Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Struct Funct ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39322562

RESUMEN

The liver is a complex organ with a highly organized structure in which tight junctions (TJs) play an important role in maintaining their function by regulating barrier properties and cellular polarity. Dysfunction of TJs is associated with liver diseases, including progressive familial intrahepatic cholestasis (PFIC). In this study, we investigated the molecular alterations in a liver-specific ZO-1 and ZO-2 double-knockout (DKO) mouse model, which exhibits features resembling those of PFIC4 patients with mutations in the ZO-2 gene. RNA-seq analysis revealed the upregulation of genes involved in the oxidative stress response, xenobiotic metabolism, and cholesterol metabolism in DKO livers. Conversely, the expression of genes regulated by HNF4α was lower in DKO livers than in the wild-type controls. Furthermore, age-associated analysis elucidated the timing and progression of these pathway changes as well as alterations in molecules related to TJs and apical polarity. Our research uncovered previously unknown implications of ZO-1 and ZO-2 in liver physiology and provides new insights into the molecular pathogenesis of PFIC4 and other tight junction-related liver diseases. These findings contribute to a better understanding of the complex mechanisms underlying liver function and dysfunction and may lead to the development of novel therapeutic strategies for liver diseases associated with tight junction impairment.Key words: tight junctions, ZO-1/ZO-2 knockout mouse, liver, transcriptome analysis, molecular pathological progression.

2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473701

RESUMEN

This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography.


Asunto(s)
Actinas , Uniones Estrechas , Actinas/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Fosfoproteínas/metabolismo
3.
J Pers Med ; 13(12)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38138924

RESUMEN

OBJECTIVE: Thoracic aortic aneurysm dissection (TAAD) represents a cardiac surgery emergency characterized by the disrupted integrity of the aortic wall and is associated with poor prognosis. In this context, the identification of biomarkers implicated in the pathobiology of TAAD is crucial. Our aim in the present original in silico study is to assess the differential gene expression profile of the tight junction proteins (TJPs) in patients with TAAD and to propose novel biomarkers for the diagnosis and prognosis of this disease. METHODS: We implemented bioinformatics methodology in order to construct the gene network of the TJPs family, identify the differentially expressed genes (DEGs) in pathologic aortic tissue excised from patients with TAAD as compared to healthy aortic tissue, and assess the related biological functions and the associated miRNA families. RESULTS: Data regarding the transcriptomic profile of selected genes were retrieved and incorporated from three microarray datasets, including 23 TAAD and 20 healthy control samples. A total of 32 TJPs were assessed. The zona occludens 2 (ZO-2) protein encoded by the gene TJP2 was significantly under-expressed in patients with TAAD compared to the control group (p = 0.009). ZO-2 was associated with fair discrimination and calibration traits in predicting the TAAD presentation. CpG islands of ZO-2 were demonstrated. No important difference was found regarding ZO-2 expression between aneurysmal non-dissected and healthy control aortic tissue. Finally, we performed gene set enrichment analysis (GSEA) and uncovered the major biological functions and miRNA families (hsa-miR-155-5p, hsa-miR-1-3p, hsa-miR-2118-5p, hsa-miR-4691-3p, and hsa-miR-1229-3p) relevant to ZO-2. CONCLUSIONS: These outcomes demonstrated the important role of ZO-2 in the pathobiology of TAAD.

4.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628973

RESUMEN

Proteins containing PDZ (post-synaptic density, PSD-95/disc large, Dlg/zonula occludens, ZO-1) domains assemble signaling complexes that orchestrate cell responses. Viral pathogens target host PDZ proteins by coding proteins containing a PDZ-binding motif (PBM). The presence of a PBM in the SARS-CoV-2 E protein contributes to the virus's pathogenicity. SARS-CoV-2 infects epithelia, but also cells from the innate immune response, including monocytes and alveolar macrophages. This process is critical for alterations of the immune response that are related to the deaths caused by SARS-CoV-2. Identification of E-protein targets in immune cells might offer clues to understanding how SARS-CoV-2 alters the immune response. We analyzed the interactome of the SARS-CoV-2 E protein in human monocytes. The E protein was expressed fused to a GFP tag at the amino terminal in THP-1 monocytes, and associated proteins were identified using a proteomic approach. The E-protein interactome provided 372 partners; only 8 of these harbored PDZ domains, including the cell polarity protein ZO-2, the chemoattractant IL-16, and syntenin. We addressed the expression and localization of the identified PDZ proteins along the differentiation of primary and THP-1 monocytes towards macrophages and dendritic cells. Our data highlight the importance of identifying the functions of PDZ proteins in the maintenance of immune fitness and the viral alteration of inflammatory response.


Asunto(s)
COVID-19 , Monocitos , Humanos , SARS-CoV-2 , Proteómica , Macrófagos , Factores de Transcripción
5.
Cells ; 11(20)2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36291162

RESUMEN

Tight junctions (TJs) regulate the transit of ions and molecules through the paracellular pathway in epithelial cells. Zonula occludens 2 (ZO-2) is a cytoplasmic TJ protein. Here, we studied the ubiquitination of hZO-2 employing mutants of SUMOylation site K730 present in the GuK domain and the putative ubiquitination residues K759 and K992 located at the GuK domain and proline-rich region, respectively. In immunoprecipitation experiments done with MDCK cells transfected with wild-type (WT) hZO-2 or the ubiquitination-site mutants hZO-2-K759R or -K992R, we observed diminished ubiquitination of the mutants, indicating that residues K759 and K992 in hZO-2 are acceptors for ubiquitination. Moreover, using TUBES, we found that residues K759 and K992 of hZO-2 are targets of K48 polyubiquitination, a signal for proteasomal degradation. Accordingly, compared to WT hZO-2, the half-life of hZO-2 mutants K759R and K992R augmented from 19.9 to 37.3 and 23.3 h, respectively. Instead, the ubiquitination of hZO-2 mutant K730R increased, and its half-life diminished to 6.7 h. The lack of these lysine residues in hZO-2 affects TJ sealing as the peak of TER decreased in monolayers of MDCK cells transfected with any of these mutants. These results highlight the importance of ZO-2 ubiquitination and SUMOylation to maintain a healthy and stable pool of ZO-2 molecules at the TJ.


Asunto(s)
Sumoilación , Uniones Estrechas , Proteína de la Zonula Occludens-2/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Lisina/metabolismo , Fosfoproteínas/metabolismo , Línea Celular , Prolina/metabolismo
6.
PeerJ ; 10: e13314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480562

RESUMEN

Allergic rhinitis (AR) is a common allergic disease characterized by disruption of nasal epithelial barrier. In this study, we investigated the mRNA expression of zonula occludens-1 (ZO-1), ZO-2 and ZO-3 and histone deacetylase 1 (HDAC1) and HDAC2 in AR patients compared to healthy controls. RNA samples were extracted from nasal epithelial cells of house dust mites (HDMs)-sensitized AR patients and healthy controls (n = 28 in each group). The RNAs were reverse transcribed into cDNAs for measurement of ZO-1, ZO-2, ZO-3, HDAC1 and HDAC2 expression levels by quantitative PCR. The mRNA expression of ZO-1 was significantly decreased in AR patients compared to healthy controls (p = 0.010). No significant difference was observed in the expression levels of ZO-2, ZO-3, HDAC1 and HDAC2 in AR patients compared to healthy controls. We found significant associations of higher HDAC2 levels in AR patients with lower frequency of changing bedsheet (p = 0.043) and with AR patients sensitized to Dermatophagoides farinae (p = 0.041). Higher expression of ZO-2 was observed in AR patients who had pets (p = 0.007). In conclusion, our data indicated that ZO-1 expression was lower in AR patients contributing to decreased integrity of nasal epithelial barrier integrity, and HDAC2 may be involved in the pathogenesis of the disease.


Asunto(s)
Rinitis Alérgica , Proteína de la Zonula Occludens-1 , Humanos , Células Epiteliales/metabolismo , Mucosa Nasal/metabolismo , Rinitis Alérgica/metabolismo , ARN Mensajero/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
7.
Tissue Barriers ; 10(2): 1994351, 2022 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-34689705

RESUMEN

ZO-2 is a peripheral tight junction (TJ) protein whose silencing in renal epithelia induces cell hypertrophy. Here, we found that in ZO-2 KD MDCK cells, in compensatory renal hypertrophy triggered in rats by a unilateral nephrectomy and in liver steatosis of obese Zucker (OZ) rats, ZO-2 silencing is accompanied by the diminished activity of LATS, a kinase of the Hippo pathway, and the nuclear concentration of YAP, the final effector of this signaling route. ZO-2 appears to function as a scaffold for the Hippo pathway as it associates to LATS1. ZO-2 silencing in hypertrophic tissue is due to a diminished abundance of ZO-2 mRNA, and the Sp1 transcription factor is critical for ZO-2 transcription in renal cells. Treatment of OZ rats with metformin, an activator of AMPK that blocks JNK activity, augments ZO-2 and claudin-1 expression in the liver, reduces the paracellular permeability of hepatocytes, and serum bile acid content. Our results suggest that ZO-2 silencing is a common feature of hypertrophy, and that ZO-2 is a positive regulator of the Hippo pathway that regulates cell size. Moreover, our observations highlight the importance of AMPK, JNK, and ZO-2 as therapeutic targets for blood-bile barrier dysfunction.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Hígado Graso , Proteína de la Zonula Occludens-2/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Vía de Señalización Hippo , Hipertrofia , Ratas , Ratas Zucker , Proteínas de Uniones Estrechas
8.
Cells ; 10(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34685547

RESUMEN

MAGUK protein ZO-2 is present at tight junctions (TJs) and nuclei. In MDCK ZO-2 knockdown (KD) cells, nuclei exhibit an irregular shape with lobules and indentations. This condition correlates with an increase in DNA double strand breaks, however cells are not senescent and instead become resistant to UV-induced senescence. The irregular nuclear shape is also observed in isolated cells and in those without TJs, due to the lack of extracellular calcium. The aberrant nuclear shape of ZO-2 KD cells is not accompanied by a reduced expression of lamins A/C and B and lamin B receptors. Instead, it involves a decrease in constitutive and facultative heterochromatin, and microtubule instability that is restored with docetaxel. ZO-2 KD cells over-express SUN-1 that crosses the inner nuclear membrane and connects the nucleoskeleton of lamin A to nesprins, which traverse the outer nuclear membrane. Nesprins-3 and -4 that indirectly bind on their cytoplasmic face to vimentin and microtubules, respectively, are also over-expressed in ZO-2 KD cells, whereas vimentin is depleted. SUN-1 and lamin B1 co-immunoprecipitate with ZO-2, and SUN-1 associates to ZO-2 in a pull-down assay. Our results suggest that ZO-2 forms a complex with SUN-1 and lamin B1 at the inner nuclear membrane, and that ZO-2 and cell-cell contacts are required for a normal nuclear shape.


Asunto(s)
Comunicación Celular/inmunología , Epitelio/metabolismo , Proteína de la Zonula Occludens-2/metabolismo , Humanos , Transfección
9.
Front Cell Dev Biol ; 9: 736929, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650982

RESUMEN

Gastric cancer (GC) is one of the most common malignant tumors of the digestive system, listed as the second cause of cancer-related deaths worldwide. S100 Calcium Binding Protein A16 (S100A16) is an acidic calcium-binding protein associated with several types of tumor progression. However, the function of S100A16 in GC is still not very clear. In this study, we analyzed S100A16 expression with the GEPIA database and the UALCAN cancer database. Meanwhile, 100 clinical GC samples were used for the evaluation of its role in the prognostic analysis. We found that S100A16 is significantly upregulated in GC tissues and closely correlated with poor prognosis in GC patients. Functional studies reveal that S100A16 overexpression triggers GC cell proliferation and migration both in vivo and in vitro; by contrast, S100A16 knockdown restricts the speed of GC cell growth and mobility. Proteomic analysis results reveal a large S100A16 interactome, which includes ZO-2 (Zonula Occludens-2), a master regulator of cell-to-cell tight junctions. Mechanistic assay results indicate that excessive S100A16 instigates GC cell invasion, migration, and epithelial-mesenchymal transition (EMT) via ZO-2 inhibition, which arose from S100A16-mediated ZO-2 ubiquitination and degradation. Our results not only reveal that S100A16 is a promising candidate biomarker in GC early diagnosis and prediction of metastasis, but also establish the therapeutic importance of targeting S100A16 to prevent ZO-2 loss and suppress GC metastasis and progression.

10.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34299297

RESUMEN

The epithelial cell tight junction structure is the site of the transepithelial movement of solutes and water between epithelial cells (paracellular permeability). Paracellular permeability can be divided into two distinct pathways, the Pore Pathway mediating the movement of small ions and solutes and the Leak Pathway mediating the movement of large solutes. Claudin proteins form the basic paracellular permeability barrier and mediate the movement of small ions and solutes via the Pore Pathway. The Leak Pathway remains less understood. Several proteins have been implicated in mediating the Leak Pathway, including occludin, ZO proteins, tricellulin, and actin filaments, but the proteins comprising the Leak Pathway remain unresolved. Many aspects of the Leak Pathway, such as its molecular mechanism, its properties, and its regulation, remain controversial. In this review, we provide a historical background to the evolution of the Leak Pathway concept from the initial examinations of paracellular permeability. We then discuss current information about the properties of the Leak Pathway and present current theories for the Leak Pathway. Finally, we discuss some recent research suggesting a possible molecular basis for the Leak Pathway.


Asunto(s)
Células Epiteliales/metabolismo , Uniones Estrechas/metabolismo , Animales , Claudinas/metabolismo , Células Epiteliales/fisiología , Humanos , Ocludina/metabolismo , Permeabilidad , Uniones Estrechas/fisiología , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-2/metabolismo
11.
Theriogenology ; 161: 262-270, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33348145

RESUMEN

Zonula occludens (ZO)-1 and ZO-2 are involved in epithelial polarity maintenance, gene transcription, cell proliferation and tumor cell metastasis. Regulating ZO-1/2 expression influences the early embryonic development of mice, but whether they are involved in oocyte maturation is still poorly understood. In the present study, the expression patterns of ZO-1 and ZO-2 in porcine cumulus cells and oocytes matured in vitro and early embryos from parthenogenetic activation were detected by qRT-PCR or Western blot, and then their roles in porcine oocyte maturation and early embryo development were investigated by shRNA technology. ZO-1 and ZO-2 were found to be expressed in cumulus cells, oocytes and early embryos, while ZO-1α+ was expressed only in cumulus cells, morula and blastocysts. During in vitro maturation (IVM), the abundance of ZO-1 and ZO-2 in oocytes was significantly higher than that in cumulus cells at 0 h (P < 0.01), and their mRNA and protein levels displayed relatively higher expression at 0 and 18 h, respectively. Compared with the control groups, cumulus cell expansion, oocyte nucleus maturation, and subsequent cleavage were not influenced by treatment of the cumulus-oocyte complexes (COCs) with ZO-1-shRNA1, ZO-2-shRNA2 or combined ZO-1-shRNA1 and ZO-2-shRNA2 lentivirus (P > 0.05). However, the blastocyst rate was reduced by treatment of COCs with ZO-1-shRNA1 but not ZO-2-shRNA2. The total cell number of blastocysts was decreased by downregulation of ZO-1 and ZO-2 (P < 0.05). Downregulation of ZO-1 and ZO-2 also resulted in a significant decrease (P < 0.05) in the expression of Cx43, Cx45, PTX3 and PTGS2 in cumulus cells, Cx45, BMP15, ZP3 and C-KIT in MII oocytes, and Nanog in blastocysts, with the exception of HAS2 expression in cumulus cells and Oct4 expression in blastocysts (P > 0.05). Altogether, the above results indicate that ZO-1 and ZO-2 display similar expression patterns during porcine oocyte IVM and are critical to porcine oocyte maturation and early embryonic development.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Uniones Estrechas , Animales , Blastocisto , Células del Cúmulo , Desarrollo Embrionario , Femenino , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Ratones , Oocitos , Porcinos
12.
J Cell Physiol ; 235(5): 4655-4666, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31637713

RESUMEN

Podosomes and tight junctions (TJs) are subcellular compartments that both exist in endothelial cells and localize at cell surfaces. In contrast to the well-characterized role of TJs in maintaining cerebrovascular integrity, the specific function of endothelial podosomes remains unknown. Intriguingly, we discovered cross-talk between podosomes and TJs in human brain endothelial cells. Tight junction scaffold proteins ZO-1 and ZO-2 localize at podosomes in response to phorbol-12-myristate-13-acetate treatment. We found that both ZO proteins are essential for podosome formation and function. Rather than being derived from new protein synthesis, podosomal ZO-1 and ZO-2 are relocated from a pre-existing pool found at the peripheral plasma membrane with enhanced physical interaction with cortactin, a known protein marker for podosomes. Sequestration of ZO proteins in podosomes weakens tight junction complex formation, leading to increased endothelial cell permeability. This effect can be further attenuated by podosome inhibitor PP2. Altogether, our data revealed a novel cellular function of podosomes, specifically, their ability to negatively regulate tight junction and endothelial barrier integrity, which have been linked to a variety of cerebrovascular diseases.


Asunto(s)
Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Podosomas/metabolismo , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-2/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Humanos , Permeabilidad , Podosomas/efectos de los fármacos , Multimerización de Proteína , Transporte de Proteínas , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacología , Uniones Estrechas/efectos de los fármacos , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-2/genética
13.
Int J Mol Sci ; 20(17)2019 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-31450555

RESUMEN

ZO-2 is a cytoplasmic protein of tight junctions (TJs). Here, we describe ZO-2 involvement in the formation of the apical junctional complex during early development and in TJ biogenesis in epithelial cultured cells. ZO-2 acts as a scaffold for the polymerization of claudins at TJs and plays a unique role in the blood-testis barrier, as well as at TJs of the human liver and the inner ear. ZO-2 movement between the cytoplasm and nucleus is regulated by nuclear localization and exportation signals and post-translation modifications, while ZO-2 arrival at the cell border is triggered by activation of calcium sensing receptors and corresponding downstream signaling. Depending on its location, ZO-2 associates with junctional proteins and the actomyosin cytoskeleton or a variety of nuclear proteins, playing a role as a transcriptional repressor that leads to inhibition of cell proliferation and transformation. ZO-2 regulates cell architecture through modulation of Rho proteins and its absence induces hypertrophy due to inactivation of the Hippo pathway and activation of mTOR and S6K. The interaction of ZO-2 with viral oncoproteins and kinases and its silencing in diverse carcinomas reinforce the view of ZO-2 as a tumor regulator protein.


Asunto(s)
Regulación de la Expresión Génica , Transducción de Señal , Proteína de la Zonula Occludens-2/genética , Proteína de la Zonula Occludens-2/metabolismo , Actomiosina/metabolismo , Animales , Apoptosis/genética , Proliferación Celular , Forma de la Célula , Tamaño de la Célula , Desarrollo Embrionario/genética , Humanos , Proteínas Nucleares/metabolismo , Especificidad de Órganos/genética , Unión Proteica , Transporte de Proteínas , Uniones Estrechas/metabolismo , Transcripción Genética , Proteína de la Zonula Occludens-2/química
14.
Int J Mol Sci ; 20(14)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336567

RESUMEN

The intestinal microbe-derived metabolite trimethylamine N-oxide (TMAO) is implicated in the pathogenesis of cardiovascular diseases (CVDs). The molecular mechanisms of how TMAO induces atherosclerosis and CVDs' progression are still unclear. In this regard, high-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to disrupt cell-cell junctions, resulting in vascular endothelial hyper permeability leading to endothelial dysfunction. The present study tested whether TMAO associated endothelial dysfunction results via HMGB1 activation. Biochemical and RT-PCR analysis showed that TMAO increased the HMGB1 expression in a dose-dependent manner in endothelial cells. However, prior treatment with glycyrrhizin, an HMGB1 binder, abolished the TMAO-induced HMGB1 production in endothelial cells. Furthermore, Western blot and immunofluorescent analysis showed significant decrease in the expression of cell-cell junction proteins ZO-2, Occludin, and VE-cadherin in TMAO treated endothelial cells compared with control cells. However, prior treatment with glycyrrhizin attenuated the TMAO-induced cell-cell junction proteins' disruption. TMAO increased toll-like receptor 4 (TLR4) expression in endothelial cells. Inhibition of TLR4 expression by TLR4 siRNA protected the endothelial cells from TMAO associated tight junction protein disruption via HMGB1. In conclusion, our results demonstrate that HMGB1 is one of the important mediators of TMAO-induced endothelial dysfunction.


Asunto(s)
Endotelio/efectos de los fármacos , Endotelio/metabolismo , Proteína HMGB1/metabolismo , Metilaminas/farmacología , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Espacio Extracelular/metabolismo , Humanos , Uniones Intercelulares/efectos de los fármacos , Uniones Intercelulares/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Receptor Toll-Like 4/metabolismo
15.
Iran J Basic Med Sci ; 22(10): 1158-1165, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31998457

RESUMEN

OBJECTIVES: Zonula occludens proteins (ZO-1 and ZO-2) are important intracellular tight junction (TJ)-associated proteins that link the cell cytoskeleton to the trans-membrane TJ proteins. Destruction of TJ proteins is called the "leaky gut syndrome" and has been observed in some of the gastrointestinal diseases such as the inflammatory bowel disease (IBD). So, therapeutic approaches aim to restore the expression of TJ proteins and reduce intestinal permeability. Healing effect of Kombucha tea (KT), so-called long-life mushroom, on the gastrointestinal system, particularly its extraordinary healing effects on intestinal ulcers has been purported traditionally and rarely reported scientifically. This study aimed to investigate the therapeutic effect of filtered KT (fKT) in young and old mice model of colitis. MATERIALS AND METHODS: Leaky gut was induced in two groups of young and old age using dextran sodium sulfate in drinking water for seven days. Then, fKT was administered to the mice affected by colitis and compared with the age-matched normal and untreated animals with colitis. RESULTS: Survival rate of the fKT-treated young and old animals with colitis increased and weight loss decreased. Accordingly, digestive disorders characterized by bleeding and diarrhea were improved in fKT-treated mice. Molecular and histological examination indicated that expression of ZO-1 and ZO-2 was significantly improved in fKT-treated mice. CONCLUSION: Our results suggest KT as a promising therapeutic candidate to reduce intestinal permeability. Young animals with colitis showed more severe clinical signs and less survival rate than old mice with colitis, but this group responded better to fKT treatment than the old mice.

16.
Toxicol Appl Pharmacol ; 360: 257-272, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30291936

RESUMEN

Methamidophos (MET) is an organophosphate (OP) pesticide widely used in agriculture in developing countries. MET causes adverse effects in male reproductive function in humans and experimental animals, but the underlying mechanisms remain largely unknown. We explored the effect of MET on mice testes (5 mg/kg/day/4 days), finding that this pesticide opens the blood-testis barrier and perturbs spermatogenesis, generating the appearance of immature germ cells in the epididymis. In the seminiferous tubules, MET treatment changed the level of expression or modified the stage-specific localization of tight junction (TJ) proteins ZO-1, ZO-2, occludin, and claudin-3. In contrast, claudin-11 was barely altered. MET also modified the shape of claudin-11, and ZO-2 at the cell border, from a zigzag to a more linear pattern. In addition, MET diminished the expression of ZO-2 in spermatids present in seminiferous tubules, induced the phosphorylation of ZO-2 and occludin in testes and reduced the interaction between these proteins assessed by co-immunoprecipitation. MET formed covalent bonds with ZO-2 in serine, tyrosine and lysine residues. The covalent modifications formed on ZO-2 at putative phosphorylation sites might interfere with ZO-2 interaction with regulatory molecules and other TJ proteins. MET bonds formed at ZO-2 ubiquitination sites likely interfere with ZO-2 degradation and TJ sealing, based on results obtained in cultured epithelial cells transfected with ZO-2 mutated at a MET target lysine residue. Our results shed light on MET male reproductive toxicity and are important to improve regulations regarding the use of OP pesticides and to protect the health of agricultural workers.


Asunto(s)
Barrera Hematotesticular/efectos de los fármacos , Insecticidas/farmacología , Organofosfatos/farmacología , Compuestos Organotiofosforados/farmacología , Proteína de la Zonula Occludens-2/metabolismo , Animales , Barrera Hematotesticular/metabolismo , Claudinas/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ocludina/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Túbulos Seminíferos/efectos de los fármacos , Túbulos Seminíferos/metabolismo , Espermatogénesis/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
17.
Genes Cells ; 23(7): 546-556, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29845705

RESUMEN

Glomerular podocytes in the kidney originate from columnar epithelial cells possessing tight junctions. During podocyte differentiation, tight junctions are replaced by slit diaphragms, which are formed between foot processes and function as a blood filtration barrier. Although the expression of most tight junction components is suppressed during podocyte differentiation, several components, including ZO-1 and ZO-2, are consistently expressed. We recently showed that podocyte-specific deletion of ZO-1 gene impaired slit diaphragm formation, leading to proteinuria and glomerular sclerosis. Here, we address the relevance of ZO-2, whose sequence is highly similar to ZO-1, in the maintenance of the structure and function of podocytes. In glomerular development, the spatiotemporal expression of ZO-2 was similar to that of ZO-1 until the capillary loop stage. Subsequently, the distribution patterns of ZO-1 and ZO-2 diverged at the maturation stage, when slit diaphragms are formed. This divergence could partly rely on the ability of ZO-2 to interact with the slit diaphragm membrane proteins. Podocyte-specific deletion of the ZO-2 gene did not cause overt defects; however, double knockout of ZO-1 and ZO-2 genes accelerated the defects observed in ZO-1 knockout mice. These results suggest that ZO-2 plays supportive roles in the ZO-1-dependent regulation of podocyte filtration barrier.


Asunto(s)
Podocitos/metabolismo , Proteína de la Zonula Occludens-1/fisiología , Proteína de la Zonula Occludens-2/fisiología , Animales , Células COS , Diferenciación Celular , Línea Celular , Chlorocebus aethiops , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/genética , Uniones Intercelulares , Riñón/metabolismo , Enfermedades Renales/metabolismo , Glomérulos Renales/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Podocitos/fisiología , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Uniones Estrechas/fisiología , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-2/genética , Proteína de la Zonula Occludens-2/metabolismo
18.
Curr Biol ; 27(24): 3783-3795.e8, 2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29199076

RESUMEN

Tensile forces regulate epithelial homeostasis, but the molecular mechanisms behind this regulation are poorly understood. Using structured illumination microscopy and proximity ligation assays, we show that the tight junction protein ZO-1 exists in stretched and folded conformations within epithelial cells, depending on actomyosin-generated force. We also show that ZO-1 and ZO-2 regulate the localization of the transcription factor DbpA and the tight junction membrane protein occludin in a manner that depends on the organization of the actin cytoskeleton, myosin-II activity, and substrate stiffness, resulting in modulation of gene expression, cell proliferation, barrier function, and cyst morphogenesis. Pull-down experiments show that interactions between N-terminal (ZPSG) and C-terminal domains of ZO-1 prevent binding of DbpA to the ZPSG, suggesting that force-dependent intra-molecular interactions regulate ZPSG binding to ligands within cells. In vivo and in vitro experiments also suggest that ZO-1 heterodimerization with ZO-2 promotes the stretched conformation and ZPSG interaction with ligands. Magnetic tweezers single-molecule experiments suggest that pN-scale tensions (∼2-4 pN) are sufficient to maintain the stretched conformation of ZO-1, while keeping its structured domains intact, and that 5-20 pN force is required to disrupt the interaction between the extreme C-terminal and the ZPSG domains of ZO-1. We propose that tensile forces regulate epithelial homeostasis by activating ZO proteins through stretching, to control the junctional recruitment and downstream signaling of their interactors.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Proteína de la Zonula Occludens-1/genética , Animales , Línea Celular , Femenino , Humanos , Ratones , Células Sf9 , Spodoptera , Proteína de la Zonula Occludens-1/metabolismo
19.
Traffic ; 18(8): 491-504, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28477369

RESUMEN

T Lymphocyte recognition of antigens leads to the formation of a highly organized structure termed immune synapse (IS) by analogy with the neuronals synapse. Sorting nexin 27 (SNX27) controls the endosomal traffic of PSD95, Dlg1, ZO-1 (PDZ) domain-interacting proteins, and its alteration is associated with impaired synaptic function and neurological diseases. In T-lymphocytes, SNX27-positive vesicles polarize to the IS, the identity of SNX27 interactors in these conditions nonetheless remains unknown. Here we used proteomics to analyze the SNX27 interactome purified from IS-forming T cells, and confirmed the conserved nature of the SNX27/WASH/retromer association in hematopoietic cells. Furthermore, our comparative interactome analysis of SNX27 wild-type and a mutant-deficient for PDZ cargo recognition identified the epithelial cell-cell junction protein zona occludens-2 (ZO-2) as an IS component. Biochemistry and microscopy approaches in T cells confirmed SNX27/ZO-2 PDZ-dependent interaction, and demonstrated its role controlling the dynamic localization of ZO-2 at the IS. This study broadens our knowledge of SNX27 function in T lymphocytes, and suggests that pathways that delimit polarized structures in nervous and epithelial systems also participate in IS regulation.


Asunto(s)
Sinapsis Inmunológicas/metabolismo , Mapas de Interacción de Proteínas , Nexinas de Clasificación/metabolismo , Linfocitos T/metabolismo , Proteína de la Zonula Occludens-2/metabolismo , Línea Celular Tumoral , Humanos , Transporte de Proteínas
20.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1714-1733, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28554775

RESUMEN

Silencing Zonula occludens 2 (ZO-2), a tight junctions (TJ) scaffold protein, in epithelial cells (MDCK ZO-2 KD) triggers: 1) Decreased cell to substratum attachment, accompanied by reduced expression of claudin-7 and integrin ß1, and increased vinculin recruitment to focal adhesions and stress fibers formation; 2) Lowered cell-cell aggregation and appearance of wider intercellular spaces; 3) Increased RhoA/ROCK activity, mediated by GEF-HI recruitment to cell borders by cingulin; 4) Increased Cdc42 activity, mitotic spindle disorientation and the appearance of cysts with multiple lumens; 5) Increased Rac and cofilin activity, multiple lamellipodia formation and random cell migration but increased wound closure; 6) Diminished cingulin phosphorylation and disappearance of planar network of microtubules at the TJ region; and 7) Increased transepithelial electrical resistance at steady state, coupled to an increased expression of ZO-1 and claudin-4 and a decreased expression of claudin-2 and paracingulin. Hence, ZO-2 is a crucial regulator of Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.


Asunto(s)
Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-2/genética , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rhoA/genética , Animales , Claudina-2/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Perros , Células Epiteliales/metabolismo , Humanos , Células de Riñón Canino Madin Darby , Fosforilación , Uniones Estrechas/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA