Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Acta Parasitol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225734

RESUMEN

BACKGROUND: Toxoplasma gondii (T. gondii) infects one third of the world's population with significant illness, mainly among immunocompromised individuals and pregnant women. Treatment options for toxoplasmosis are limited which signifies the need for novel, potent, and safe therapeutic options. The goal of this study was to assess the effectiveness of the ethanolic extract of Zingiber officinale (Z. officinale) in treating mice infected with the RH T. gondii strain. MATERIALS AND METHODS: Gas Chromatography/Mass Spectrometry (GC/MS) was used to identify components of ethanolic extract of Z. officinale. A total of 80 mice were randomly allocated into four experimental groups that contained 20 mice each. The first group was left uninfected (uninfected control), while three groups were infected with T. gondii RH virulent strain tachyzoites at 2500 tachyzoites/mouse. One infected group was left untreated (infected, untreated), whereas the other two groups were treated orally with either spiramycin (positive control) or Z. officinale ethanolic extract at doses of 200 mg/kg and 500 mg/kg, respectively for 5 days, starting the day of infection. Ten mice from each group were used to assess mice survival in different groups, whereas the other ten mice in each group were sacrificed on the 5th day post-infectin (dpi) to estimate the treatment efficacy by quantifying liver parasite load, liver function, nitric oxide (NO) production, and levels of antioxidant enzymes. Additionally, histopathological studies were performed to evaluate the therapeutic effect of Z. officinale treatment on toxoplasmosis-induced pathological alterations in liver, brain, and spleen. RESULTS: Treatment with Z. officinale ethanolic extract extended the survival of mice till 9th dpi compared to 7th dpi in infected untreated mice. Higher percentage of mice survived in Z. officinale-treated group compared to spiramycin-treatment group at different time points. Liver parasite loads were significantly lower in Z. officinale extract-treated mice and spiramycin-treated mice compared to infected untreated mice which correlated with significantly lower levels of serum liver enzymes (ALT, AST) and nitric oxide (NO), as well as significantly higher catalase (CAT) antioxidant enzyme activity. Scanning electron microscopy (SEM) examination of tachyzoites from the peritoneal fluid revealed marked damage in tachyzoites from Z. officinale-treated group compared to that from infected untreated mice. Moreover, treatment with Z. officinale ethanolic extract alleviated infection-induced pathological alterations and restored normal tissue morphology of liver, brain, and spleen. CONCLUSION: Our results demonstrated that Z. officinale treatment reduced parasite burden and reversed histopathological and biochemical alterations in acute murine toxoplasmosis. These findings support the potential utility of Z. officinale as a future effective natural therapeutic for toxoplasmosis. Further studies are needed to determine the effective active ingredient in Z. officinale extract that can be further optimized for treatment of toxoplasmosis.

2.
Metab Brain Dis ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120852

RESUMEN

Obesity is a significant health concern that is correlated with various adverse health outcomes. Diet-induced obesity (DIO) is associated with impaired cognitive function. Pharmacological treatments for obesity are limited and may have serious adverse effects. Zingiber officinale (ZO) has anti-inflammatory and antioxidant effects, in addition to metabolic effects. This study aimed to assess the effects of Zingiber officinale supplementation on cognitive function, anxiety levels, neurotrophin levels, and the inflammatory and oxidative status in the cortex following DIO in mice. Two-month-old male Swiss mice were fed DIO or standard chow for 4 months and subsequently subdivided into the following groups (n = 10 mice/group): (i) control - vehicle (CNT + vehicle); (ii) CNT supplemented with ZO (CNT + ZO); (iii) obese mice (DIO + vehicle); and (iv) obese mice supplemented with ZO (DIO + ZO) (n = 10). Zingiber officinale extract (400 mg/kg/day) was administered for 35 days via oral gavage. The DIO + vehicle group exhibited impaired recognition memory. The CNT + ZO group presented a greater number of crossings in the open field. No difference between the groups was observed in the plus maze test. DIO + vehicle increased the DCFH and carbonylation levels in the cortex. The DIO + vehicle group presented a reduction in catalase activity. The expression of inflammatory or neurotrophin markers in the cerebral cortex was not different. In conclusion, our findings indicate that supplementation with ZO reverses the cognitive impairment in DIO mice and enhances the antioxidant status of the cerebral cortex.

