Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Aging Neurosci ; 16: 1417515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026991

RESUMEN

PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.

2.
Behav Brain Res ; 471: 115092, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38844056

RESUMEN

Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.


Asunto(s)
Modelos Animales de Enfermedad , Animales , Humanos , Tecnología Química Verde , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Estrés Oxidativo/fisiología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo , Antioxidantes/farmacología
3.
Neurobiol Dis ; 198: 106553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38839022

RESUMEN

α-Synuclein (α-syn) is a small protein that is involved in cell vesicle trafficking in neuronal synapses. A progressive aggregation of this protein is the expected molecular cause of Parkinson's disease, a disease that affects millions of people around the world. A growing body of evidence indicates that phospholipids can strongly accelerate α-syn aggregation and alter the toxicity of α-syn oligomers and fibrils formed in the presence of lipid vesicles. This effect is attributed to the presence of high copies of lysines in the N-terminus of the protein. In this study, we performed site-directed mutagenesis and replaced one out of two lysines at each of the five sites located in the α-syn N-terminus. Using several biophysical and cellular approaches, we investigated the extent to which six negatively charged fatty acids (FAs) could alter the aggregation properties of K10A, K23A, K32A, K43A, and K58A α-syn. We found that FAs uniquely modified the aggregation properties of K43A, K58A, and WT α-syn, as well as changed morphology of amyloid fibrils formed by these mutants. At the same time, FAs failed to cause substantial changes in the aggregation rates of K10A, K23A, and K32A α-syn, as well as alter the morphology and toxicity of the corresponding amyloid fibrils. Based on these results, we can conclude that K10, K23, and K32 amino acid residues play a critical role in protein-lipid interactions since their replacement on non-polar alanines strongly suppressed α-syn-lipid interactions.


Asunto(s)
Mutagénesis Sitio-Dirigida , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Amiloide/metabolismo , Amiloide/genética , Ácidos Grasos/metabolismo
4.
Heliyon ; 10(9): e30175, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707435

RESUMEN

In recent years, environmental factors have received attention in the pathogenesis of neurodegenerative diseases. Other than genetic factors, the identification of environmental factors and modifiable risk factors may create opportunities to delay the onset or slow the progression of Lewy body disease. Researchers have made significant progress in understanding environmental and modifiable risk factors over the past 30 years. To date, despite the increasing number of articles assessing risk factors for Lewy body disease, few reviews have focused on their role in its onset. In this review, we reviewed the literature investigating the relationship between Lewy body disease and several environmental and other modifiable factors. We found that some air pollutants, exposure to some metals, and infection with some microorganisms may increase the risk of Lewy body disease. Coffee intake and the Mediterranean diet are protective factors. However, it is puzzling that low educational levels and smoking may have some protective effects. In addition, we proposed specific protocols for subsequent research directions on risk factors for neurodegenerative diseases and improved methods. By conducting additional case-control studies, we could explore the role of these factors in the etiopathogenesis of Lewy body disease, establishing a foundation for strategies aimed at preventing and reducing the onset and burden of the disease.

5.
Mov Disord Clin Pract ; 11(7): 808-813, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661486

RESUMEN

BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) has been linked to an increased risk of early-onset Parkinson's disease. However, the pathophysiological mechanisms underlying parkinsonism remain poorly understood. OBJECTIVE: The objective is to investigate salivary total α-synuclein levels in 22q11.2DS patients with and without parkinsonian motor signs. METHODS: This cross-sectional study included 10 patients with 22q11.2DS with parkinsonism (Park+), ten 22q11.2DS patients without parkinsonism (Park-), and 10 age and sex-comparable healthy subjects (HS). Salivary and serum α-synuclein levels were measured using enzyme-linked immunosorbent assay. RESULTS: Salivary total α-synuclein concentration was significantly lower in Park (+) patients than in Park (-) patients and HS (P = 0.007). In addition, salivary α-synuclein showed good accuracy in discriminating Park (+) from Park (-) patients (area under the curve = 0.86) and correlated with motor severity and cognitive impairment. CONCLUSION: This exploratory study suggests that the parkinsonian phenotype of 22q11.2DS is associated with a reduced concentration of monomeric α-synuclein in biological fluids.


Asunto(s)
Biomarcadores , Síndrome de DiGeorge , Trastornos Parkinsonianos , Saliva , alfa-Sinucleína , Humanos , Masculino , Femenino , Estudios Transversales , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Saliva/química , Saliva/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Biomarcadores/análisis , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/diagnóstico , Trastornos Parkinsonianos/sangre , Adulto , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/sangre , Adulto Joven , Persona de Mediana Edad , Adolescente
6.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38586052

RESUMEN

Aggregates of misfolded α-synuclein proteins (asyn) are key markers of Parkinson's disease. Asyn proteins have three domains: an N-terminal domain, a hydrophobic NAC core implicated in aggregation, and a proline-rich C-terminal domain. Proteins with truncated C-terminal domains are known to be prone to aggregation and suggest that studying domain-domain interactions in asyn monomers could help elucidate the role of the flanking domains in modulating protein structure. To this end, we used Gaussian accelerated molecular dynamics (GAMD) to simulate wild-type (WT), N-terminal truncated (DN), C-terminal truncated (ΔC), and isolated NAC domain variants (isoNAC). Using clustering and contact analysis, we found that N- and C-terminal domains interact via electrostatic interactions, while the NAC and N-terminal domains interact through hydrophobic contacts. Our work also suggests that the C-terminal domain does not interact directly with the NAC domain but instead interacts with the N-terminal domain. Removal of the N-terminal domain led to increased contacts between NAC and C-terminal domains and the formation of interdomain ß-sheets. Removal of either flanking domain also resulted in increased compactness of every domain. We also found that the contacts between flanking domains results in an electrostatic potential (ESP) that could possibly lead to favorable interactions with anionic lipid membranes. Removal of the C-terminal domain disrupts the ESP in a way that is likely to over-stabilize protein-membrane interactions. All of this suggests that one of the roles of the flanking domains may be to modulate the protein structure in a way that helps maintain elongation, hide hydrophobic residue from the solvent, and maintain an ESP that aids favorable interactions with the membrane.

7.
bioRxiv ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37961511

RESUMEN

The protein α-syn adopts a wide variety of conformations including an intrinsically disordered monomeric form and an α-helical rich membrane-associated form that is thought to play an important role in cellular membrane processes. However, despite the high affinity of α-syn for membranes, evidence that the α-helical form of α-syn is adopted inside cells has thus far been indirect. In cell DNP-assisted solid state NMR on frozen samples has the potential to report directly on the entire conformational ensemble. Moreover, because the DNP polarization agent can be dispersed both homogenously and inhomogenously throughout the cellular biomass, in cell DNP-assisted solid state NMR experiments can report either quantitatively upon the structural ensemble or can preferentially report upon the structural ensemble with a spatial bias. Using DNP-assisted MAS NMR we establish that the spectra of purified α-syn in the membrane-associated and intrinsically disordered forms have distinguishable spectra. When the polarization agent is introduced into cells by electroporation and dispersed homogenously, a minority of the α-syn inside HEK293 cells adopts a highly α-helical rich conformation. Alteration of the spatial distribution of the polarization agent preferentially enhances the signal from molecules nearer to the cellular periphery, thus the α-helical rich population is preferentially adopted toward the cellular periphery. This demonstrates how selectively altering the spatial distribution of the DNP polarization agent can be a powerful tool for preferential reporting on specific structural ensembles, paving the way for more nuanced investigations into the conformations that proteins adopt in different areas of the cell.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37817521

RESUMEN

Recently, Parkinson's disease (PD) has become a remarkable burden on families and society with an acceleration of population aging having several pathological hallmarks such as dopaminergic neuronal loss of the substantia nigra pars compacta, α-synucleinopathy, neuroinflammation, autophagy, last but not the least astrogliosis. Astrocyte, star-shaped glial cells perform notable physiological functions in the brain through several molecular and cellular mechanisms including nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. It has been well established that the downregulation of the astrocytic Nrf2 signaling pathway plays a crucial role in the pathogenesis of PD because it is a master regulator of cellular defense mechanism along with a regulator of numerous detoxifying and antioxidant enzymes gene expression. Fascinatingly, upregulation of the astrocytic Nrf2 signaling pathway attenuates the degeneration of nigrostriatal neurons, restores neuronal proliferation, rejuvenates astrocytic functions, and exhibits neuroprotective effects via numerous cellular and molecular mechanisms in the PD-like brain of the experimental animal. Here, we discuss the numerous in-vitro and in-vivo studies that evaluate the neuroprotective potential of the astrocytic Nrf2 signaling pathway against experimentally-induced PD-like manifestation. In conclusion, based on available preclinical reports, it can be assumed that the astrocytic Nrf2 signaling pathway could be an alternative target in the drug discovery process for the prevention, management, and treatment of PD.

9.
Neurobiol Dis ; 181: 106115, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37037299

RESUMEN

Parkinson's disease (PD) is a complex illness with a constellation of environmental insults and genetic vulnerabilities being implicated. Strikingly, many studies only focus on the cardinal motor symptoms of the disease and fail to appreciate the major non-motor features which typically occur early in the disease process and are debilitating. Common comorbid psychiatric features, notably clinical depression, as well as anxiety and sleep disorders are thought to emerge before the onset of prominent motor deficits. In this review, we will delve into the prodromal stage of PD and how early neuropsychiatric pathology might unfold, followed by later motor disturbances. It is also of interest to discuss how animal models of PD capture the complexity of the illness, including depressive-like characteristics along with motor impairment. It remains to be determined how the underlying PD disease processes contributes to such comorbidity. But some of the environmental toxicants and microbial pathogens implicated in PD might instigate pro-inflammatory effects favoring α-synuclein accumulation and damage to brainstem neurons fueling the evolution of mood disturbances. We posit that comprehensive animal-based research approaches are needed to capture the complexity and time-dependent nature of the primary and co-morbid symptoms. This will allow for the possibility of early intervention with more novel and targeted treatments that fit with not only individual patient variability, but also with changes that occur over time with the evolution of the disease.


Asunto(s)
Enfermedad de Parkinson , Trastornos del Sueño-Vigilia , Animales , Enfermedad de Parkinson/patología , Modelos Animales , Neuronas/patología , Trastornos de Ansiedad , Síntomas Prodrómicos , Modelos Animales de Enfermedad
10.
Cell Rep ; 42(3): 112231, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36920906

RESUMEN

Auxilin participates in the uncoating of clathrin-coated vesicles (CCVs), thereby facilitating synaptic vesicle (SV) regeneration at presynaptic sites. Auxilin (DNAJC6/PARK19) loss-of-function mutations cause early-onset Parkinson's disease (PD). Here, we utilized auxilin knockout (KO) mice to elucidate the mechanisms through which auxilin deficiency and clathrin-uncoating deficits lead to PD. Auxilin KO mice display cardinal features of PD, including progressive motor deficits, α-synuclein pathology, nigral dopaminergic loss, and neuroinflammation. Significantly, treatment with L-DOPA ameliorated motor deficits. Unbiased proteomic and neurochemical analyses of auxilin KO brains indicated dopamine dyshomeostasis. We validated these findings by demonstrating slower dopamine reuptake kinetics in vivo, an effect associated with dopamine transporter misrouting into axonal membrane deformities in the dorsal striatum. Defective SV protein sorting and elevated synaptic autophagy also contribute to ineffective dopamine sequestration and compartmentalization, ultimately leading to neurodegeneration. This study provides insights into how presynaptic endocytosis deficits lead to dopaminergic vulnerability and pathogenesis of PD.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/patología , Vesículas Sinápticas/metabolismo , Auxilinas/genética , Auxilinas/metabolismo , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteómica , Transporte de Proteínas , Sustancia Negra/metabolismo
11.
Neuron ; 111(10): 1577-1590.e11, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36948206

RESUMEN

Pathogenic α-synuclein and tau are critical drivers of neurodegeneration, and their mutations cause neuronal loss in patients. Whether the underlying preferential neuronal vulnerability is a cell-type-intrinsic property or a consequence of increased expression levels remains elusive. Here, we explore cell-type-specific α-synuclein and tau expression in human brain datasets and use deep phenotyping as well as brain-wide single-cell RNA sequencing of >200 live neuron types in fruit flies to determine which cellular environments react most to α-synuclein or tau toxicity. We detect phenotypic and transcriptomic evidence of differential neuronal vulnerability independent of α-synuclein or tau expression levels. Comparing vulnerable with resilient neurons in Drosophila enabled us to predict numerous human neuron subtypes with increased intrinsic susceptibility to pathogenic α-synuclein or tau. By uncovering synapse- and Ca2+ homeostasis-related genes as tau toxicity modifiers, our work paves the way to leverage neuronal identity to uncover modifiers of neurodegeneration-associated toxic proteins.


Asunto(s)
alfa-Sinucleína , Proteínas tau , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad , alfa-Sinucleína/metabolismo , Proteínas tau/genética , Proteínas tau/toxicidad , Proteínas tau/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Cabeza
12.
Front Cell Dev Biol ; 11: 1087091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36824371

RESUMEN

The gastrointestinal tract communicates with the nervous system through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the enteric nervous system, the vagus nerve, the immune system, endocrine signals, the microbiota, and its metabolites. Alteration of communications in the gut-brain axis is emerging as an overlooked cause of neuroinflammation. Neuroinflammation is a common feature of the pathogenic mechanisms involved in various neurodegenerative diseases (NDs) that are incurable and debilitating conditions resulting in progressive degeneration and death of neurons, such as in Alzheimer and Parkinson diseases. NDs are a leading cause of global death and disability, and the incidences are expected to increase in the following decades if prevention strategies and successful treatment remain elusive. To date, the etiology of NDs is unclear due to the complexity of the mechanisms of diseases involving genetic and environmental factors, including diet and microbiota. Emerging evidence suggests that changes in diet, alteration of the microbiota, and deregulation of metabolism in the intestinal epithelium influence the inflammatory status of the neurons linked to disease insurgence and progression. This review will describe the leading players of the so-called diet-microbiota-gut-brain (DMGB) axis in the context of NDs. We will report recent findings from studies in model organisms such as rodents and fruit flies that support the role of diets, commensals, and intestinal epithelial functions as an overlooked primary regulator of brain health. We will finish discussing the pivotal role of metabolisms of cellular organelles such as mitochondria and peroxisomes in maintaining the DMGB axis and how alteration of the latter can be used as early disease makers and novel therapeutic targets.

13.
J Chem Neuroanat ; 129: 102249, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791922

RESUMEN

A-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson's disease (PD), a neurodegenerative disease with no effective treatment. Therefore, there has been a strong drive to clarify the pathology of PD associated with α-syn. Several mechanisms have been proposed to unravel the pathological cascade of this disease, and most of them share a particular similarity: cell-to-cell communication through exosomes (EXO). Here, we show that tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) promotes the secretion of α-syn-containing EXO by microglia, resulting in motor dysfunction in PD. Upregulation of TNFRSF10B predicted severer condition in PD patients. In response to α-syn preformed fibrils (PFF), the expression of TNFRSF10B was increased in microglia. PFF-treated microglia exhibited a pro-inflammatory phenotype and caused neuronal damage by secreting α-syn-containing EXO. TNFRSF10B downregulation in microglia inhibited the secretion of α-syn-containing EXO and the release of pro-inflammatory factors, and ameliorated neuronal injury. PFF induced motor dysfunction in mice, which was ameliorated by inhibiting TNFRSF10B to suppress microglia-mediated α-syn communication or by directly depleting microglia. Taken together, these results indicate that TNFRSF10B promotes neuronal injury and motor dysfunction by delivery of α-syn-containing EXO and highlight the TNFRSF10B knockdown as a potential therapeutic target in PD.


Asunto(s)
Microglía , Enfermedad de Parkinson , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/metabolismo , Exosomas/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Humanos
14.
Front Aging Neurosci ; 14: 909273, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966779

RESUMEN

Aging is the biggest risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder. Several animal models have been developed to explore the pathophysiology underlying neurodegeneration and the initiation and spread of alpha-synuclein-related PD pathology, and to investigate biomarkers and therapeutic strategies. However, bench-to-bedside translation of preclinical findings remains suboptimal and successful disease-modifying treatments remain to be discovered. Despite aging being the main risk factor for developing idiopathic PD, most studies employ young animals in their experimental set-up, hereby ignoring age-related cellular and molecular mechanisms at play. Consequently, studies in young animals may not be an accurate reflection of human PD, limiting translational outcomes. Recently, it has been shown that aged animals in PD research demonstrate a higher susceptibility to developing pathology and neurodegeneration, and present with a more disseminated and accelerated disease course, compared to young animals. Here we review recent advances in the investigation of the role of aging in preclinical PD research, including challenges related to aged animal models that are limiting widespread use. Overall, current findings indicate that the use of aged animals may be required to account for age-related interactions in PD pathophysiology. Thus, although the use of older animals has disadvantages, a model that better represents clinical disease within the elderly would be more beneficial in the long run, as it will increase translational value and minimize the risk of therapies failing during clinical studies. Furthermore, we provide recommendations to manage the challenges related to aged animal models.

15.
Front Immunol ; 13: 907993, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669764

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2022.833515.].

16.
J Neurol ; 269(9): 4646-4662, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35657406

RESUMEN

Movement disorders as well as peripheral neuropathies are extremely frequent in the general population; therefore, it is not uncommon to encounter patients with both these conditions. Often, the coexistence is coincidental, due to the high incidence of common causes of peripheral neuropathy, such as diabetes and other age-related disorders, as well as of Parkinson disease (PD), which has a typical late onset. Nonetheless, there is broad evidence that PD patients may commonly develop a sensory and/or autonomic polyneuropathy, triggered by intrinsic and/or extrinsic mechanisms. Similarly, some peripheral neuropathies may develop some movement disorders in the long run, such as tremor, and rarely dystonia and myoclonus, suggesting that central mechanisms may ensue in the pathogenesis of these diseases. Although rare, several acquired or hereditary causes may be responsible for the combination of movement and peripheral nerve disorders as a unique entity, some of which are potentially treatable, including paraneoplastic, autoimmune and nutritional aetiologies. Finally, genetic causes should be pursued in case of positive family history, young onset or multisystemic involvement, and examined for neuroacanthocytosis, spinocerebellar ataxias, mitochondrial disorders and less common causes of adult-onset cerebellar ataxias and spastic paraparesis. Deep phenotyping in terms of neurological and general examination, as well as laboratory tests, neuroimaging, neurophysiology, and next-generation genetic analysis, may guide the clinician toward the correct diagnosis and management.


Asunto(s)
Distonía , Enfermedad de Parkinson , Enfermedades del Sistema Nervioso Periférico , Ataxias Espinocerebelosas , Adulto , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Ataxias Espinocerebelosas/genética , Temblor
17.
Medicina (Kaunas) ; 58(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35630029

RESUMEN

The use and interpretation of diagnostic cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders, such as Dementia with Lewy bodies (DLB), represent a clinical challenge. According to the literature, the composition of CSF in DLB patients varies. Some patients present with reduced levels of amyloid, others with full Alzheimer Disease CSF profile (both reduced amyloid and increased phospho-tau) and some with a normal profile. Some patients may present with abnormal levels of a-synuclein. Continuous efforts will be required to establish useful CSF biomarkers for the early diagnosis of DLB. Given the heterogeneity of methods and results between studies, further validation is fundamental before conclusions can be drawn.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedad de Alzheimer/diagnóstico , Biomarcadores/líquido cefalorraquídeo , Humanos , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy/diagnóstico , Proteínas tau/líquido cefalorraquídeo
18.
Elife ; 102021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550070

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder without effective disease-modifying therapeutics. Here, we establish a chemogenetic dopamine (DA) neuron ablation model in larval zebrafish with mitochondrial dysfunction and robustness suitable for high-content screening. We use this system to conduct an in vivo DA neuron imaging-based chemical screen and identify the Renin-Angiotensin-Aldosterone System (RAAS) inhibitors as significantly neuroprotective. Knockdown of the angiotensin receptor 1 (agtr1) in DA neurons reveals a cell-autonomous mechanism of neuroprotection. DA neuron-specific RNA-seq identifies mitochondrial pathway gene expression that is significantly restored by RAAS inhibitor treatment. The neuroprotective effect of RAAS inhibitors is further observed in a zebrafish Gaucher disease model and Drosophila pink1-deficient PD model. Finally, examination of clinical data reveals a significant effect of RAAS inhibitors in delaying PD progression. Our findings reveal the therapeutic potential and mechanisms of targeting the RAAS pathway for neuroprotection and demonstrate a salient approach that bridges basic science to translational medicine.


Parkinson's disease is caused by the slow death and deterioration of brain cells, in particular of the neurons that produce a chemical messenger known as dopamine. Certain drugs can mitigate the resulting drop in dopamine levels and help to manage symptoms, but they cause dangerous side-effects. There is no treatment that can slow down or halt the progress of the condition, which affects 0.3% of the population globally. Many factors, both genetic and environmental, contribute to the emergence of Parkinson's disease. For example, dysfunction of the mitochondria, the internal structures that power up cells, is a known mechanism associated with the death of dopamine-producing neurons. Zebrafish are tiny fish which can be used to study Parkinson's disease, as they are easy to manipulate in the lab and share many characteristics with humans. In particular, they can be helpful to test the effects of various potential drugs on the condition. Here, Kim et al. established a new zebrafish model in which dopamine-producing brain cells die due to their mitochondria not working properly; they then used this assay to assess the impact of 1,403 different chemicals on the integrity of these cells. A group of molecules called renin-angiotensin-aldosterone (RAAS) inhibitors was shown to protect dopamine-producing neurons and stopped them from dying as often. These are already used to treat high blood pressure as they help to dilate blood vessels. In the brain, however, RAAS worked by restoring certain mitochondrial processes. Kim et al. then investigated whether these results are relevant in other, broader contexts. They were able to show that RAAS inhibitors have the same effect in other animals, and that Parkinson's disease often progresses more slowly in patients that already take these drugs for high blood pressure. Taken together, these findings therefore suggest that RAAS inhibitors may be useful to treat Parkinson's disease, as well as other brain illnesses that emerge because of mitochondria not working properly. Clinical studies and new ways to improve these drugs are needed to further investigate and capitalize on these potential benefits.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antiparkinsonianos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Sistema Renina-Angiotensina/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Animales Modificados Genéticamente , Antiparkinsonianos/uso terapéutico , Estudios de Casos y Controles , Bases de Datos Factuales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Enfermedad de Gaucher/tratamiento farmacológico , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Int J Mol Sci ; 22(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066733

RESUMEN

Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.


Asunto(s)
Neuroglía/metabolismo , Neuronas/metabolismo , Sinucleinopatías/metabolismo , Animales , Humanos , Modelos Biológicos , Proteolisis , alfa-Sinucleína/metabolismo
20.
Front Cell Infect Microbiol ; 11: 619354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763383

RESUMEN

Parkinson's disease (PD) is the most common movement disorder in the world, affecting 1-2 per 1,000 of the population. The main pathological changes of PD are damage of dopaminergic neurons in substantia nigra of the central nervous system and formation of Lewy bodies. These pathological changes also occur in the intestinal tract and are strongly associated with changes in intestinal flora. By reviewing the research progress in PD and its association with intestinal flora in recent years, this review expounded the mechanism of action between intestinal flora and PD as well as the transmission mode of α - synuclein in neurons. In clinical studies, ß diversity of intestinal flora in PD patients was found to change significantly, with Lactobacillusaceae and Verrucomicrobiaceae being significantly increased and Lachnospiraceae and Prevotellaceae being significantly decreased. In addition, a longer PD course was associated with fewer bacteria and probiotics producing short chain fatty acids, but more pathogenic bacteria. Moreover, the motor symptoms of PD patients may be related to Enterobacteriaceae and bacteria. Most importantly, catechol-O-methyltransferase inhibitors and anticholinergic drugs could change the intestinal flora of PD patients and increase the harmful flora, whereas other anti-PD drugs such as levodopa, dopamine agonist, monoamine oxidase inhibitors, and amantadine did not have these effects. Probiotics, prebiotics, and synbiotics treatment had some potential values in improving the constipation of PD patients, promoting the growth of probiotics, and improving the level of intestinal inflammation. At present, there were only a few case studies and small sample studies which have found certain clinical efficacy of fecal microbiome transplants. Further studies are necessary to elaborate the relationship of PD with microbes.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Catecol O-Metiltransferasa , Trasplante de Microbiota Fecal , Humanos , Levodopa , Enfermedad de Parkinson/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA