improve patients' quality of life.


Asunto(s)
Edición Génica , Calidad de Vida , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Genoma/genética , ADN/genética
6.
Cell Mol Neurobiol ; 43(3): 1019-1035, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35751791

RESUMEN

Neurological disorders have complicated pathophysiology that may involve several genetic mutations. Conventional treatment has limitations as they only treat apparent symptoms. Although, personalized medicine is emerging as a promising neuro-intervention, lack of precision is the major pitfall. Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is evolving as a technological platform that may overcome the therapeutic limitations towards precision medicine. In the future, targeting genes in neurological disorders may be the mainstay of modern therapy. The present review on CRISPR/Cas9 and its application in various neurological disorders may provide a platform for its future clinical relevance towards developing precise and personalized medicine.


Asunto(s)
Edición Génica , Enfermedades del Sistema Nervioso , Humanos , Sistemas CRISPR-Cas/genética , Mutación , Tecnología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/terapia
7.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36233352

RESUMEN

The major challenges that agriculture is facing in the twenty-first century are increasing droughts, water scarcity, flooding, poorer soils, and extreme temperatures due to climate change. However, most crops are not tolerant to extreme climatic environments. The aim in the near future, in a world with hunger and an increasing population, is to breed and/or engineer crops to tolerate abiotic stress with a higher yield. Some crop varieties display a certain degree of tolerance, which has been exploited by plant breeders to develop varieties that thrive under stress conditions. Moreover, a long list of genes involved in abiotic stress tolerance have been identified and characterized by molecular techniques and overexpressed individually in plant transformation experiments. Nevertheless, stress tolerance phenotypes are polygenetic traits, which current genomic tools are dissecting to exploit their use by accelerating genetic introgression using molecular markers or site-directed mutagenesis such as CRISPR-Cas9. In this review, we describe plant mechanisms to sense and tolerate adverse climate conditions and examine and discuss classic and new molecular tools to select and improve abiotic stress tolerance in major crops.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Productos Agrícolas/genética , Sequías , Fitomejoramiento/métodos , Suelo , Estrés Fisiológico/genética
8.
Saudi J Biol Sci ; 29(4): 1928-1935, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531207

RESUMEN

In recent years, significant progress has been achieved in genome editing applications using new programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9). These genome editing tools are capable of nicking DNA precisely by targeting specific sequences, and enable the addition, removal or substitution of nucleotides via double-stranded breakage at specific genomic loci. CRISPR/Cas system, one of the most recent genome editing tools, affords the ability to efficiently generate multiple genomic nicks in single experiment. Moreover, CRISPR/Cas systems are relatively easy and cost effective when compared to other genome editing technologies. This is in part because CRISPR/Cas systems rely on RNA-DNA binding, unlike other genome editing tools that rely on protein-DNA interactions, which affords CRISPR/Cas systems higher flexibility and more fidelity. Genome editing tools have significantly contributed to different aspects of livestock production such as disease resistance, improved performance, alterations of milk composition, animal welfare and biomedicine. However, despite these contributions and future potential, genome editing technologies also have inherent risks, and therefore, ethics and social acceptance are crucial factors associated with implementation of these technologies. This review emphasizes the impact of genome editing technologies in development of livestock breeding and production in numerous species such as cattle, pigs, sheep and goats. This review also discusses the mechanisms behind genome editing technologies, their potential applications, risks and associated ethics that should be considered in the context of livestock.

9.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269691

RESUMEN

The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.


Asunto(s)
Sistemas CRISPR-Cas , Ácidos Nucleicos , Animales , Sistemas CRISPR-Cas/genética , Femenino , Edición Génica/métodos , Genoma/genética , Humanos , Ratas , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas con Dedos de Zinc/genética
10.
Mol Biol Rep ; 49(7): 7069-7077, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35122203

RESUMEN

Novel cellular immunotherapy with engineered T cells has improved cancer treatment and established therapeutic promises to prevent tumor formation in clinical studies. Due to certain restrictions and difficulties, CAR and TCR T-cells therapies were inadequate at points. CRISPR Cas9 genome-editing tool has significant potential for these two cell-based therapies. As a specialized gene-editing technique, CRISPR Cas9 is used to repair genetic alternations with minimal damage. It is used as an adjunct to immunotherapy to stimulate a more robust immune response. CRISPR has long outpaced other target-specific genome editing methods such as ZFNs and TALEN because of its high efficiency, competence in targeting, and stable operating conditions. CRISPR can overcome the two major drawbacks of universal CAR T cells: allorejection and graft-vs-host disease. TCR-based T cell treatment can reduce inappropriate binding between endogenous and transgenic TCR, resulting in a reduction of severe toxicity. The CAR and TCR T based cell therapies uphold an excellent future for tumor malignancies. This article has elucidated the administration of CRISPR Cas9 in novel cellular immunotherapy, CAR, and TCR T cell therapy. However, this article did not fail to observe this technology's ethical concerns, limitations, and challenges. Furthermore, the article compares CRISPR-mediated allogeneic CAR T cell to TCR-T cell therapy.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/métodos , Neoplasias/genética , Receptores de Antígenos de Linfocitos T/genética
11.
Curr Stem Cell Res Ther ; 17(3): 267-279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34819011

RESUMEN

Precise and site-specific genome editing through application of emerging and modern gene engineering techniques, namely zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/ Cas9) have swiftly progressed the application and use of the stem cell technology in the sphere of in-vitro disease modelling and regenerative medicine. Genome editing tools facilitate the manipulation of genes in various types of cells with target-specific nucleases. These tools aid in elucidating the genetics and etiology behind different diseases and have immense promise as novel therapeutics for correcting the genetic mutations, making alterations, and curing diseases permanently, which are not responding and resistant to traditional therapies. These genome engineering tools have evolved in the field of biomedical research and have also been shown to have a significant improvement in clinical trials. However, their widespread use in the research revealed potential safety issues, which need to be addressed before implementing such techniques for clinical purposes. Significant and valiant attempts need to be made in order to surpass those hurdles. The current review outlines the advancements of several genome engineering tools and describes suitable strategies for their application towards regenerative medicine.


Asunto(s)
Edición Génica , Medicina Regenerativa , Sistemas CRISPR-Cas , Edición Génica/métodos , Humanos , Células Madre , Nucleasas con Dedos de Zinc/genética
12.
Vet Sci ; 8(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209174

RESUMEN

Humans are sorely over-dependent on livestock for their daily basic need of food in the form of meat, milk, and eggs. Therefore, genetic engineering and transgenesis provide the opportunity for more significant gains and production in a short span of time. One of the best strategies is the genetic alteration of livestock to enhance the efficiency of food production (e.g., meat and milk), animal health, and welfare (animal population and disease). Moreover, genome engineering in the bovine is majorly focused on subjects such as disease resistance (e.g., tuberculosis), eradicate allergens (e.g., beta-lactoglobulin knock-out), products generation (e.g., meat from male and milk from female), male or female birth specifically (animal sexing), the introduction of valuable traits (e.g., stress tolerance and disease resistance) and their wellbeing (e.g., hornlessness). This review addressed the impressive genome engineering method CRISPR, its fundamental principle for generating highly efficient target-specific guide RNA, and the accompanying web-based tools. However, we have covered the remarkable roadmap of the CRISPR method from its conception to its use in cattle. Additionally, we have updated the comprehensive information on CRISPR-based gene editing in cattle.

13.
Prog Mol Biol Transl Sci ; 181: 15-30, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34127192

RESUMEN

In the past decade, ZFNs and TALENs have been used for targeted genome engineering and have gained scientific attention. It has demonstrated huge potential for gene knockout, knock-in, and indels in desired locations of genomes to understand molecular mechanism of diseases and also discover therapy. However, both the genome engineering techniques are still suffering from design, screening and validation in cell and higher organisms. CRISPR-Cas9 is a rapid, simple, specific, and versatile technology and it has been applied in many organisms including mammalian cells. CRISPR-Cas9 has been used for animal models to modify animal cells for understanding human disease for novel drug discovery and therapy. Additionally, base editing has also been discussed herewith for conversion of C/G-to-T/A or A/T-to-G/C without DNA cleavage or donor DNA templates for correcting mutations or altering gene functions. In this chapter, we highlight CRISPR-Cas9 and base editing for desired genome editing in mammalian cells for a better understanding of molecular mechanisms, and biotechnological and therapeutic applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Genoma , Humanos , Fenotipo , Nucleasas de los Efectores Tipo Activadores de la Transcripción
14.
Prog Mol Biol Transl Sci ; 179: 197-223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33785177

RESUMEN

Insects cause many vector-borne infectious diseases and have become a major threat to human health. Although many control measures are undertaken, some insects are resistant to it, exacerbated by environmental changes which is a major challenge for control measures. Genetic studies by targeting the genomes of insects may offer an alternative strategy. Developments with novel genome engineering technologies have stretched our ability to target and modify any genomic sequence in Eukaryotes including insects. Genome engineering tools such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently discovered, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) systems hold the potential to control the vector-borne diseases. In this chapter, we review the vector control strategy undertaken by employing three major genome engineering tools (ZFNs, TALENs, and CRISPR/Cas9) and discuss the future prospects of this system to control insect vectors. Finally, we also discuss the CRISPR-based gene drive system and its concerns due to ecological impacts.


Asunto(s)
Ingeniería Genética , Enfermedades Transmitidas por Vectores , Animales , Sistemas CRISPR-Cas/genética , Genoma de los Insectos , Humanos , Insectos/genética , Nucleasas con Dedos de Zinc
15.
Adv Drug Deliv Rev ; 168: 134-146, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32485207

RESUMEN

Chronic infection with the hepatitis B virus (HBV) remains a significant worldwide medical problem. While diseases caused by HIV infection, tuberculosis and malaria are on the decline, new cases of chronic hepatitis B are on the rise. Because often fatal complications of cirrhosis and hepatocellular carcinoma are associated with chronic hepatitis B, the need for a cure is as urgent as ever. Currently licensed therapeutics fail to eradicate the virus and this is attributable to persistence of the viral replication intermediate comprising covalently closed circular DNA (cccDNA). Elimination or inactivation of the viral cccDNA is thus a goal of research aimed at hepatitis B cure. The ability to engineer nucleases that are capable of specific cleavage of a DNA sequence now provides the means to disable cccDNA permanently. The scientific literature is replete with many examples of using designer zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided endonucleases (RGENs) to inactivate HBV. However, important concerns about safety, dose control and efficient delivery need to be addressed before the technology is employed in a clinical setting. Use of in vitro transcribed mRNA to express therapeutic gene editors goes some way to overcoming these concerns. The labile nature of RNA limits off-target effects and enables dose control. Compatibility with hepatotropic non-viral vectors is convenient for the large scale preparation that will be required for advancing gene editing as a mode of curing chronic hepatitis B.


Asunto(s)
Terapia Genética/métodos , Hepatitis B Crónica/genética , Hepatitis B Crónica/terapia , ARN Mensajero/administración & dosificación , Antivirales/uso terapéutico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Relación Dosis-Respuesta a Droga , Edición Génica , Vectores Genéticos/administración & dosificación , Vacunas contra Hepatitis B/administración & dosificación , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/prevención & control , Nanopartículas/química , Ribonucleasas/administración & dosificación , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Nucleasas con Dedos de Zinc/metabolismo
16.
Curr Gene Ther ; 21(2): 89-111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33292120

RESUMEN

There are more than 3,500 genes that are being linked to hereditary diseases or correlated with an elevated risk of certain illnesses. As an alternative to conventional treatments with small molecule drugs, gene therapy has arisen as an effective treatment with the potential to not just alleviate disease conditions but also cure them completely. In order for these treatment regimens to work, genes or editing tools intended to correct diseased genetic material must be efficiently delivered to target sites. There have been many techniques developed to achieve such a goal. In this article, we systematically review a variety of gene delivery and therapy methods that include physical methods, chemical and biochemical methods, viral methods, and genome editing. We discuss their historical discovery, mechanisms, advantages, limitations, safety, and perspectives.


Asunto(s)
Edición Génica , Técnicas de Transferencia de Gen , Enfermedades Genéticas Congénitas/terapia , Terapia Genética/tendencias , Sistemas CRISPR-Cas/genética , Enfermedades Genéticas Congénitas/genética , Humanos
17.
Front Plant Sci ; 11: 571138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193504

RESUMEN

Soybean is grown worldwide for oil and protein source as food, feed and industrial raw material for biofuel. Steady increase in soybean production in the past century mainly attributes to genetic mediation including hybridization, mutagenesis and transgenesis. However, genetic resource limitation and intricate social issues in use of transgenic technology impede soybean improvement to meet rapid increases in global demand for soybean products. New approaches in genomics and development of site-specific nucleases (SSNs) based genome editing technologies have expanded soybean genetic variations in its germplasm and have potential to make precise modification of genes controlling the important agronomic traits in an elite background. ZFNs, TALENS and CRISPR/Cas9 have been adapted in soybean improvement for targeted deletions, additions, replacements and corrections in the genome. The availability of reference genome assembly and genomic resources increases feasibility in using current genome editing technologies and their new development. This review summarizes the status of genome editing in soybean improvement and future directions in this field.

18.
Pharm Res ; 37(10): 194, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32918191

RESUMEN

PURPOSE: We characterized three canine P-gp (cP-gp) deficient MDCKII cell lines. Their relevance for identifying efflux transporter substrates and predicting limitation of brain penetration were evaluated. In addition, we discuss how compound selection can be done in drug discovery by using these cell systems. METHOD: hMDR1, hBCRP-transfected, and non-transfected MDCKII ZFN cells (all with knock-down of endogenous cP-gp) were used for measuring permeability and efflux ratios for substrates. The compounds were also tested in MDR1_Caco-2 and BCRP_Caco-2, each with a double knock-out of BCRP/MRP2 or MDR1/MRP2 transporters respectively. Efflux results were compared between the MDCK and Caco-2 models. Furthermore, in vitro MDR1_ZFN efflux data were correlated with in vivo unbound drug brain-to-plasma partition coefficient (Kp,uu). RESULTS: MDR1 and BCRP substrates are correctly classified and robust transporter affinities with control substrates are shown. Cell passage mildly influenced mRNA levels of transfected transporters, but the transporter activity was proven stable for several years. The MDCK and Caco-2 models were in high consensus classifying same efflux substrates. Approx. 80% of enlisted substances were correctly predicted with the MDR1_ZFN model for brain penetration. CONCLUSION: cP-gp deficient MDCKII ZFN models are reliable tools to identify MDR1 and BCRP substrates and useful for predicting efflux liability for brain penetration.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/deficiencia , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Proteínas de Neoplasias/metabolismo , Farmacocinética , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células CACO-2 , Permeabilidad de la Membrana Celular , Dibenzocicloheptenos/farmacología , Dicetopiperazinas/farmacología , Perros , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Células de Riñón Canino Madin Darby , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Prazosina/farmacocinética , Quinidina/farmacocinética , Quinolinas/farmacología , Especificidad por Sustrato , Transfección
19.
Genes (Basel) ; 11(10)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977396

RESUMEN

Impressive therapeutic advances have been possible through the advent of zinc-finger nucleases and transcription activator-like effector nucleases. However, discovery of the more efficient and highly tailorable clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas9) has provided unprecedented gene-editing capabilities for treatment of various inherited and acquired diseases. Despite recent clinical trials, a major barrier for therapeutic gene editing is the absence of safe and effective methods for local and systemic delivery of gene-editing reagents. In this review, we elaborate on the challenges and provide practical considerations for improving gene editing. Specifically, we highlight issues associated with delivery of gene-editing tools into clinically relevant cells.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Técnicas de Transferencia de Gen/normas , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos
20.
Biotechnol Lett ; 42(9): 1611-1632, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32642978

RESUMEN

The Cas9 nuclease initiates double-stranded breaks at the target position in DNA, which are repaired by the intracellular restoration pathways to eliminate or insert pieces of DNA. CRISPR-Cas9 is proficient and cost-effective since cutting is guided by a piece of RNA instead of protein. Emphasis on this technology, in contrast with two recognized genome editing platforms (i.e., ZFNs and TALENs), is provided. This review evaluates the benefits of chemically synthesized gRNAs as well as the integration of chemical amendments to improve gene editing efficiencies. CRISPR is an indispensable means in biological investigations and is now as well transforming varied fields of biotechnology and agriculture. Recent advancement in targetable epigenomic-editing tools allows researchers to dispense direct functional and transcriptional significance to locus-explicit chromatin adjustments encompassing gene regulation and editing. An account of diverse sgRNA design tools is provided, principally on their target competence prediction model, off-target recognition algorithm, and generation of instructive annotations. The modern systems that have been utilized to deliver CRISPR-Cas9 in vivo and in vitro for crop improvement viz. nutritional enhancement, production of drought-tolerant and disease-resistant plants, are also highlighted. The conclusion is focused on upcoming directions, biosafety concerns, and expansive prospects of CRISPR technologies.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Plantas Modificadas Genéticamente , Productos Agrícolas , Epigenómica , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Nucleasas con Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...