3.
Biomed Chromatogr ; : e5993, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152776

RESUMEN

Colorectal cancer (CRC) is the fourth most common cause of malignant tumor death. The development of novel, more effective drugs is desperately needed to treat CRC. Zingiber officinale is believed to possess anticancer properties due to its flavonoids and phenols. Using Soxhlet (SOXT) and maceration (MACR) techniques, the present study aimed to evaluate the amounts of quercetin, gallic acid, rutin, naringin, and caffeic acid in ginger capsules of Z. officinale. High-performance liquid chromatography (HPLC)/ultraviolet was used for separation and quantitation. In vitro toxicity evaluation of ginger capsules on the CRC cell line HT-29 was also conducted to assess the anticancer activity of the supplement. The cell line HT-29 (HTB-38) colorectal adenocarcinoma was utilized for the antiproliferative effect of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide. Ginger herbal supplement extract at dosages of 200 and 100 µg had strong cytotoxic effects (IC50 < 50 µg/mL) on HT-29 CRC cells via MACR. This extract is comparable to the SOXT extract, which has an IC50 of less than 50 µg/mL. The anticancer effect of ginger herbal supplement formulations against CRC lines was investigated, and the results obtained from both the MACR and SOXT extraction procedures were noteworthy. The quercetin content was the highest of all the extracts according to the HPLC data.

4.
J Nat Med ; 78(4): 952-969, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096421

RESUMEN

This study established an Orthogonal Partial Least Squares (OPLS) model combining 1H-NMR and GC-MS data to identify characteristic metabolites in complex extracts. Both in metabolomics studies, and natural product chemistry, the reliable identification of marker metabolites usually requires laborious isolation and purification steps, which remains a bottleneck in many studies. Both ginger (GR) and processed ginger (PGR) are listed in the Japanese pharmacopeia. The plant of origin, the rhizome of Zingiber officinale Roscoe, is differently processed for these crude drugs. Notably, the quality of crude drugs is affected by genetic and environmental factors, making it difficult to maintain a certain quality standard. Therefore, characteristic markers for the quality control of GR and PGR are required. Metabolomic analysis using 1H-NMR was able to discriminate between GR and PGR, but there were unidentified signals that were difficult to distinguish based on NMR data alone. Therefore, we combined 1H-NMR and GC-MS analytical data to identify them by OPLS. As a result, αr-curcumene was found to be a useful marker for these identifications. This new approach enabled rapid identification of characteristic marker compounds and reduced the labor involved in the isolation process.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Control de Calidad , Rizoma , Zingiber officinale , Zingiber officinale/química , Rizoma/química , Metabolómica/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Extractos Vegetales/química , Biomarcadores , Espectroscopía de Resonancia Magnética/métodos , Análisis de los Mínimos Cuadrados
5.
J Ayurveda Integr Med ; 15(4): 100957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39173346

RESUMEN

Chemotherapy-induced nausea and vomiting (CINV) affects over 50% of pediatric patients undergoing chemotherapy, a higher proportion than in adults. CINV often occurs despite adequate antiemetic prophylaxis, hampering patients' willingness to continue the chemotherapy regimen. As an ayurvedic medicine, ginger (Zingiber officinale) has an antiemetic effect by inhibiting serotonin in gastrointestinal nerves and as an NK1 antagonist. Therefore, we aimed to review oral ginger supplementation in children with CINV systematically. Systematic searching was performed in June 2023 from Pubmed, Embase, CINAHL, Cochrane, and hand searching. The search consisted of PICO "children chemotherapy", "ginger", and "CINV incidence". We limited the search to only human studies. Studies that meet inclusion and exclusion criteria were included for analysis. Out of 116 studies found with our selection criteria, four were compatible with inclusion and exclusion criteria. Two studies had a small Risk of Bias (RoB), while the others had a high RoB. All studies statistically significantly reduced acute and delayed CINV with the number needed to treat (NNT) 2-4. No adverse effects were reported. However, these studies still had high heterogeneity based on cancer treatment, chemotherapy regimen, ginger dosing, and ginger processing. Ginger has the potential to reduce both the acute and delayed phases of CINV in children. Additional research employing standardized methodologies is recommended to validate this effect.

6.
Clin Nutr ESPEN ; 63: 615-622, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053695

RESUMEN

BACKGROUND: Ginger, a root originating in Southeast Asia, has several therapeutic benefits to human health, including antioxidant activity. Currently, there are discussions regarding the hypoglycemic properties of dietary supplements derived from its phenolic compounds in the management of chronic diseases. Diabetes mellitus is a chronic and complex disease that requires continuous treatment, with glycemic control being decisive in the management of hyperglycemia. AIM: This systematic review and meta-analysis aimed to identify the effects of oral supplementation of ginger in the treatment of type 2 diabetes mellitus (T2DM) in patients undergoing randomized clinical trial studies. METHODS: Across the PubMed, Scopus, and Web of Science databases, randomized controlled trials that examined the role of ginger in T2DM until January 2022 were systematically researched. The parameters used to assess T2DM treatment control were Fasting Blood Glucose (FBS) and glycated hemoglobin (HbA1c). Bias risk assessment of the studies was performed using the RoB 2.0 tool. Meta-analysis was performed considering data compatibility. RESULTS: Five studies were included in the analysis. Capsules containing Zingiber officinale powder were supplemented twice a day. The dose ranged from 1.2 to 2g/day, and the intervention period ranged from 4 to 12 weeks. Meta-analysis results indicated no significant effect of ginger supplementation on FBS or HbA1c. However, individual studies reported mixed results, with two studies showing a significant reduction in FBS. This suggests that while ginger may have potential as an adjuvant therapy, its overall impact on glycemic control in T2DM is not statistically significant when results are pooled. CONCLUSION: Currently published articles are still limited, requiring further studies of high methodological quality to verify the effectiveness of ginger supplementation on T2DM parameters control.

7.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2853-2862, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041144

RESUMEN

China cultivates characteristic resource plant Zingiber officinale for both medicine and food use, with a long history of cultivation, production, and application. With the continuous excavation of the health and skin care values of ginger products due to scientific and technological progress, the scale expansion and quality improvement of the ginger industry have been effectively promoted, forming an industrial cluster with rich germplasm resources and diverse product categories represented by the north and south regions of China, and China has been developed as the biggest producer and exporter of raw materials and processed products of ginger.The present situation of ginger germplasm resources, ginger production, market price, and quality control of ginger products was reviewed in this paper. According to data from the Food and Agriculture Organization of the United Nations(FAO), United Nations International Trade Database, Chinese Network for Ginger Trade, and China Industry Information Network, the market fluctuation and trend of ginger products in China and abroad were discussed, and the current development and utilization of Chinese and international ginger industries were analyzed. In addition, through the research group's field investigation of the main producing area of ginger in China, analysis and prediction were made, and measures to improve the quality and efficiency of ginger industry use were put forward,so as to offer experience for relevant departments to study and formulate the development plan and production layout of ginger industry,help practitioners in ginger industry to cope with challenges, and provide a reference for promoting the quality and efficiency of ginger industry and high-quality development.


Asunto(s)
Zingiber officinale , Zingiber officinale/química , Zingiber officinale/crecimiento & desarrollo , China , Control de Calidad , Medicamentos Herbarios Chinos/normas , Humanos
8.
Nat Prod Res ; : 1-6, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38919043

RESUMEN

Metabolite profiling is required to reveal bioactive chemicals in ginger rhizome for supporting its traditional claim as anti-diabetic agent. This study aimed to evaluate α-glucosidase inhibitory (AGI) and antioxidant activities of the rhizome, to identify its putative α-glucosidase inhibitors, and to analyse the protein-ligand interaction of the inhibitors. The ginger extracts were tested to in vitro AGI assay and analysed using LCMS-based metabolomics to pinpoint the putative α-glucosidase inhibitors. The methanol extract exhibited the highest AGI activity (IC50 = 185.2 µg/mL) compared to the other extracts. This extract showed antioxidant activities with DPPH-IC50 and FRAP value of 125.0 µg/mL and 16.95 mmol TE/mgDW, respectively. The LCMS-based metabolomics revealed α-glucosidase inhibitors in the extract, namely 7-methoxycoumarin, supinine and 12-hydroxycorynoline. The presence of these compounds in ginger is being reported for the first time in this study. The activity of these compounds was supported by computational study using in silico molecular docking.

9.
Biomed Chromatogr ; 38(9): e5932, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38922712

RESUMEN

Abnormal relaxation and contraction of intestinal smooth muscle can cause various intestinal diseases. Diarrhea is a common and important public health problem worldwide in epidemiology. Zingiber officinale Roscoe (fresh ginger) has been found to treat diarrhea, but the material basis and mechanism of action that inhibits intestinal peristalsis remain unclear. Metabolomics and serum pharmacology were used to identify differential metabolites, metabolic pathways, and pharmacodynamic substances, and were then combined with network pharmacology to explore the potential targets of ginger that inhibit intestinal peristalsis during diarrhea treatment, and the targets identified were verified using molecular docking and molecular dynamic simulation. We found that 25 active components of ginger (the six most relevant components), 35 potential key targets (three core targets), 40 differential metabolites (four key metabolites), and four major metabolic pathways were involved in the process by which ginger inhibits intestinal peristalsis during diarrhea treatment. This study reveals the complex mechanism of action and pharmacodynamic material basis of ginger in the inhibition of intestinal peristalsis, and this information helps in the development of new Chinese medicine to treat diarrhea and lays the foundation for the clinical application of ginger.


Asunto(s)
Metabolómica , Simulación del Acoplamiento Molecular , Farmacología en Red , Peristaltismo , Zingiber officinale , Zingiber officinale/química , Metabolómica/métodos , Animales , Peristaltismo/efectos de los fármacos , Masculino , Diarrea/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley , Metaboloma/efectos de los fármacos , Metaboloma/fisiología , Intestinos/efectos de los fármacos
10.
Cancer Sci ; 115(8): 2701-2717, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888067

RESUMEN

The rhizome of Zingiber officinale (Z. officinale), commonly known as ginger, has been characterized as a potential drug candidate due to its antitumor effects. However, the chemotherapeutic effect of ginger on human oral cancer remains poorly understood. In this study, we examined the effects of an ethanol extract of Z. officinale rhizomes (ZOE) on oral cancer and identified the components responsible for its pharmacological activity. ZOE exerts its inhibitory activity in oral cancer by inducing both autophagy and apoptosis simultaneously. Mechanistically, ZOE-induced autophagy and apoptosis in oral cancer are attributed to the reactive oxygen species (ROS)-mediated endoplasmic reticulum stress response. Additionally, we identified two active components of ZOE, 1-dehydro-6-gingerdione and 8-shogaol, which were sufficient to stimulate autophagy initiation and apoptosis induction by enhancing CHOP expression. These results suggest that ZOE and its two active components induce ROS generation, upregulate CHOP, initiate autophagy and apoptosis, and hold promising therapeutics against human oral cancer.


Asunto(s)
Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Neoplasias de la Boca , Extractos Vegetales , Especies Reactivas de Oxígeno , Factor de Transcripción CHOP , Zingiber officinale , Zingiber officinale/química , Humanos , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/farmacología , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Animales , Catecoles/farmacología , Ratones , Rizoma/química , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos Fitogénicos/farmacología
11.
J Pharm Bioallied Sci ; 16(Suppl 2): S1226-S1232, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882741

RESUMEN

Nonessential heavy metals are toxic to human health. In this study, mercury, a hazardous metal, was detected by colorimetric analysis using Zingiber (Z.) officinale. The eco-friendliness of this method was also emphasized. The ultraviolet (UV) spectrum is a broad peak observed at 200-250 nm in Z. officinale leaf extracts. The UV spectrum of green synthesized Z. officinale exhibited an absorption band of 286 nm, which confirms the nanoparticle (NP) synthesis. Fourier transform infrared (FTIR) analysis of the vibrational peak around 3307 cm-1 is assigned to ν(O-H) stretching that could possibly emanate from carbohydrates or phenolics. The peaks found around 2917 and 2849 cm-1 are ascribed to the -C-H stretch of the alkyl group, and the peak around 1625 cm-1 is due to the enolic ß-diketones or -C = O stretch of carboxylic acids, while the corresponding -C-O stretch is observed around 1375 and 1029 cm-1. The assignment of peaks is similar. It is clear from the scanning electron microscope (SEM) image that the constituent parts were nonuniform, sphere-shaped, agglomerated, and of an average size of 30.9 nm. X-ray diffraction (XRD) analysis was used to determine the structural characteristics and crystalline nature of Z. officinale. The observed intensity peaks at 32.35°, 36.69°, 39.24°, 44.76°, 59.42°, and 67.35° are, respectively, of the Z. officinale diffraction 2θ values, which correspond to the standard database values. The synthesized copper NPs synthesized tested antibacterial properties against various strains of microorganisms, including Escherichia coli: 25 µg/mL 2.01 ± 0.11 and 100 µg/mL 5.37 ± 0.12, Staphylococcus (S.) aureus: 25 µg/mL 1.05 ± 0.71 and 100 µg/mL 11.43 ± 1.27, Streptococcus mutans: 25 µg/mL 02.01 ± 0.1 and 100 µg/mL 15.67 ± 0.17, and Enterococcus faecalis: 25 µg/mL 03.11 ± 0.7 and 100 µg/mL 18.32 ± 0.2. The short novelty of Z. officinale lies in its potential relevance to human health, as it has been found to possess bioactive compounds with various medicinal properties, such as antimicrobial, antioxidant, and anti-inflammatory activities, making it a promising natural resource for therapeutic applications.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38770631

RESUMEN

Background: Primary dysmenorrhea is a common gynecological disorder that affects many women of reproductive age. Ginger, a widely used spice with anti-inflammatory properties, has been suggested as a potential treatment for the painful cramps associated with this condition. Objective: The aim of this systematic review and meta-analysis was to evaluate the efficacy of ginger for pain management in primary dysmenorrhea. Methods: Our systematic review was registered in Prospero (CRD42023418001). Six English (PubMed, Scopus, Web of Science, PsycINFO, CINAHL complete, and Cochrane) and one Persian electric database (SID) was searched up to May 2023 for English or Persian studies that measure the effect of ginger on pain in dysmenorrhea. The Cochrane tool was used to assess the risk of bias of the included studies. Random effects meta-analyses were performed to obtain standardized mean differences (SMD) and 95% confidence intervals (CI). Results: Out of the 804 articles initially identified from the search, 24 were included for qualitative analysis and 12 for quantitative analysis after a full-text evaluation. The combined results of the studies indicate that ginger is notably more effective than placebo in reducing both the intensity (SMD = -1.13; 95% CI = -1.59 to -0.68, I2 = 81.05%) and duration of pain (SMD = -0.29; 95% CI = -0.46 to -0.12). There were no differences between ginger and nonsteroidal anti-inflammatory drugs (NSAIDs) (SMD = 0.01; 95% CI = -0.24 to 0.25), or exercise (SMD = 0.06; 95% CI = -0.66 to 0.78) for pain intensity. Safety-related data were infrequently reported. Conclusions: The results of this meta-analysis suggest that ginger can effectively reduce pain associated with dysmenorrhea. The findings are limited due to risk of bias in the included studies and the unclear risk-benefit ratio.

13.
J Adv Vet Anim Res ; 11(1): 114-124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38680806

RESUMEN

Objective: The purpose of this study was to select the active fraction of red ginger (Zingiber officinale var. Rubrum) for its antioxidant and antibacterial activities against Staphylococcus aureus (AMC 6934), Bacillus subtilis (AMC 7923), Pseudomonas aeruginosa (AMC 8973), and Escherichia coli (AMC 5761). Materials and Methods: A total of 2 kg of dry red ginger rhizome powder was macerated in stages with different levels of solvent polarity to extract the chemical composition within the red ginger powder sample. The extraction process begins with a non-polar solvent (n-hexane) by soaking the red ginger powder sample for 3 × 24 h. Results: The red ginger extract fractionated with methanol produced alkaloids, phenolics, flavonoids, and coumarins, while the fractionation using n-hexane produced alkaloids and triterpenoids only. The fractionation with ethyl acetate produced alkaloids, phenolics, flavonoids, triterpenoids, saponins, and coumarins. The antioxidant activity test was 49.261 mg/l for the ethyl acetate fraction, 146.648 mg/l for the methanol fraction, and 300.865 mg/l for the n-hexane fraction. Conclusion: The ethyl acetate fraction was effectively powerful in inhibiting the growth of Gram-positive and Gram-negative bacteria. All fractions had moderate antibacterial activity; however, the performance of ethyl acetate in the red ginger extract was better than that of methanol and n-hexane.

14.
Int J Radiat Biol ; 100(8): 1143-1154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506659

RESUMEN

PURPOSE: Radiation-induced Nausea and Vomiting (RINV) is an important side effect and conservative estimates are that 50-80% of the patients undergoing curative radiotherapy (RT) will experience some sought of retching, nausea, and/or vomiting during the course of their treatment. Conventionally, antiemetic drugs like the 5-hydroxytryptamine receptor antagonists and steroids are the mainstay of treatment. However, the use of these agents, especially steroids, can cause side effects and thereby negate the proposed benefits. The antiemetic effects of Centella asiatica (Indian pennywort), Hippophae rhamnoides (Sea buckthorn), oil of Mentha spicata (Spearmint) and the rhizomes of Zingiber officinale (ginger) have been addressed. CONCLUSIONS: Results indicate that Indian pennywort, Sea buckthorn, Spearmint oil and ginger are beneficial in mitigating RINV. Also, of the four plants investigated in preclinical models of study, mint oil and ginger seem to be more useful and merit structured systematic translational studies to ascertain the benefit of these two agents.


Asunto(s)
Náusea , Vómitos , Humanos , Vómitos/prevención & control , Vómitos/tratamiento farmacológico , Náusea/prevención & control , Náusea/etiología , Náusea/tratamiento farmacológico , Animales , Antieméticos/uso terapéutico , Traumatismos por Radiación/prevención & control , Traumatismos por Radiación/tratamiento farmacológico , Zingiber officinale
15.
Foods ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38472831

RESUMEN

Beverage mixtures based on pineapple juice (80-100%), with varying concentrations of turmeric (0-20%) and ginger (0-20%) juice were developed. The pineapple juice alone exhibited a total soluble solid (TSS) content of 15.90-16.03 °Brix. The total polyphenols content (TPC) varied between 0.32 and 1.79 mg GAE/mL, and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) inhibition was between 40.56% and 86.19% and correlated with the TPC and curcumin and other curcuminoids. The formulations with a high pulp content showed a significantly higher TPC and greater DPPH inhibition than those with a low pulp content. Turmeric and ginger with a high amount of pulp had a higher abundance of volatile compounds. Significant differences were observed by the panelists in the taste and mouthfeel attributes and the low-pulp juices were associated with increased palatability due to the better mouthfeel, higher sweetness, and decreased bitterness, pepperiness, pulpiness, and spiciness. The pineapple juice mixtures with 10% turmeric juice and 10% or less ginger juice were most preferred by sensory panelists.

16.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474229

RESUMEN

The prevalence of metabolic syndrome is increasing globally due to behavioral and environmental changes. There are many therapeutic agents available for the treatment of chronic metabolic diseases, such as obesity and diabetes, but the data on their efficacy and safety are lacking. Through a pilot study by our group, Zingiber officinale rhizomes used as a spice and functional food were selected as an anti-obesity candidate. In this study, steam-processed ginger extract (GGE) was used and we compared its efficacy at alleviating metabolic syndrome-related symptoms with that of conventional ginger extract (GE). Compared with GE, GGE (25-100 µg/mL) had an increased antioxidant capacity and α-glucosidase inhibitory activity in vitro. GGE was better at suppressing the differentiation of 3T3-L1 adipocytes and lipid accumulation in HepG2 cells and promoting glucose utilization in C2C12 cells than GE. In 16-week high-fat-diet (HFD)-fed mice, GGE (100 and 200 mg/kg) improved biochemical profiles, including lipid status and liver function, to a greater extent than GE (200 mg/kg). The supplementation of HFD-fed mice with GGE (200 mg/kg) resulted in the downregulation of SREBP-1c and FAS gene expression in the liver. Collectively, our results indicate that GGE is a promising therapeutic for the treatment of obesity and metabolic syndrome.


Asunto(s)
Fármacos Antiobesidad , Síndrome Metabólico , Zingiber officinale , Ratones , Animales , Vapor , Síndrome Metabólico/tratamiento farmacológico , Proyectos Piloto , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Extractos Vegetales/farmacología , Dieta Alta en Grasa , Fármacos Antiobesidad/farmacología , Lípidos/farmacología , Ratones Endogámicos C57BL , Células 3T3-L1 , Adipogénesis
17.
Food Sci Nutr ; 12(3): 1940-1954, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455204

RESUMEN

Obesity became a serious public health problem with enormous socioeconomic implications among the Egyptian population. The present investigation aimed to explore the efficacy of Zingiber officinale extract as a hypolipidemic agent combined with the commercially well-known anti-obesity drug simvastatin in obese rats. Thirty-five male Wister rats were randomly divided into five groups as follows: group I received a standard balanced diet for ten weeks; high-fat diet was orally administered to rats in groups II-V for ten weeks. From the fifth week to the tenth week, group III orally received simvastatin (40 mg/kg B.W.), group IV orally received Z. officinale root extract (400 mg/kg B.W.), and group V orally received simvastatin (20 mg/kg B.W.) plus Z. officinale extract (200 mg/kg B.W.) separately. Liver and kidney function tests, lipid profiles, serum glucose, insulin, and leptin were determined. Quantitative RT-PCR analysis of PPAR-γ, iNOS, HMG-CoA reductase, and GLUT-4 genes was carried out. Caspase 3 was estimated in liver and kidney tissues immunohistochemically. Liver and kidney tissues were examined histologically. The administration of Z. officinale extract plus simvastatin to high-fat diet-fed rats caused a significant reduction in the expression of HMG-coA reductase and iNOS by 41.81% and 88.05%, respectively, compared to highfat diet (HFD)-fed rats that received simvastatin only. Otherwise, a significant increase was noticed in the expression of PPAR-γ and GLUT-4 by 33.3% and 138.81%, respectively, compared to those that received simvastatin only. Immunohistochemistry emphasized that a combination of Z. officinale extract plus simvastatin significantly suppressed caspase 3 in the hepatic tissue of high-fat diet-fed rats. Moreover, the best results of lipid profile indices and hormonal indicators were obtained when rats received Z. officinale extract plus simvastatin. Z. officinale extract enhanced the efficiency of simvastatin as a hypolipidemic drug in obese rats due to the high contents of flavonoid and phenolic ingredients.

18.
BMC Complement Med Ther ; 24(1): 84, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350963

RESUMEN

INTRODUCTION: Zingiber officinale extract has emerged as a compelling candidate for green synthesis of nanoparticles, offering diverse applications across medicine, cosmetics, and nutrition. This study delves into the investigation of in vitro toxicity and explores the biomedical utility of green-synthesized silver nanoparticles derived from ginger extract (GE-AgNPs). METHODS: We employed established protocols to evaluate in vitro aspects such as antioxidant capacity, anti-inflammatory potential, and biocompatibility of GE-AgNPs. Additionally, molecular docking was employed to assess their anti-lipoxygenase (anti-LOX) activity. RESULTS: Our findings highlight that the extraction of ginger extract at a pH of 6, utilizing a cosolvent blend of ethanol and ethyl acetate in a 1:1 ratio, yields heightened antioxidant capacity attributed to its rich phenolic and flavonoid content. In the context of silver nanoparticle synthesis, pH 6 extraction yields the highest quantity of nanoparticles, characterized by an average size of 32.64 ± 1.65 nm. Of particular significance, GE-AgNPs (at pH 6) demonstrated remarkable efficacy in scavenging free radicals, as evidenced by an IC50 value of 6.83 ± 0.47 µg/mL. The results from the anti-LOX experiment indicate that GE-AgNPs, at a concentration of 10 µg/mL, can inhibit LOX activity by 25%, outperforming ginger extract which inhibits LOX by 17-18%. Notably, clionasterol exhibited higher binding energy and enhanced stability (-8.9 kcal/mol) compared to nordihydroguaiaretic acid. Furthermore, a cell viability study confirmed the safety of GE-AgNPs at a concentration of 17.52 ± 7.00 µg/mL against the L929 cell line. CONCLUSION: These comprehensive findings underscore the significant biomedical advantages of GE-AgNPs and emphasize their potential incorporation into cosmetic products at a maximum concentration of 10 µg/mL.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Zingiber officinale , Antibacterianos/farmacología , Plata/farmacología , Plata/química , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas del Metal/química , Simulación del Acoplamiento Molecular
19.
Molecules ; 29(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38338475

RESUMEN

The global increase in antibiotic consumption is related to increased adverse effects, such as antibiotic-associated diarrhea (AAD). This study investigated the chemical properties of Zingiber officinale Rosc (ZO) extract and its ameliorative effects using a lincomycin-induced AAD mouse model. Intestinal tissues were evaluated for the expression of lysozyme, claudin-1, and α-defensin-1, which are associated with intestinal homeostasis. The cecum was analyzed to assess the concentration of short-chain fatty acids (SCFAs). The chemical properties analysis of ZO extracts revealed the levels of total neutral sugars, acidic sugars, proteins, and polyphenols to be 86.4%, 8.8%, 4.0%, and 0.8%, respectively. Furthermore, the monosaccharide composition of ZO was determined to include glucose (97.3%) and galactose (2.7%). ZO extract administration ameliorated the impact of AAD and associated weight loss, and water intake also returned to normal. Moreover, treatment with ZO extract restored the expression levels of lysozyme, α-defensin-1, and claudin-1 to normal levels. The decreased SCFA levels due to induced AAD showed a return to normal levels. The results indicate that ZO extract improved AAD, strengthened the intestinal barrier, and normalized SCFA levels, showing that ZO extract possesses intestinal-function strengthening effects.


Asunto(s)
Zingiber officinale , alfa-Defensinas , Ratones , Animales , Muramidasa , Claudina-1/genética , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Antibacterianos/efectos adversos , Azúcares
20.
Environ Sci Pollut Res Int ; 31(6): 9272-9287, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191734

RESUMEN

In this study, the toxic effects of permethrin on Allium cepa L. and the protective role of Zingiber officinale rhizome extract (Zoex) were investigated. In this context, 6 different groups were formed. While the control group was treated with tap water, the groups II and III were treated with 10 µg/mL and 20 µg/mL Zoex, respectively, and the group IV was treated with 100 µg/L permethrin. The protective effect of Zoex against permethrin toxicity was studied as a function of dose, and groups V and VI formed for this purpose were treated with 10 µg/mL Zoex + 100 µg/L permethrin and 20 µg/mL Zoex + 100 µg/L permethrin, respectively. After 72 h of germination, cytogenetic, biochemical, physiological, and anatomical changes in meristematic cells of A. cepa were studied. As a result, permethrin application decreased the mitotic index (MI) and increased the frequency of micronuclei (MN), and chromosomal abnormalities. The increase in malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) and the decrease in glutathione (GSH) indicate that permethrin causes oxidative damage. Compared to the control group, a 68.5% decrease in root elongation (p < 0.05) and an 81.8% decrease (p < 0.05) in weight gain were observed in the permethrin-treated group. It was found that the application of Zoex together with permethrin resulted in regression of all detected abnormalities, reduction in the incidence of anatomical damage, MN and chromosomal aberrations, and improvement in MI rates. The most significant improvement was observed in group VI treated with 20 µg/mL Zoex, and Zoex was also found to provide dose-dependent protection. The toxicity mechanism of permethrin was also elucidated by molecular docking and spectral studies. From the data obtained during the study, it was found that permethrin has toxic effects on A. cepa, a non-target organism, while Zoex plays a protective role by reducing these effects.


Asunto(s)
Permetrina , Zingiber officinale , Permetrina/toxicidad , Raíces de Plantas , Simulación del Acoplamiento Molecular , Meristema , Cebollas , Aberraciones Cromosómicas , Glutatión/farmacología , Malondialdehído/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA