Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Chemosphere ; 364: 143113, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151580

RESUMEN

Cadmium (Cd) contamination in agricultural soil is a major global concern among the multitude of human health and food security. Zinc oxide nanoparticles (ZnO-NPs) and plant growth promoting rhizobacteria (PGPR) have been known to combat heavy metal toxicity in crops. Herein, the study intended to explore the interactive effect of treatments mediated by inoculation of PGPR and foliar applied ZnO-NPs to alleviate Cd induced phytotoxicity in wheat plants which is rarely investigated. For this purpose, TaEIL1 expression, morpho-physiological, and biochemical traits of wheat were examined. Our results revealed that Cd reduced growth and biomass, disrupted plant physiological and biochemical traits, and further expression patterns of TaEIL1. The foliar application of ZnO-NPs improved growth attributes, photosynthetic pigments, and gas exchange parameters in a dose-additive manner, and this effect was further amplified with a combination of PGPR. The combined application of ZnO-NPs (100 mg L-1) with PGPR considerably increased the catalase (CAT; 52.4%), peroxidase (POD; 57.4%), superoxide dismutase (SOD; 60.1%), ascorbate peroxidase (APX; 47.4%), leading to decreased malondialdehyde (MDA; 47.4%), hydrogen peroxide (H2O2; 38.2%) and electrolyte leakage (EL; 47.3%) under high Cd (20 mg kg-1) stress. Furthermore, results revealed a significant reduction in roots (56.3%), shoots (49.4%), and grains (59.4%) Cd concentration after the Combined treatment of ZnO-NPs and PGPR as compared to the control. Relative expression of TaEIL1 (two homologues) was evaluated under control (Cd 0), Cd, ZnO-NPs, PGPR, and combined treatments. Expression profiling revealed a differential expression pattern of TaEIL1 under different treatments. The expression pattern of TaEIL1 genes was upregulated under Cd stress but downregulated under combined ZnO-NPs and PGPR, revealing its crucial role in Cd stress tolerance. Inferentially, ZnO-NPs and PGPR showed significant potential to alleviate Cd toxicity in wheat by modulating the antioxidant defense system and TaEIL1 expression. By inhibiting Cd uptake, and facilitating their detoxification, this innovative approach ensures food safety and security.

2.
BMC Microbiol ; 24(1): 254, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982372

RESUMEN

Various eco-friendly techniques are being researched for synthesizing ZnO-NPs, known for their bioactivity. This study aimed at biosynthesizing ZnO-NPs using Streptomyces baarnensis MH-133, characterizing their physicochemical properties, investigating antibacterial activity, and enhancement of their efficacy by combining them with a water-insoluble active compound (Ka) in a nanoemulsion form. Ka is a pure compound of 9-Ethyl-1,4,6,9,10-pentahydroxy-7,8,9,10-tetrahydrotetracene-5,12-dione obtained previously from our strain of Streptomyces baarnensis MH-133. Biosynthesized ZnO-NPs employing Streptomyces baarnensis MH-133 filtrate and zinc sulfate (ZnSO4.7H2O) as a precursor were purified and characterized by physicochemical investigation. High-resolution-transmission electron microscopy (HR-TEM) verified the effective biosynthesis of ZnO-NPs (size < 12 nm), whereas dynamic light scattering (DLS) analysis showed an average size of 17.5 nm. X-ray diffraction (XRD) exhibited characteristic diffraction patterns that confirmed crystalline structure. ZnO-NPs efficiently inhibited both Gram-positive and Gram-negative bacteria (MICs: 31.25-125 µg/ml). The pure compound (Ka) was combined with ZnO-NPs to improve effectiveness and reduce dose using checkerboard microdilution. Niteen treatments of Ka and ZnO-NPs combinations obtained by checkerboard matrix inhibited Klebsiella pneumonia. Eleven combinations had fractional inhibitory concentration index (FICi) between 1.03 and 2, meaning indifferent, another five combinations resulted from additive FICi (0.625-1) and only one combination with FICi of 0.5, indicating synergy. In the case of methicillin-resistant S. aureus (MRSA), Ka-ZnO-NPs combinations yielded 23 treatments with varying degrees of interaction. The results showed eleven treatments with indifferent interaction, eight additive interactions, and two synergies with FICi of 0.5 and 0.375. The combinations that exhibited synergy action were transformed into a nanoemulsion form to improve their solubility and bioavailability. The HR-TEM analysis of the nanoemulsion revealed spherical oil particles with a granulated core smaller than 200 nm and no signs of aggregation. Effective dispersion was confirmed by DLS analysis which indicated that Ka-ZnO-NPs nanoemulsion droplets have an average size of 53.1 nm and a polydispersity index (PI) of 0.523. The killing kinetic assay assessed the viability of methicillin-resistant Staphylococcus aureus (MRSA) and K. pneumonia post-treatment with Ka-ZnO-NPs combinations either in non-formulated or nanoemulsion form. Results showed Ka-ZnO-NPs combinations show concentration and time-dependent manner, with higher efficacy in nanoemulsion form. The findings indicated that Ka-ZnO-NPs without formulation at MIC values killed K. pneumonia after 24 h but not MRSA. Our nanoemulsion loaded with the previously mentioned combinations at MIC value showed bactericidal effect at MIC concentration of Ka-ZnO-NPs combination after 12 and 18 h of incubation against MRSA and K. pneumonia, respectively, compared to free combinations. At half MIC value, nanoemulsion increased the activity of the combinations to cause a bacteriostatic effect on MRSA and K. pneumonia after 24 h of incubation. The free combination showed a bacteriostatic impact for 6 h before the bacteria regrew to increase log10 colony forming unit (CFU)/ml over the initial level. Similarly, the cytotoxicity study revealed that the combination in nanoemulsion form decreased the cytotoxicity against kidney epithelial cells of the African green monkey (VERO) cell line. The IC50 for Ka-ZnO-NPs non-formulated treatment was 8.17/1.69 (µg/µg)/ml, but in nano-emulsion, it was 22.94 + 4.77 (µg/µg)/mL. In conclusion, efficient Ka-ZnO-NPs nanoemulsion may be a promising solution for the fighting of ESKAPE pathogenic bacteria according to antibacterial activity and low toxicity.


Asunto(s)
Antibacterianos , Tecnología Química Verde , Pruebas de Sensibilidad Microbiana , Streptomyces , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Streptomyces/metabolismo , Streptomyces/química , Antibacterianos/farmacología , Antibacterianos/química , Tecnología Química Verde/métodos , Humanos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos
3.
Int J Phytoremediation ; : 1-16, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066663

RESUMEN

The increasing levels of cadmium (Cd) pollution in agricultural soil reduces plant growth and yield. This study aims to determine the impact of green synthesized zinc oxide nanoparticles (ZnO-NPs) on the physiochemical activities, nutrition, growth, and yield of Zea mays L. under Cd stress conditions. For this purpose, ZnO-NPs (450 ppm and 600 ppm) synthesized from Syzygium aromaticum were applied through foliar spray to Z. mays and also used as seed priming agents. A significant decline in plant height (35.24%), biomass production (43.86%), mineral content, gas exchange attributes, and yield (37.62%) was observed in Cd-spiked plants compared to the control. While, 450 ppm ZnO-NPs primed seed increased plant height (18.46%), total chlorophyll (80.07%), improved ascorbic acid (25.10%), DPPH activity (26.66%), and soil mineral uptake (Mg+2 (38.86%), K+ (27.83%), and Zn+2 (43.68%) as compared to plants only spiked with Cd. On the contrary, the foliar-applied 450 ppm ZnO-NPs increased plant height (8.22%), total chlorophyll content (73.59%), ascorbic acid (21.39%), and DPPH activity (17.61%) and yield parameters; cob diameter (19.45%), and kernels numbers 6.35% enhanced compared to plants that were spiked only with Cd. The findings of the current study pave the way for safer and more cost-effective crop production in Cd-stressed soils by using green synthesized NPs and provide deep insights into the underlying mechanisms of NPs treatment at the molecular level to provide compelling evidence for the use of NPs in improving plant growth and yield.


Novelty statement: Phyto zinc nanoparticles improve stress tolerance and growth of Zea mays under cadmium stress.

4.
Sci Rep ; 14(1): 15746, 2024 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977762

RESUMEN

The aim of this study was to investigate the efficacy of the ithmid kohl/zinc-oxide nanoparticles (ZnONPs), ithmid kohl/Aloe vera, and ZnONPs/Aloe vera in the treatment of bacterial endophthalmitis. The endophthalmitis model was prepared by contaminating both eyes of 24 healthy adult male albino rabbits with a clinical isolate of Klebsiella pneumoniae. The animals were randomly divided into eight groups (A-H) according to the treatment. Group A received 1 ml of ithmid kohl/ZnONPs ointment, group B received 1 ml of ithmid kohl/Aloe vera gel ointment, group C received 1 ml of ZnONPs/Aloe vera gel ointment, and groups D, E, and F were treated with 1 ml of ithmid kohl solution (0.5 g/ml in distilled water), 1 ml of ZnONPs (0.5 g/ml) colloidal dispersion, and 1 ml of Aloe vera gel, respectively. Group G received 100 µl of a tetracycline antibiotic solution (final concentration: 16 µg/ml), and group H received sterile distilled water (no treatment). In vitro antibacterial activity was evaluated against K. pneumoniae using the agar well diffusion. The combination of ithmid kohl/ZnONPs was the most effective formulation for treating endophthalmitis model in infected rabbits within 2 days. In vitro antibacterial assay confirmed the potential of the ithmid kohl/ZnONPs formulation, which had the largest zone of inhibition (31 mm) among the compounds tested. The preparation of the ithmid kohl/ZnONPs formulation and its in vivo experiment in albino rabbits for the treatment of bacterial endophthalmitis was an innovative approach that has shown promise and may potentially serve as a viable alternative in clinical practice.


Asunto(s)
Aloe , Antibacterianos , Endoftalmitis , Klebsiella pneumoniae , Endoftalmitis/tratamiento farmacológico , Endoftalmitis/microbiología , Animales , Conejos , Masculino , Klebsiella pneumoniae/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Aloe/química , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Modelos Animales de Enfermedad
5.
Sci Rep ; 14(1): 16660, 2024 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030233

RESUMEN

The fibrous wastes generated from the mills of textile production can be recycled and converted into high add-values products to be implemented in several applications. The current study aimed to employ commercial free cellulase enzyme to partially hydrolyze (activate) the polyester cotton blended (PET/C) fibrous wastes by creation functional groups such as OH and COOH on their surfaces. The activated fibrous wastes were then modified by coating with ZnO nanoparticles (ZnO-NPs) biosynthesized by actinobacterial cultures free supernatant. The isolate was identified as Streptomyces pseudogriseolus with accession number of OR574241. The conditions that influence the actino-synthesis of ZnO-NPs were optimized and the product was characterized using spectroscopic vision, FTIR, XRD, TEM and SEM. The characteristic ZnO peaks were obviously observed by EDX analysis with 0.38 and 0.75% (wt%), respectively. TEM analyses proved the nanoscale of ZnO-NPs (5-15 nm) which was followed by cytotoxic evaluation for the produced NPs. Fortunately, the tested actino-ZnO-NPs didn't have any cytotoxicity against human normal fibroblast cell line (BJ1), which means that the product can be safely used in a direct-contact with human skin. The treated PET/C blended waste fabrics coated with ZnO-NPs showed high antimicrobial activity and ultraviolet protection values after functionalization by cellulase. EDX analysis demonstrates the presence of Zn peaks on the coated fabrics compared with their absence in blank and control samples, while SEM images showed the formation of a thin layer of ZnO-NPs on the fabric surface. The obtained smart textile can be applied several needed sectors.


Asunto(s)
Textiles , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Nanopartículas del Metal/química , Streptomyces/metabolismo , Línea Celular , Residuos Industriales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo
6.
PeerJ ; 12: e17588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948224

RESUMEN

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Asunto(s)
Antibacterianos , Antineoplásicos , Extractos Vegetales , Hojas de la Planta , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Hojas de la Planta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Azadirachta/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Tecnología Química Verde/métodos , Tamaño de la Partícula , Línea Celular Tumoral
7.
Biomaterials ; 311: 122679, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38943823

RESUMEN

The widespread application of nanoparticles (NPs) in various fields has raised health concerns, especially in reproductive health. Our research has shown zinc oxide nanoparticles (ZnONPs) exhibit the most significant toxicity to pre-implantation embryos in mice compared to other common NPs. In patients undergoing assisted reproduction technology (ART), a significant negative correlation was observed between Zn concentration and clinical outcomes. Therefore, this study explores the impact of ZnONPs exposure on pre-implantation embryonic development and its underlying mechanisms. We revealed that both in vivo and in vitro exposure to ZnONPs impairs pre-implantation embryonic development. Moreover, ZnONPs were found to reduce the pluripotency of mouse embryonic stem cells (mESCs), as evidenced by teratoma and diploid chimera assays. Employing multi-omics approaches, including RNA-Seq, CUT&Tag, and ATAC-seq, the embryotoxicity mechanisms of ZnONPs were elucidated. The findings indicate that ZnONPs elevate H3K9me3 levels, leading to increased heterochromatin and consequent inhibition of gene expression related to development and pluripotency. Notably, Chaetocin, a H3K9me3 inhibitor, sucessfully reversed the embryotoxicity effects induced by ZnONPs. Additionally, the direct interaction between ZnONPs and H3K9me3 was verified through pull-down and immunoprecipitation assays. Collectively, these findings offer new insights into the epigenetic mechanisms of ZnONPs toxicity, enhancing our understanding of their impact on human reproductive health.


Asunto(s)
Desarrollo Embrionario , Histonas , Óxido de Zinc , Animales , Óxido de Zinc/química , Óxido de Zinc/toxicidad , Ratones , Histonas/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Femenino , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Nanopartículas/química , Nanopartículas/toxicidad , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad
8.
Microb Pathog ; 193: 106758, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906493

RESUMEN

The present study explores the bioinspired green synthesis of zinc oxide nanoparticles (ZnONPs) using marine Streptomyces plicatus and its potent antibacterial, antibiofilm activity against dental caries forming Streptococcus mutans MTCC and S. mutans clinical isolate (CI), cytotoxicity against oral KB cancer cells, hemolysis against blood erythrocytes and artemia toxicity. The bioinspired ZnONPs showed a distinctive absorption peak at 375 nm in UV-Vis spectra, the FT-IR spectra divulged the active functional groups, and XRD confirmed the crystalline nature of the nanoparticles with an average grain size of 41.76 nm. SEM analysis evidenced hexagonal morphology, and EDX spectra affirmed the presence of zinc. The ZnONPs exerted higher antagonistic activity against S. mutans MTCC (Inhibitory zone: 19 mm; MIC: 75 µg/ml) than S. mutans CI (Inhibitory zone: 17 mm; MIC: 100 µg/ml). Results of biofilm inhibitory activity showed a concentration-dependent reduction with S. mutans MTCC (15 %-95 %) more sensitive than S. mutans CI (13 %-89 %). The 50 % biofilm inhibitory concentration (BIC50) of ZnONPs against S. mutans MTCC was considerably lower (71.76 µg/ml) than S. mutans CI (78.13 µg/ml). Confocal Laser Scanning Microscopic visuals clearly implied that ZnONPs effectively distorted the biofilm architecture of both S. mutans MTCC and S. mutans CI. This was further bolstered by a remarkable rise in protein leakage (19 %-85 %; 15 %-77 %) and a fall in exopolysaccharide production (34 mg-7 mg; 49 mg-12 mg). MTT cytotoxicity of ZnONPs recorded an IC50 value of 22.06 µg/ml against KB cells. Acridine orange/ethidium bromide staining showed an increasing incidence of apoptosis in KB cells. Brine shrimp cytotoxicity using Artemia salina larvae recorded an LC50 value of 78.41 µg/ml. Hemolysis assay substantiated the biocompatibility of the ZnONPs. This study underscores the multifaceted application of bioinspired ZnONPs in dentistry.


Asunto(s)
Antibacterianos , Artemia , Biopelículas , Hemólisis , Pruebas de Sensibilidad Microbiana , Streptococcus mutans , Streptomyces , Óxido de Zinc , Streptomyces/química , Streptomyces/metabolismo , Óxido de Zinc/farmacología , Óxido de Zinc/química , Biopelículas/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Artemia/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Humanos , Hemólisis/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Nanopartículas/química , Tecnología Química Verde , Espectroscopía Infrarroja por Transformada de Fourier , Línea Celular Tumoral , Organismos Acuáticos/química , Difracción de Rayos X
9.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38869552

RESUMEN

Recently, nanoparticles have been widely used in agricultural pest control as a secure substitute for pesticides. However, the effect of nanoparticles on controlling the subterranean termite Odontotermes formosanus (O. formosanus) has not been studied yet. Consequently, this study aimed to evaluate the effectiveness of some nanomaterials in controlling O. formosanus. The results showed that zinc oxide nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO2NPs), and chitosan nanoparticles (CsNPs) biosynthesized using the culture filtrate of Scedosporium apiospermum (S. apiospermum) had an effective role in controlling O. formosanus. Moreover, the mortality rate of O. formosanus after 48 h of treatment with ZnONPs, TiO2NPs, and CsNPs at a 1000 µg/mL concentration was 100%, 100%, and 97.67%, respectively. Furthermore, using ZnONPs, TiO2NPs, and CsNPs on O. formosanus resulted in morpho-histological variations in the normal structure, leading to its death. X-ray diffraction, UV-vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic light scattering, energy dispersive spectroscopy, and the Zeta potential were used to characterize the biosynthesis of ZnONPs, TiO2NPs, and CsNPs with strong activity against O. formosanus termites. Overall, the results of this investigation suggest that biosynthesized ZnONPs, TiO2NPs, and CsNPs have enormous potential for use as innovative, ecologically safe pesticides for O. formosanus control.

10.
Environ Sci Pollut Res Int ; 31(25): 37428-37443, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38777976

RESUMEN

The use of bio-nanotechnology in agriculture-such as the biological applications of metal oxide nanoparticles (NPs)-greatly improves crop yield and quality under different abiotic stress factors including soil metal contamination. Here, we explore the effectiveness of zinc oxide (ZnO)-NPs (0, 50 mg/L) foliar spraying to ameliorate the detrimental effects of cadmium (Cd) on the water transport and nitrogen metabolism in tomato (Solanum lycopersicum Mill. cv. Chibli F1) plants grown on a Cd-supplied (CdCl2; 0, 10, 40 µM) Hoagland nutrient solution. The results depicted that the individually studied factors (ZnO-NPs and Cd) had a significant impact on all the physiological parameters analyzed. Independently to the Cd concentration, ZnO-NPs-sprayed plants showed significantly higher dry weight (DW) in both leaves and roots compared to the non-sprayed ones, which was in consonance with higher and lower levels of Zn2+ and Cd2+ ions, respectively, in these organs. Interestingly, ZnO-NPs spraying improved water status in all Cd-treated plants as evidenced by the increase in root hydraulic conductance (L0), apoplastic water pathway percentage, and leaf and root relative water content (RWC), compared to the non-sprayed plants. This improved water balance was associated with a significant accumulation of osmoprotectant osmolytes, such as proline and soluble sugars in the plant organs, reducing electrolyte leakage (EL), and osmotic potential (ψπ). Also, ZnO-NPs spraying significantly improved NO3- and NH4+ assimilation in the leaf and root tissues of all Cd-treated plants, leading to a reduction in NH4+ toxicity. Our findings point out new insights into how ZnO-NPs affect water transport and nitrogen metabolism in Cd-stressed plants and support their use to improve crop resilience against Cd-contaminated soils.


Asunto(s)
Cadmio , Nitrógeno , Plantones , Solanum lycopersicum , Óxido de Zinc , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Plantones/efectos de los fármacos , Agua , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Nanopartículas , Nanopartículas del Metal/toxicidad
11.
Sci Total Environ ; 934: 173214, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754507

RESUMEN

Zinc oxide nanoparticles (ZnO-NPs) are one of the most widely used metal oxide nanomaterials. The increased use of ZnO-NPs has exacerbated environmental pollution and raised the risk of neurological disorders in organisms through food chains, and it is urgent to look for detoxification strategies. γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter that has been shown to have anxiolytic, anti-aging and inhibitory effects on nervous system excitability. However, there are few reports on the prevention and control of the toxicity of nano-metal ions by GABA. In zebrafish, ZnO-NPs exposure led to increased mortality and behavioral abnormalities of larva, which could be moderated by GABA intervention. Similar results were investigated in Caenorhabditis elegans, showing lifespan extension, abnormal locomotor frequency and behavior recovery when worms fed with GABA under ZnO-NPs exposure. Moreover, GABA enhanced antioxidant enzyme activities by upregulating the expression of antioxidant-related genes and thus scavenged excessive O2-. In the case of ZnO-NPs exposure, inhibition of nuclear translocation of DAF-16 and SKN-1 was restored by GABA. Meanwhile, the protective effect of GABA was blocked in daf-16 (-) and skn-1 (-) mutant, suggesting that DAF-16/FoxO and SKN-1/Nrf2 pathways is the key targets of GABA. This study provides a new solution for the application of GABA and mitigation of metal nanoparticle neurotoxicity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Factores de Transcripción Forkhead , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Pez Cebra , Óxido de Zinc , Ácido gamma-Aminobutírico , Óxido de Zinc/toxicidad , Animales , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ácido gamma-Aminobutírico/metabolismo , Factores de Transcripción Forkhead/metabolismo , Nanopartículas del Metal/toxicidad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transducción de Señal/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Nanopartículas/toxicidad , Proteínas de Unión al ADN/metabolismo
12.
Cell Biochem Biophys ; 82(2): 1225-1234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744782

RESUMEN

The treatment of cancer often leads to a range of adverse effects. Encapsulating drugs can mitigate these effects and enhance drug efficacy by enabling a controlled release at the site of interest. This study details the successful synthesis of zinc oxide nanoparticles (ZnONPs) through the precipitation of Zn(NO3)2·6H2O with KOH. A Pd(II) complex drug was synthesized from a Schiff base ligand derived from 2-hydroxybenzohydrazide and (E)-1-(2-(p-tolyl)hydrazono)propan-2-one using potassium tetrachloropalladate(II). This complex was subsequently incorporated into ZnONPs. Characterization of the resulting compounds was performed using Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared (FTIR) Spectroscopy, and UV-visible spectroscopy. TEM imaging revealed particle sizes of 160.69 ± 4.74 nm for ZnONPs and 185.28 ± 2.3 nm for the Pd(II) complex-encapsulated ZnONPs. The Zeta potential values were 6.53 mV for ZnONPs and 7.36 mV for Pd(II) complex-encapsulated ZnONPs. UV-visible spectroscopy showed an absorption peak at 360 nm for ZnONPs, while the Pd(II) complex-encapsulated ZnONPs exhibited a peak at 410 nm. FTIR analysis indicated the presence of the Pd(II) complex within the ZnONPs, as evidenced by a consistent Zn-O vibrational band at 832 cm-1 and a shift in another peak from 460 to 413 cm-1. Additionally, the detection of a C = N stretching vibration at 1548 cm-1 and a carbonyl stretch at 1626 cm-1 was observed. The Encapsulation Efficiency (E.E.) of the Pd(II) complex was 97.2%. A drug release experiment conducted at pH 7 showed a steady-state release pattern after 16 h, with a cumulative release of 44.3%. The cytotoxic effects of the Pd(II) complex and its encapsulated form in ZnONPs on the MCF-7 cell line were assessed via MTT test. The Pd(II) complex encapsulated within ZnONPs exhibited decreased toxicity relative to the unencapsulated drug, as evidenced by a higher IC50 value of 418.5 µg/ml. This suggests that the encapsulation facilitates a sustained release, which allows for targeted accumulation within cells. The elevated IC50 value indicates that the drug delivery system may be engineered to modulate the release of the drug in a more controlled manner, potentially resulting in a prolonged release profile rather than an immediate therapeutic impact.


Asunto(s)
Antineoplásicos , Paladio , Óxido de Zinc , Paladio/química , Óxido de Zinc/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Células MCF-7 , Espectroscopía Infrarroja por Transformada de Fourier , Tamaño de la Partícula , Nanopartículas/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Nanopartículas del Metal/química , Supervivencia Celular/efectos de los fármacos , Bases de Schiff/química
13.
Front Microbiol ; 15: 1366614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803373

RESUMEN

Introduction: In recent years, the world's attention has been drawn to antimicrobial resistance (AMR) because to the frightening prospect of growing death rates. Nanomaterials are being investigated due to their potential in a wide range of technical and biological applications. Methods: The purpose of this study was to biosynthesis zinc oxide nanoparticles (ZnONPs) using Aspergillus sp. SA17 fungal extract, followed by characterization of the produced nanoparticles (NP) using electron microscopy (TEM and SEM), UV-analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Results and Discussion: The HR-TEM revealed spherical nanoparticles with an average size of 7.2 nm, and XRD validated the crystalline nature and crystal structure features of the generated ZnONPs, while the zeta potential was 18.16 mV, indicating that the particles' surfaces are positively charged. The FT-IR was also used to identify the biomolecules involved in the synthesis of ZnONPs. The antibacterial and anticancer properties of both the crude fungal extract and its nano-form against several microbial strains and cancer cell lines were also investigated. Inhibition zone diameters against pathogenic bacteria ranged from 3 to 13 mm, while IC50 values against cancer cell lines ranged from 17.65 to 84.55 M. Additionally, 33 compounds, including flavonoids, phenolic acids, coumarins, organic acids, anthraquinones, and lignans, were discovered through chemical profiling of the extract using UPLC-QTOF-MS/MS. Some molecules, such pomiferin and glabrol, may be useful for antibacterial purposes, according to in silico study, while daidzein 4'-sulfate showed promise as an anti-cancer metabolite.

14.
Nat Prod Res ; : 1-14, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795161

RESUMEN

The study aimed to investigate the role of metal nanoparticles (M-NPs) in improving the efficiency of Physalis peruviana (Cape gooseberry) juice, which is rich in numerous important therapeutic phytochemicals. Therefore, it was subsequently studied against chemically-induced toxicity in rats. The present study demonstrated that C. gooseberry juice was used for the biosynthesis of silver (Ag-NPs) and zinc oxide nanoparticles (ZnO-NPs). The ZnO-C. gooseberry nano-extract exhibited higher in vitro biological activities compared to the other extracts. It was also found to be safer when administered orally. Moreover, it demonstrated a greater ameliorative effect against hepatotoxicity induced by carbon tetrachloride (CCl4) in rats. It restored the integrity of the liver tissue by increasing levels of antioxidant enzymes and reducing the inflammatory markers significantly (p ≤ 0.05). The study found that the ZnO-C. gooseberry nano-extract demonstrated greater efficacy in combating CCl4-induced hepatotoxicity compared to the other extracts.

15.
Plant Physiol Biochem ; 211: 108678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714126

RESUMEN

The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.


Asunto(s)
Nanopartículas del Metal , Solanum melongena , Óxido de Zinc , Óxido de Zinc/farmacología , Solanum melongena/efectos de los fármacos , Solanum melongena/metabolismo , Solanum melongena/crecimiento & desarrollo , Solanum melongena/microbiología , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/metabolismo , Azotobacter/efectos de los fármacos , Azotobacter/metabolismo , Estrés Fisiológico/efectos de los fármacos , Clorofila/metabolismo , Nanopartículas/química
16.
Toxicol Res (Camb) ; 13(2): tfae034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38559758

RESUMEN

Introduction: Metal oxide nanoparticles are currently used widely in many aspects of human and animal life with broad prospects for biomedical purposes. The present work was carried out to investigate the effects of orally administrated TiO2NPs, ZnONPs, IONs and Al2O3NPs on the mRNA expression level of CYP 1A1 and NBN in the rat liver. Materials and Methods: Four groups of male Albino rats were given their respective treatment orally for 60 days in a dose of 1/20 of the LD50 TiO2NPs (600 mg/Kg b.wt/day), ZnONPs (340 mg/Kg b.wt/day), IONs (200 mg/kg b.wt/day) and Al2O3NPs (100 mg/Kg b.wt/day) and a fifth group served as a control group. Rresults: The mRNA level of CYP 1A1 and NBN showed up-regulation in all the NPs-treated groups relative to the control group. ZnONPs group recorded the highest expression level while the TiO2NPs group showed the lowest expression level transcript. Conclusion:The toxic effects produced by these nanoparticles were more pronounced in the case of zinc oxide, followed by aluminum oxide, iron oxide nanoparticles and titanium dioxide, respectively.

17.
Nanotheranostics ; 8(3): 312-329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577319

RESUMEN

Cancer chemotherapy remains a serious challenge, and new approaches to therapy are urgently needed to build novel treatment regimens. The methanol extract of the stem of Tinospora Cordifolia was used to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) that display anticancer activities against colorectal cancer. Biogenic ZnO-NPs synthesized from methanol extract of Tinospora Cordifolia stem (ZnO-NPs TM) were tested against HCT-116 cell lines to assess anticancer activity. UV-Vis, FTIR, XRD, SEM, and TEM analysis characterized the biogenic ZnO-NPs. To see how well biogenic ZnO-NPs fight cancer, cytotoxicity, AO/EtBr staining, Annexin V/PI staining, mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) analysis, and caspase cascade activity analysis were performed to assess the anticancer efficacy of biogenic ZnO-NPs. The IC50 values of biogenic ZnO-NPs treated cells (HCT-116 and Caco-2) were 31.419 ± 0.682µg/ml and 36.675 ± 0.916µg/ml, respectively. qRT-PCR analysis showed that cells treated with biogenic ZnO-NPs Bax and P53 mRNA levels increased significantly (p ≤ 0.001). It showed to have impaired MMP and increased ROS generation. In a corollary, our in vivo study showed that biogenic ZnO-NPs have an anti-tumour effect. Biogenic ZnO-NPs TM showed both in vitro and in vivo anticancer effects that could be employed as anticancer drugs.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas , Tinospora , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tinospora/metabolismo , Células CACO-2 , Metanol/farmacología , Apoptosis , Estrés Oxidativo , Neoplasias Colorrectales/tratamiento farmacológico
18.
ACS Appl Bio Mater ; 7(4): 2299-2308, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38476032

RESUMEN

Smartphones' widespread availability and worldwide connection are advancing the idea of mobile-based healthcare and promise to transform the business of biosensors. Biosensors based on smartphones have been investigated in several ways, including employing a smartphone in place of a detector or as an instrumental interface. The current work demonstrates the first successful detection of dengue virus using a smartphone-based pocket sensor combined with a wireless potentiostat. The platform developed comprises a smartphone, a wireless portable potentiostat, an Android app, and a three-electrode setup. The combination of portable diagnostic with electronic application is referred to as "Portronicx", and this is the first time that the term "Portronicx" has been used in a dengue sensor, so the current study has the potential to be commercialized in the market with the tag line "Portronicx-commercialization" in the future. Miniaturization improves alternative setup options in terms of instrument size, affordability, mobility, touch-mobile display, and design versatility. The current work proved the excellent combination of a wireless potentiostat with an aptasensor to detect dengue antigen within 20 s with good LOD (0.1 µg/mL) and easy to carry in their pockets. The created platform also performed effectively in human serum. This study replaced all of the instruments with a lightweight touch smartphone, paving the way for the production of fifth-generation electrochemical aptasensors, with potential implications for healthcare applications on the verge of commercialization.


Asunto(s)
Técnicas Biosensibles , Dengue , Humanos , Teléfono Inteligente , Electrodos , Dengue/diagnóstico
19.
Environ Res ; 251(Pt 2): 118770, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518913

RESUMEN

Multifunctional nanoparticles (NPs) production from phytochemicals is a sustainable process and an eco-friendly method, and this technique has a variety of uses. To accomplish this, we developed zinc oxide nanoparticles (ZnONPs) using the medicinal plant Tinospora cordifolia (TC). Instruments such as UV-Vis, XRD, FTIR, FE-SEM with EDX, and high-resolution TEM were applied to characterize the biosynthesized TC-ZnONPs. According to the UV-vis spectra, the synthesized TC-ZnONPs absorb at a wavelength centered at 374 nm, which corresponds to a 3.2 eV band gap. HRTEM was used to observe the morphology of the particle surface and the actual size of the nanostructures. TC-ZnONPs mostly exhibit the shapes of rectangles and triangles with a median size of 21 nm. The XRD data of the synthesized ZnONPs exhibited a number of peaks in the 2θ range, implying their crystalline nature. TC-ZnONPs proved remarkable free radical scavenging capacity on DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), and NO (Nitric Oxide). TC-ZnONPs exhibited dynamic anti-bacterial activity through the formation of inhibition zones against Pseudomonas aeruginosa (18 ± 1.5 mm), Escherichia coli (18 ± 1.0 mm), Bacillus cereus (19 ± 0.5 mm), and Staphylococcus aureus (13 ± 1.1 mm). Additionally, when exposed to sunlight, TC-ZnONPs show excellent photocatalytic ability towards the degradation of methylene blue (MB) dye. These findings suggest that TC-ZnONPs are potential antioxidant, antibacterial, and photocatalytic agents.


Asunto(s)
Antibacterianos , Antioxidantes , Tecnología Química Verde , Óxido de Zinc , Antibacterianos/farmacología , Antibacterianos/química , Óxido de Zinc/química , Antioxidantes/química , Antioxidantes/farmacología , Tecnología Química Verde/métodos , Catálisis , Nanopartículas del Metal/química , Nanopartículas/química
20.
Front Bioeng Biotechnol ; 12: 1326143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464542

RESUMEN

Introduction: The development of an effective extender is important for semen preservation and the artificial insemination (AI) industry. This study demonstrates the beneficial effect of zinc oxide nanoparticles (ZnO-NPs) as an additive to semen extenders to improve semen quality, fertility, and antibacterial activity during liquid preservation in a boar model. Methods: Initially, to find out the safe concentration of ZnO-NPs in sperm cells, a wide range of ZnO-NP concentrations (0, 5, 10, 50, 100, 500, and 1,000 µM) were co-incubated with sperm at 37°C for a cytotoxic study. These NP concentrations were compared to their salt control zinc acetate (ZA) at the same concentrations and to a control group. The effect of the different concentrations of ZnO-NPs on sperm motility, membrane integrity, mitochondrial membrane potential (MMP), and apoptosis was assessed. Accordingly, the non-toxic dose was selected and supplemented in MODENA extender to determine its beneficial effect on the boar semen parameters mentioned and the lipid peroxidation (LPO) levels during liquid preservation at 16°C for 6 days. The non-cytotoxic dosage was subsequently chosen for AI, fertility investigations, and the evaluation of the antibacterial efficacy of ZnO-NPs during preservation hours. An antibacterial study of ZnO-NPs and its salt control at doses of 10 µM and 50 µM was carried out by the colony forming unit (CFU) method. Results and discussion: The cytotoxic study revealed that 5, 10, and 50 µM of ZnO-NPs are safe. Consequently, semen preserved in the MODENA extender, incorporating the non-toxic dose, exhibited 10 and 50 µM ZnO-NPs as the optimal concentrations for beneficial outcomes during liquid preservation at 16°C. ZnO-NPs of 10 µM concentration resulted in a significantly (p < 0.05) improved conception rate of 86.95% compared to the control of 73.13%. ZnO-NPs of 10 and 50 µM concentrations exhibit potent antimicrobial action by reducing the number of colonies formed with days of preservation in comparison to the negative control. The investigation concluded that the incorporation of 10 µM ZnO-NPs led to enhancements in sperm motility, membrane integrity, and MMP, attributed to a reduction in the malondialdehyde (MDA) levels. This improvement was accompanied by a concurrent increase in fertility rates, including farrowing rate and litter size, during the liquid preservation process. Furthermore, ZnO-NPs exhibited an antimicrobial effect, resulting in decreased bacterial growth while preserving boar semen at 16°C for 6 days. These findings suggest that ZnO-NPs could serve as a viable alternative to antibiotics, potentially mitigating antibiotic resistance concerns within the food chain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA