Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Adv Sci (Weinh) ; : e2407789, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248328

RESUMEN

Intermittent fasting (IF) plays a critical role in mitigating obesity, yet the precise biological mechanisms require further elucidation. Here Orosomucoid 2 (Orm2) is identified as an IF-induced hepatokine that stimulates adipose browning. IF induced Orm2 expression and secretion from the liver through peroxisome proliferator-activated receptor alpha (PPARα). In adipose tissue, Orm2 bound to glycoprotein 130/interleukin 23 receptor (GP130/IL23R) and promoted adipose browning through the activation of p38 mitogen-activated protein kinases (p38-MAPK). In obese mice, Orm2 led to a significant induction of adipose tissue browning and subsequent weight loss, an effect that is not replicated by a mutant variant of Orm2 deficient in GP130/IL23R binding capability. Crucially, genetic association studies in humans identified an obesity-associated Orm2 variant (D178E), which shows decreased GP130/IL23R binding and impaired browning capacity in mice. Overall, the research identifies Orm2 as a promising therapeutic target for obesity, mediating adipose browning through the GP130/IL23R-p38 signalling pathway.

2.
FASEB J ; 38(17): e70010, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39230621

RESUMEN

Traditional Chinese medical literature contains numerous records of many traditional Chinese herbal medicines that exhibit efficacy in enhancing resistance to cold, yet there is a lack of scientific explanation. Lycium barbarum is among the herbal medicines that are explicitly documented to enhance resistance to cold in the "Ben Cao Gang Mu (Compendium of Materia Medica)". Herein, we investigated L. barbarum polysaccharide (LBP)-induced browning of inguinal white adipose tissue (iWAT), energy expenditure and thermogenic function in a long-term (4 months) treatment mouse model. LBP supplementation resulted in a significant reduction in weight and adipocyte size in iWAT, along with increased gut microbiota diversity. Specifically, the levels of Lachnospiraceae, Ruminococcaceae and Bacteroidaceae (short-chain fatty acid-producing bacteria) were elevated, leading to a higher level of short-chain fatty acids (SCFAs) in the caecal content. These effects subsequently triggered the release of glucagon-like peptide-1 (GLP-1) and activated the CREB/PGC1α signaling pathway in iWAT, thereby increasing energy expenditure and enhancing thermogenic function. The antibiotic treatment experiments confirmed that the LBP-mediated gut microbiota participated in the process of iWAT browning. In summary, our findings provide the first scientific explanation and mechanistic insights into the cold resistance of L. barbarum and identify potentially safe natural product supplements for individuals in alpine areas.


Asunto(s)
Frío , Medicamentos Herbarios Chinos , Metabolismo Energético , Microbioma Gastrointestinal , Termogénesis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Termogénesis/efectos de los fármacos , Ratones , Metabolismo Energético/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones Endogámicos C57BL , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos
3.
Cells ; 13(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273055

RESUMEN

Lung cancer and cachexia are the leading causes of cancer-related deaths worldwide. Cachexia is manifested by weight loss and white adipose tissue (WAT) atrophy. Limited nutritional supplements are conducive to lung cancer patients, whereas the underlying mechanisms are poorly understood. In this study, we used a murine cancer cachexia model to investigate the effects of a nutritional formula (NuF) rich in fish oil and selenium yeast as an adjuvant to enhance the drug efficacy of an EGFR inhibitor (Tarceva). In contrast to the healthy control, tumor-bearing mice exhibited severe cachexia symptoms, including tissue wasting, hypoalbuminemia, and a lower food efficiency ratio. Experimentally, Tarceva reduced pEGFR and HIF-1α expression. NuF decreased the expression of pEGFR and HIF-2α, suggesting that Tarceva and NuF act differently in prohibiting tumor growth and subsequent metastasis. NuF blocked LLC tumor-induced PTHrP and expression of thermogenic factor UCP1 and lipolytic enzymes (ATGL and HSL) in WAT. NuF attenuated tumor progression, inhibited PTHrP-induced adipose tissue browning, and maintained adipose tissue integrity by modulating heat shock protein (HSP) 72. Added together, Tarceva in synergy with NuF favorably improves cancer cachexia as well as drug efficacy.


Asunto(s)
Caquexia , Suplementos Dietéticos , Receptores ErbB , Aceites de Pescado , Lipólisis , Selenio , Termogénesis , Animales , Caquexia/tratamiento farmacológico , Caquexia/patología , Ratones , Selenio/farmacología , Selenio/uso terapéutico , Lipólisis/efectos de los fármacos , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Termogénesis/efectos de los fármacos , Aceites de Pescado/farmacología , Aceites de Pescado/uso terapéutico , Ratones Endogámicos C57BL , Masculino , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo
4.
Sci Rep ; 14(1): 19517, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174821

RESUMEN

Crosstalk between peripheral metabolic organs and the central nervous system is essential for body weight control. At the base of the hypothalamus, ß-tanycytes surround the portal capillaries and function as gatekeepers to facilitate transfer of substances from the circulation into the cerebrospinal fluid and vice versa. Here, we investigated the role of the neuroplasticity gene doublecortin-like (DCL), highly expressed by ß-tanycytes, in body weight control and whole-body energy metabolism. We demonstrated that DCL-knockdown through a doxycycline-inducible shRNA expression system prevents body weight gain by reducing adiposity in mice. DCL-knockdown slightly increased whole-body energy expenditure possibly as a result of elevated circulating thyroid hormones. In white adipose tissue (WAT) triglyceride uptake was increased while the average adipocyte cell size was reduced. At histological level we observed clear signs of browning, and thus increased thermogenesis in WAT. We found no indications for stimulated thermogenesis in brown adipose tissue (BAT). Altogether, we demonstrate an important, though subtle, role of tanycytic DCL in body weight control through regulation of energy expenditure, and specifically WAT browning. Elucidating mechanisms underlying the role of DCL in regulating brain-peripheral crosstalk further might identify new treatment targets for obesity.


Asunto(s)
Tejido Adiposo Blanco , Metabolismo Energético , Obesidad , Animales , Ratones , Obesidad/metabolismo , Obesidad/genética , Tejido Adiposo Blanco/metabolismo , Masculino , Tejido Adiposo Pardo/metabolismo , Termogénesis/genética , Técnicas de Silenciamiento del Gen , Proteínas de Dominio Doblecortina , Peso Corporal , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Adiposidad/genética
5.
J Ethnopharmacol ; 337(Pt 1): 118761, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216775

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Blossom of Citrus aurantium L. var. amara Engl. (CAVA) has been popularly consumed as folk medicine and dietary supplement owing to its various beneficial effects and especially anti-obesity potential. Our previous study predicted that eriodictyol was probably one of the key active compounds of the total flavonoids from blossom of CAVA. However, effects of eriodictyol in anti-obesity were still elusive. AIM OF THE STUDY: This study was performed to explore the precise role of eriodictyol in white adipose tissue (WAT) browning and hepatic lipid metabolism, and simultaneously, to verify the impact of eriodictyol on the total flavonoids of CAVA in losing weight. MATERIALS AND METHODS: The pancreas lipase assay was conducted and oleic acid-induced HepG2 cells were established to preliminarily detect the lipid-lowering potential of eriodictyol. Then, high fat diet-induced obesity (DIO) mouse model was established for in vivo studies. The biochemical indicators of mice were tested by commercial kits. The histopathological changes of WAT and liver in mice were tested by H&E staining, Oil Red O staining and Sirius Red staining. Immunohistochemical, Western blot assay, as well as RT-qPCR analysis were further performed. Additionally, molecular docking assay was used to simulate the binding of eriodictyol with potential target proteins. RESULTS: In vitro studies showed that eriodictyol intervention potently inhibited pancreatic lipase activity and reversed hepatic steatosis in oleic acid-induced HepG2 cells. Consistently, long-term medication of eriodictyol also effectively prevented obesity and improved lipid and glucose metabolism in diet-induced obesity mice. Obesity-induced histopathological changes in iWAT, eWAT and BAT, and abnormal expression levels of IL-10, IL-6 and TNF-α in iWAT of DIO mice were also significantly reversed by eriodictyol treatment. Eriodictyol administration significantly and potently promoted browning of iWAT by increasing expression levels of thermogenic marker protein of UCP1, as well as brown adipocyte-specific genes of PGC-1α, SIRT1 and AMPKα1. Further assays revealed that eriodictyol enhanced mitochondrial function, as shown by an increase in compound IV activity and the expression of tricarboxylic acid cycle-related genes. Besides, eriodictyol addition markedly reversed hepatic damages and hepatic inflammation, and enhanced hepatic lipid metabolism in DIO mice, as evidenced by its regulation on p-ACC, CPT1-α, UCP1, PPARα, PGC-1α, SIRT1 and p-AMPKα expression. Molecular docking results further validated that AMPK/SIRT1 pathway was probably the underlying mechanisms by which eriodictyol acted. CONCLUSION: Eriodictyol exhibited significant anti-obesity effect, which was comparable to that of the total flavonoids from blossom of CAVA. These findings furnished theoretical basis for the application of eriodictyol in weight loss.

6.
Cell Signal ; 122: 111340, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127135

RESUMEN

Obesity and its complications have become a global health problem that needs to be addressed urgently. White adipose tissue (WAT) browning contributes to consuming excess energy in WAT, which is important for improving obesity and maintaining a healthy energy homeostasis. Mitochondria, as the energy metabolism center of cells, are extensively involved in many metabolic processes, including the browning of WAT. NADH: Ubiquinone oxidoreductase subunit A8 (NDUFA8) is a constituent subunit of respiratory chain complex I (CI), which has been found to participate in a wide range of physiological processes by affecting the activity of respiratory CI. However, the regulatory effect of Ndufa8 on the browning of WAT has not been reported. Here, we used ß3-adrenergic agonis CL316, 243 to construct WAT browning models in vivo and in vitro to investigate the role and mechanism of Ndufa8 in the regulation of WAT browning. Briefly, Ndufa8 significantly increased CI activity and suppressed mitochondrial ROS levels in vitro, thereby improving mitochondrial function. Ndufa8 also increased the transcriptional levels and protein levels of UCP1 in vitro and in vivo, which promoted WAT browning. Our findings provide a new molecular approach for the research of browning of WAT in animals, as well as a new target for animal metabolism improvement and obesity treatments.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Complejo I de Transporte de Electrón , Ratones Endogámicos C57BL , Mitocondrias , Obesidad , Animales , Complejo I de Transporte de Electrón/metabolismo , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Ratones , Mitocondrias/metabolismo , Tejido Adiposo Pardo/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Dioxoles/farmacología , Dieta Alta en Grasa , Termogénesis
7.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39065709

RESUMEN

BACKGROUND: Numerous studies highlight the critical role that neural histamine plays in feeding behavior, which is controlled by central histamine H3 and H1 receptors. This is the fundamental motivation for the increased interest in creating histamine H3 receptor antagonists as anti-obesity medications. On the other hand, multiple other neurotransmitter systems have been identified as pharmacotherapeutic targets for obesity, including sigma-2 receptor systems. Interestingly, in our previous studies in the rat excessive eating model, we demonstrated a significant reduction in the development of obesity using dual histamine H3/sigma-2 receptor ligands. Moreover, we showed that compound KSK-94 (structural analog of Abbott's A-331440) reduced the number of calories consumed, and thus acted as an anorectic compound. Therefore, in this study, we extended the previous research and studied the influence of KSK-94 on adipose tissue collected from animals from our previous experiment. METHODS: Visceral adipose tissue was collected from four groups of rats (standard diet + vehicle, palatable diet + vehicle, palatable diet + KSK-94, and palatable diet + bupropion/naltrexone) and subjected to biochemical, histopathological, and immunohistochemical studies. RESULTS: The obtained results clearly indicate that compound KSK-94 prevented the hypertrophy and inflammation of visceral adipose tissue, normalized the levels of leptin, resistin and saved the total reduction capacity of adipose tissue, being more effective than bupropion/naltrexon in these aspects. Moreover, KSK-94 may induce browning of visceral white adipose tissue. CONCLUSION: Our study suggests that dual compounds with a receptor profile like KSK-94, i.e., targeting histamine H3 receptor and, to a lesser extent, sigma-2 receptor, could be attractive therapeutic options for patients at risk of developing obesity or with obesity and some metabolic disorders. However, more studies are required to determine its safety profile and the exact mechanism of action of KSK-94.

8.
Eur J Pharm Sci ; 199: 106820, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38821248

RESUMEN

Obesity is a global public health problem and is related with fatal diseases such as cancer and cardiovascular and metabolic diseases. Medical and lifestyle-related strategies to combat obesity have their limitations. White adipose tissue (WAT) browning is a promising strategy for increasing energy expenditure in individuals with obesity. Uncoupling protein 1 (UCP1) drives WAT browning. We previously screened natural products that enable induction of Ucp1 and demonstrated that these natural products induced WAT browning and increased energy expenditure in mice with diet-induced obesity. In this study, we aimed to extensively optimise the structure of compound 1, previously shown to promote WAT browning. Compound 3 s exhibited a significantly higher ability to induce Ucp1 in white and brown adipocytes than did compound 1. A daily injection of compound 3 s at 5 mg/kg prevented weight gain by 13.6 % in high-fat diet-fed mice without any toxicological observation. In addition, compound 3 s significantly improved glucose homeostasis, decreased serum triacylglycerol levels, and reduced total cholesterol and LDL cholesterol levels, without altering dietary intake or physical activity. Pharmaceutical properties such as solubility, lipophilicity, and membrane permeability as well as metabolic stability, half-life (T1/2), and blood exposure ratio of i.p to i.v were significantly improved in compound 3 s when compared with those in compound 1. Regarding the mode of action of WAT browning, the induction of Ucp1 and Prdm4 by compounds 1 and 3 s was dependent on Akt1 in mouse embryonic fibroblasts. Therefore, this study suggests the potential of compound 3 s as a therapeutic agent for individuals with obesity and related metabolic diseases, which acts through the induction of WAT browning as well as brown adipose tissue activation.


Asunto(s)
Dieta Alta en Grasa , Metabolismo Energético , Resistencia a la Insulina , Ratones Endogámicos C57BL , Obesidad , Proteína Desacopladora 1 , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Chalconas/farmacología , Ratones Obesos , Fármacos Antiobesidad/farmacología , Células 3T3-L1
9.
Front Nutr ; 11: 1393343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784129

RESUMEN

Background: Perivascular adipose tissue (PVAT) dysfunction impairs vascular homeostasis. Impaired inflammation and bone morphogenetic protein-4 (BMP4) signaling are involved in thoracic PVAT dysfunction by regulating adipokine secretion and adipocyte phenotype transformation. We investigated whether aerobic exercise training could ameliorate high-fat diet (HFD)-induced PVAT dysfunction via improved inflammatory response and BMP4-mediated signaling pathways. Methods: Sprague-Dawley rats (n = 24) were divided into three groups, namely control, high-fat diet (HFD), and HFD plus exercise (HEx). After a 6-week intervention, PVAT functional efficiency and changes in inflammatory biomarkers (circulating concentrations in blood and mRNA expressions in thoracic PVAT) were assessed. Results: Chronic HFD feeding caused obesity and dyslipidemia in rats. HFD decreased the relaxation response of PVAT-containing vascular rings and impaired PVAT-regulated vasodilatation. However, exercise training effectively reversed these diet-induced pathological changes to PVAT. This was accompanied by significantly (p < 0.05) restoring the morphological structure and the decreased lipid droplet size in PVAT. Furthermore, HFD-induced impaired inflammatory response (both in circulation and PVAT) was notably ameliorated by exercise training (p < 0.05). Specifically, exercise training substantially reversed HFD-induced WAT-like characteristics to BAT-like characteristics as evidenced by increased UCP1 and decreased FABP4 protein levels in PVAT against HFD. Exercise training promoted transcriptional activation of BMP4 and associated signaling molecules (p38/MAPK, ATF2, PGC1α, and Smad5) that are involved in browning of adipose tissue. In conjunction with gene expressions, exercise training increased BMP4 protein content and activated downstream cascades, represented by upregulated p38/MAPK and PGC1α proteins in PVAT. Conclusion: Regular exercise training can reverse HFD-induced obesity, dyslipidemia, and thoracic PVAT dysfunction in rats. The browning of adipose tissue through exercise appears to be modulated through improved inflammatory response and/or BMP4-mediated signaling cascades in obese rats.

10.
J Obes Metab Syndr ; 33(2): 177-188, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699871

RESUMEN

Background: AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms. Methods: Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study. Results: Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 µM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 µM) significantly reversed these effects. Conclusion: ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.

11.
Mol Nutr Food Res ; 68(8): e2300861, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566521

RESUMEN

SCOPE: Brown rice, the most consumed food worldwide, has been shown to possess beneficial effects on the prevention of metabolic diseases. However, the way in which maternal brown rice diet improves metabolism in offspring and the regulatory mechanisms remains unclear. The study explores the epigenetic regulation of offspring energy metabolic homeostasis by maternal brown rice diet during pregnancy. METHODS AND RESULTS: Female mice are fed brown rice during pregnancy, and then body phenotypes, the histopathological analysis, and adipose tissues biochemistry assay of offspring mice are detected. It is found that maternal brown rice diet significantly reduces body weight and fat mass, increases energy expenditure and heat production in offspring. Maternal brown rice diet increases uncoupling protein 1 (UCP1) protein level and upregulates the mRNA expression of thermogenic genes in adipose tissues. Mechanistically, protein kinase A (PKA) signaling is likely responsible in the induced thermogenic program in offspring adipocytes, and the progeny adipocytes browning program is altered due to decreased level of DNA methyltransferase 1 protein and hypomethylation of the transcriptional coregulator positive regulatory domain containing 16 (PRDM16). CONCLUSIONS: These findings demonstrate that maternal brown rice during pregnancy improves offspring mice metabolic homeostasis via promoting adipose browning, and its mechanisms may be mediated by DNA methylation reprogramming.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Metilación de ADN , Oryza , Transducción de Señal , Animales , Femenino , Embarazo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Termogénesis , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Fenómenos Fisiologicos Nutricionales Maternos , Ratones Endogámicos C57BL , Dieta , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Masculino , Epigénesis Genética
12.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644407

RESUMEN

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Asunto(s)
Tejido Adiposo Blanco , Compuestos de Bencidrilo , Glucósidos , Proteínas Serina-Treonina Quinasas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Masculino , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Compuestos de Bencidrilo/farmacología , Dieta Alta en Grasa , Glucósidos/farmacología , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal/efectos de los fármacos
13.
Biomolecules ; 14(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540669

RESUMEN

Browning of white adipose tissue (WAT) is a focus of research in type 2 diabetes mellitus (T2DM) and metabolism, which may be a potential molecular mechanism for high-intensity interval training (HIIT) to improve T2DM. In this study, male C57BL/6J wild-type mice were subjected to an 8-week HIIT regimen following T2DM induction through a high-fat diet (HFD) combined with streptozotocin (STZ) injection. We found that HIIT improved glucose metabolism, body weight, and fat mass in T2DM mice. HIIT also decreased adipocyte size and induced browning of WAT. Our data revealed a decrease in TNFα and an increase in IL-10 with HIIT, although the expression of chemokines MCP-1 and CXCL14 was increased. We observed increased pan-macrophage infiltration induced by HIIT, along with a simultaneous decrease in the expression of M1 macrophage markers (iNOS and CD11c) and an increase in M2 macrophage markers (Arg1 and CD206), suggesting that HIIT promotes M2 macrophage polarization. Additionally, HIIT upregulated the expression of Slit3 and neurotrophic factors (BDNF and NGF). The expression of the sympathetic marker tyrosine hydroxylase (TH) and the nerve growth marker GAP43 was also increased, demonstrating the promotion of sympathetic nerve growth and density by HIIT. Notably, we observed macrophages co-localizing with TH, and HIIT induced the accumulation of M2 macrophages around sympathetic nerves, suggesting a potential association between M2 macrophages and increased density of sympathetic nerves. In conclusion, HIIT induces adipose tissue browning and improves glucose metabolism in T2DM mice by enhancing M2 macrophage polarization and promoting sympathetic nerve growth and density.


Asunto(s)
Diabetes Mellitus Tipo 2 , Entrenamiento de Intervalos de Alta Intensidad , Masculino , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Tejido Adiposo/metabolismo , Macrófagos/metabolismo , Tejido Adiposo Blanco/metabolismo , Glucosa/metabolismo , Proteínas de la Membrana/metabolismo
14.
Open Med (Wars) ; 19(1): 20240900, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463531

RESUMEN

This study investigated how Metformin (Met) combined with L-carnitine (L-car) modulates brown adipose tissue (BAT) to affect obesity. High-fat-induced obese rats received daily oral gavage with Met and/or L-car, followed by serum biochemical analysis, histopathological observation on adipose tissues, and immunochemistry test for the abdominal expression of BAT-specific uncoupling protein 1 (UCP1). Mouse-embryonic-fibroblast cells were induced into adipocytes, during which Met plus L-car was added with/without saturated fatty acid (SFA). The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in adipocyte browning was investigated by gene silencing. Mitochondria biogenesis in adipocytes was inspected by Mitotracker staining. Nrf2/heme oxygenase-1 (HO-1)/BAT-related genes/proinflammatory marker expressions in adipose tissues and/or adipocytes were analyzed by Western blot, qRT-PCR, and/or immunofluorescence test. Met or L-car improved metabolic disorders, reduced adipocyte vacuolization and swelling, upregulated levels of BAT-related genes including UCP1 and downregulated proinflammatory marker expressions, and activated the Nrf2/HO-1 pathway in adipose tissues of obese rats. Met and L-car functioned more strongly than alone. In adipocytes, Met plus L-car upregulated BAT-related gene levels and protected against SFA-caused inflammation promotion and mitochondria degeneration, which yet was attenuated by Nrf2 silencing. Met plus L-car enhances BAT activity and white adipose tissue browning via the Nrf2/HO-1 pathway to reduce lipid accumulation and inflammation in obese rats.

15.
BMC Pharmacol Toxicol ; 25(1): 26, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504370

RESUMEN

Browning of white adipose tissue (WAT) is become an appealing target for therapeutics in the treatment of obesity and related metabolic diseases. Dapagliflozin is widely used in the treatment of type 2 diabetes, and it is also found that the drug exhibits regulate systemic metabolism such as obesity, insulin resistance and hepatic steatosis. However, the precise role of dapagliflozin on WAT remodeling remains to be elucidated. The current study aimed to explore the role of dapagliflozin on WAT browning in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice (n = 6 per group) were used to establish obesity model by following feeding with HFD for 6 weeks. The mice were randomly treated with or without dapagliflozin for the experimental observation. The volume and fat fraction of WAT were quantified, H&E, UCP-1 staining and immunohistochemistry were conducted to investigate the white-to-brown fat conversion and angiogenesis in WAT respectively. Quantitative real-time polymerase chain reaction (qPCR) was employed to explore the mRNA expression levels of genes related to fat browning and angiogenesis in WAT. Subsequently, 3T3-L1 cells were used to explore the effect of dapagliflozin on preadipocytes differentiation in vitro. Our results demonstrated that dapagliflozin could reduce body weight gain and promote WAT browning in HFD induced obese mice via regulating lipogenesis and angiogenesis in WAT. Furthermore, dapagliflozin reduce cells differentiation, up-regulate the expression of WAT browning and angiogenesis genes in 3T3-L1 adipocytes in vitro. In conclusion, dapagliflozin can potentially promote WAT browning in HFD induced obese mice via improving lipogenesis and angiogenesis in WAT.


Asunto(s)
Angiogénesis , Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Glucósidos , Masculino , Ratones , Animales , Ratones Obesos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa/efectos adversos
16.
J Environ Sci (China) ; 141: 304-313, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408830

RESUMEN

Fragmented data suggest that bisphenol AF (BPAF), a chemical widely used in a variety of products, might have potential impacts on the hypothalamus. Here, we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing. We found that maternal exposure to approximately 50 µg/(kg·day) BPAF from postanal day (PND) 0 to PND 15 altered the hypothalamic transcriptome, primarily involving the pathways and genes associated with extracellular matrix (ECM) and intercellular adhesion, neuroendocrine regulation, and neurological processes. Further RNA analysis confirmed the changes in the expression levels of concerned genes. Importantly, we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue. All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism. Interestingly, 5000 µg/(kg·day) BPAF caused slighter, non-significant or even inverse alterations than the low dose of 50 µg/(kg·day), displaying a dose-independent effect. Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose. Overall, our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.


Asunto(s)
Compuestos de Bencidrilo , Fluorocarburos , Exposición Materna , Humanos , Femenino , Ratones , Animales , Masculino , Animales Recién Nacidos , Compuestos de Bencidrilo/toxicidad , Perfilación de la Expresión Génica , ARN
17.
J Physiol Biochem ; 80(2): 303-315, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38175499

RESUMEN

Lactate, an important exercise metabolite, induces white adipose tissue browning by upregulated uncoupling protein 1 (UCP1) expression. However, the function of lactate during browning of inguinal white adipose tissue (iWAT) caused by exercise is unclear. Here, we considered lactate as an exercise supplement and investigated the effects of chronic pre-exercise lactate administration on energy metabolism and adipose tissue browning. C57B/L6 male mice (5 weeks of age) were divided into six groups. We evaluated the changes in blood lactate levels in each group of mice after the intervention. Energy expenditure was measured after the intervention immediately by indirect calorimetry. The marker protein levels and gene expressions were determined by western-blot and quantitative real-time PCR. HIIT significantly decreased adipose tissue weight while increased energy expenditure and the expression of UCP1 in iWAT; however, these regulations were inhibited in the DCA+HIIT group. Compared with the MICT and LAC groups, long-term lactate injection before MICT led to lower WAT weight to body weight ratios and higher energy expenditure in mice. Furthermore, the marker genes of browning in iWAT, such as Ucp1 and Pparγ, were significantly increased in the LAC+MICT group than in the other groups, and the expression of monocarboxylate transporter-1 (Mct1) mRNA was also significantly increased. Lactate was involved in exercise-mediated browning of iWAT, and its mechanism might be the increased of lactate transport through MCT1 or PPARγ upregulation induced by exercise. These findings suggest exogenous lactate may be a new exercise supplement to regulate metabolism.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Metabolismo Energético , Ácido Láctico , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Simportadores , Proteína Desacopladora 1 , Animales , Masculino , Tejido Adiposo Blanco/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/sangre , Tejido Adiposo Pardo/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , PPAR gamma/metabolismo , PPAR gamma/genética
18.
Cell Biosci ; 14(1): 12, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245780

RESUMEN

BACKGROUND: The enrichment of peri-cancerous adipose tissue is a distinctive feature of colorectal cancer (CRC), accelerating disease progression and worsening prognosis. The communication between tumor cells and adjacent adipocytes plays a crucial role in CRC advancement. However, the precise regulatory mechanisms are largely unknown. This study aims to explore the mechanism of migration and invasion inhibitory protein (MIIP) downregulation in the remodeling of tumor cell-adipocyte communication and its role in promoting CRC. RESULTS: MIIP expression was found to be decreased in CRC tissues and closely associated with adjacent adipocyte browning. In an in vitro co-culture model, adipocytes treated with MIIP-downregulated tumor supernatant exhibited aggravated browning and lipolysis. This finding was further confirmed in subcutaneously allografted mice co-injected with adipocytes and MIIP-downregulated murine CRC cells. Mechanistically, MIIP interacted with the critical lipid mobilization factor AZGP1 and regulated AZGP1's glycosylation status by interfering with its association with STT3A. MIIP downregulation promoted N-glycosylation and over-secretion of AZGP1 in tumor cells. Subsequently, AZGP1 induced adipocyte browning and lipolysis through the cAMP-PKA pathway, releasing free fatty acids (FFAs) into the microenvironment. These FFAs served as the primary energy source, promoting CRC cell proliferation, invasion, and apoptosis resistance, accompanied by metabolic reprogramming. In a tumor-bearing mouse model, inhibition of ß-adrenergic receptor or FFA uptake, combined with oxaliplatin, significantly improved therapeutic efficacy in CRC with abnormal MIIP expression. CONCLUSIONS: Our data demonstrate that MIIP plays a regulatory role in the communication between CRC and neighboring adipose tissue by regulating AZGP1 N-glycosylation and secretion. MIIP reduction leads to AZGP1 oversecretion, resulting in adipose browning-induced CRC rapid progression and poor prognosis. Inhibition of ß-adrenergic receptor or FFA uptake, combined with oxaliplatin, may represent a promising therapeutic strategy for CRC with aberrant MIIP expression.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38188941

RESUMEN

Obesity is a severe public health problem. Healthy lifestyle interventions are commonly recommended for fighting obesity. But they are hard to follow and have low efficacy. Pharmacotherapy and surgery are of high efficacy but are beset with side effects. Browning subcutaneous white adipose tissue (WAT) is a practical and efficient approach for combating obesity. Metformin, a commonly used FDA-approved antidiabetic drug, is potent to induce browning of WAT through phosphorylation and activation of AMP-activated protein kinase. However, oral administration of metformin has low oral bioavailability, fast renal clearance, and low target specificity that limit metformin's application in browning WAT. Local and transdermal delivery of metformin directly to subcutaneous WAT using injection or microneedle (MN) in combination with iontophoresis (INT) may solve these problems. In this paper, we administered metformin to C57BL/6J obese mice using the following three routes: transdermal delivery (MN and INT), local injection into inguinal WAT (IgWAT, a type of subcutaneous WAT in mice), and oral gavage. The anti-obesity and metabolic effects of metformin via these delivery routes were determined and compared. As compared to local IgWAT injection and oral gavage delivery, transdermal delivery of metformin using MN and INT resulted in 9% lower body weight and 7% decrease in body fat% accompanied by improved energy metabolism and decreased inflammation through browning IgWAT in obese C57BL/6J mice. Transdermal delivery of metformin using MN and INT is an effective approach in browning subcutaneous WAT for combating obesity and improving metabolic health.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030193

RESUMEN

[Objective]To investigate the effect of Baoyuan Jiedu Decoction(BJD)on serum lipids and white adipose tissue browning in cancer cachexia mice.[Methods]The specific pathogen free C57BL/6 mice were divided into normal group,model group,BJD group and megestrol acetate(MA)group.After 21 days of intervention,the changes of body weight,food intake,water consumption and tumor volume of the mice were observed,multidimensional mass spectrometry-based shotgun lipidomics(MDMS-SL)was used to determine the content of serum lipid of mice,white adipose tissue morphology and lipid droplet area were detected by hematoxylin-eosin(HE)staining,the expressions of white adipose tissue browning related genes were detected by Real-time quantitative polymerase chain reaction(Real-time PCR);and the protein expression of uncoupling protein 1(UCP1)was detected by Western blot and immunohistochemistry(IHC)staining.[Results]Compared with model group,the mice in BJD group were generally in good condition,and their food intake,water consumption and weight were increased significantly(P<0.05),and the volumes of tumors were significantly suppressed(P<0.05).Compared with normal group,there were 61 kinds of abnormal lipids in the serum of model group,while 30 kinds of lipids were influenced by BJD treatment(P<0.05).Compared with model group,BJD alleviated the mass loss and lipid droplets(P<0.05),inhibited the mRNA expression of UCP1,Cidea,Prdm16(P<0.05)and the protein expression of UCP1(P<0.05)in epididymal white adipose tissue(eWAT)and inguinal white adipose tissue(iWAT)of cancer cachexia mice.[Conclusion]BJD can inhibit weight loss,relieve the disorder of serum lipid,and inhibit the white adipose tissue browning of iWAT and eWAT of cancer cachexia mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA