Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.796
Filtrar
1.
Sci Total Environ ; 954: 176193, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278488

RESUMEN

Heavy metal contamination is a huge hazard to the environment and human health, and research into removing heavy metals from their primary sources (industrial and agricultural wastes) has increased significantly. Adsorption has received interest due to its distinct benefits over other treatment approaches. The distinctive qualities of clay minerals, such as their high specific surface area, strong cation exchange capacity, and varied structures, make them particularly ideal for use in the manufacture of adsorbents. The customizable structure and performance of clay minerals allow for unprecedented diversity in adsorbent creation, opening up new possibilities for the development of high-efficiency and functional adsorption technologies. In this review, various approaches for developing optimal adsorbents from raw materials are presented. Then, the correlation between functionalization and performance is investigated, focusing on the effects of structural features and surface properties on adsorption performance. The research progress on the synthesis of adsorbents using clay minerals and other functional materials is systematically reported. Finally, the challenges and opportunities in designing and utilizing innovative clay mineral adsorbents are discussed.

2.
Food Chem ; 463(Pt 3): 141311, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39332356

RESUMEN

MnAl layered double hydroxide hybrid with magnetic-multiwalled carbon nanotubes was synthesized by a hydrothermal method and used for the extraction of Pb(II) (lead) from spices and water samples in the dispersive solid phase microextraction (dSPµE) technique using FAAS. The as-prepared adsorbent MMWCNTs@MnAl-LDH was characterized by XRD, FTIR, EDX, and SEM techniques. Various analytical parameters were optimized, including pH 8, adsorbent dosage of 5 mg, HNO3 eluent concentration of 1 mol L-1, eluent volume of 3 mL, eluent time of 60 s, and sample volume of 20 mL, for quantitative lead recoveries, with an LOD of 0.314 µg L-1, an LOQ of 1.048 µg L-1, and PF of 11.53. Under the optimized conditions, the linearity ranges from 0.5 to 500 µg L-1 (R2 = 0.9997). For the validation test of the established dSPµE procedure, Certified reference materials (CRMs) were used, yielding satisfactory recovery results ranging from 97.8 to 102.7 %. The method was applied to determine lead in turmeric, tap water, and industrial water samples.

3.
Bioresour Technol ; : 131494, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326532

RESUMEN

Dairy sludge (DS) consists of organic compounds such as lipids and valuable inorganic elements. Biodiesel recovery from dairy sludge extract (DSE), using conventional acid (trans)esterification yielded only 16.5 wt%. In contrast, non-catalytic (trans)esterification generated a substantially higher biodiesel yield of approximately 74.0 wt% due to the method's tolerance for impurities. Defatted dairy sludge (DDS) contained a higher Ca concentration than DS. DDS-produced biochar (DDSB) increased its Ca concentration predominantly in the form of CaO. 91.1% of the Ca was recovered from the DDSB containing Ca. The Ca remaining in the biochar residue (DDSBR) after Ca recovery was in the form of CaCO3. The porous structure developed as the Ca dissolved, implying that DDSBR could be an effective pollutant adsorbent. In this study, a method is proposed to maximize the utilization of DS by producing biodiesel, recovering Ca content, and using it as a pollutant adsorbent.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39327322

RESUMEN

Due to concerns about high water fluoride concentrations and their detrimental consequences on health, particularly dental and skeletal fluorosis, dependable and cost-effective defluoridation techniques are needed. Chinar leaves (Platanus orientalis), a common waste, might be utilized for the production of activated carbon. For Chinar leaf activated carbon (CLAC) manufacturing, two pre-pyrolysis chemical modification procedures were used: acidic HCl (H-activation) and alkaline NaOH (OH-activation). The success of fluoride removal suggests further research and implementation in locations with fluoride-related water quality issues. This study examines how CLAC dosage, fluoride concentration, temperature, pH, and contact exposure effect defluoridation efficiency. The pseudo-second-order non-linear kinetic model and Freundlich non-linear isotherm model with R2 = 0.99 fit the data, resulting in a peak adsorption capacity of 30.3 mg/g for 0.3 g CLAC. In the present work, the adsorption mechanism was regulated by more than intraparticle diffusion. Adsorption occurred spontaneously as exothermic monolayer chemisorption, according to thermodynamic studies. Adsorbent activated with HCl (H-activated) showed promising results, with 73% F- removal efficiency for OH-activated and 91% for H-activated CLAC.

5.
Turk J Chem ; 48(4): 631-642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296789

RESUMEN

Exploring the materials that effectively capture radioactive iodine is crucial in managing nuclear waste produced from nuclear power plants. In this study, a ß-ketoenamine-linked covalent organic framework (bCOF) is reported as an effective adsorbent to capture iodine from both vapor and solution. The bCOF's high porosity and heteroatom-rich skeleton offer notable iodine vapor uptake capacity of up to 2.51 g g-1 at 75 °C under ambient pressure. Furthermore, after five consecutive adsorption-desorption cycles, the bCOF demonstrates high reusability performance with significant iodine vapor capacity retention. The adsorption mechanism was also investigated using various ex situ structural characterization techniques, and these mechanistic studies revealed the existence of a strong chemical interaction between the bCOF and iodine. The bCOF also showed good iodine uptake performance of up to 512 mg g-1 in cyclohexane with high removal efficiencies. The bCOF's performance in adsorbing iodine from both vapor and solution makes it a promising material to be used as an effective adsorbent in capturing radioactive iodine emissions from nuclear power plants.

6.
Heliyon ; 10(16): e36160, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247315

RESUMEN

Water pollution is one of the major concerns due to rapid industrialization and urbanization. Wastewater treatment has been an area of great interest for the researchers and among many technologies developed for water treatment, adsorption is the most preferred due to its efficiency and ability of been economical method. In this research, eggshell powder (ESP) is converted into modified eggshell powder (MESP) through chemical and thermal treatment (at 550 °C for 2 h) to use it as an adsorbent to remediate Pb2+ and Methylene blue (MB) from water, then it is transferred into modified eggshell powder magnetic composite (MESPMC) with iron coating to resolve the separation challenges and to boost the MESP's adsorption efficiency. FTIR analysis identified the functional groups of ESP, MESP, and MESPMC. XRD analysis reveals a hexagonal crystal structure of calcite in MESP and a combination of the hexagonal crystal structure of calcite and the cubic crystal structure of iron in MESPMC. The Scherrer equation is used to determine the average crystallite sizes of MESP and MESPMC, which are 22.59 nm and 12.15 nm, respectively. The SEM image shows the irregular shape of the MESP and MESPMC particles, as well as the active coating layer in MESPMC. EDX analysis reveals that Ca (20.92 %), O (56.83 %), and Fe (41.03 %), O (48.83 %) are the most abundant elements in MESP and MESPMC respectively. TGA analysis points out that MESPMC outperforms MESP in terms of thermal stability between 600 and 750 °C. MESP and MESPMC were found to be very efficient adsorbent for lead and methylene blue in aqueous medium. At 40 mg/mL adsorbent dosage, ESP, MESP, and MESPMC had the highest yields of Pb2+ removal, with 46.996 %, 99.27 %, and 99.78 % respectively at 200 rpm for 60 min with 25 °C. Furthermore, at the 0.5 mg/mL adsorbent dosage, ESP, MESP, and MESPMC have the maximum removal efficiency of methylene blue, with 47.19 %, 90.1 %, and 92 %, respectively at 200 rpm for 30 min with 25 °C. In both cases, the removal efficiency of MESPMC is slightly higher than that of MESP and much higher than that of ESP. Additionally, the results confirm that MESP and MESPMC are potential environment-friendly bio sources to remediate heavy metal (Pb2+) and methylene blue dye from water.

7.
Int J Biol Macromol ; 279(Pt 3): 135311, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236948

RESUMEN

Magnetic lignin nanoparticles (MLNs) were prepared by inducing their self-assembly through lignin regeneration in the [N-methyl-2-pyrrolidone][C1-C4 carboxylic acid] ionic liquids ([NMP]ILs), which are low-cost protic ionic liquid. [NMP]ILs are self-assembling solvent that can enhance the adsorption capacity of MLNs to a greater degree than tetrahydrofuran or H2O. Additionally, the anion types of [NMP]IL greatly influence the physiochemical properties of MLNs. The MLNs prepared through self-assembly with [NMP][formate] (MLN/[NMP][For]) exhibited a higher maximum adsorption capacity (134.53 mg/g) than the [NMP]ILs of C2-C4 carboxylate anions. MLN/[NMP][For] demonstrated stable adsorption within a pH range of 6-10 or at high salt concentrations (0.01-0.5 mol/L), retaining over 80 % of its regeneration efficiency after 5 cycles. In addition, MLN/[NMP][For] selectively removed cationic dyes in mixed binary anionic-cationic dye solutions. This work demonstrated the feasibility of preparing magnetic biosorbents with good selectivity and stability though regeneration and by adjusting the anions of ionic liquids.

8.
Carbohydr Polym ; 346: 122601, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245520

RESUMEN

A novel photocatalytic adsorbent, a cellulose nanofibrils based hydrogel incorporating carbon dots and Bi2O3/BiOCOOH (designated as CCHBi), was developed to address lignin pollution. CCHBi exhibited an adsorption capacity of 435.0 mg/g, 8.9 times greater than that of commercial activated carbon. This enhanced adsorption performance was attributed to the 3D porous structure constructed using cellulose nanofibrils (CNs), which increased the specific surface area and provided additional sorption sites. Adsorption and photocatalytic experiments showed that CCHBi had a photocatalytic degradation rate constant of 0.0140 min-1, 3.1 times higher than that of Bi2O3/BiOCOOH. The superior photocatalytic performance of CCHBi was due to the Z-scheme photocatalytic system constructed by carbon dots-loaded cellulose nanofibrils and Bi2O3/BiOCOOH, which facilitated the separation of photoinduced charge carriers. Additionally, the stability of CCHBi was confirmed through consecutive cycles of adsorption and photocatalysis, maintaining a removal efficiency of 85 % after ten cycles. The enhanced stability was due to the 3D porous structure constructed by CNs, which safeguarded the Bi2O3/BiOCOOH. This study validates the potential of CCHBi for high-performance lignin removal and promotes the application of CNs in developing new photocatalytic adsorbents.

9.
Int J Biol Macromol ; 279(Pt 3): 135465, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250990

RESUMEN

Efficient capture of dyes from wastewater is of great importance for environmental remediation. Yet constructing adsorbents with satisfactory adsorption efficiency and low cost remains a major challenge. This work reports a simple and scalable method for the fabrication of functionalized porous pullulan hydrogel adsorbent decorated with ATTM@ZIF-8 for the adsorption of congo red (CR) and malachite green (MG). The embedding of ammonium tetrathiomolybdate (ATTM) into the ZIF-8 nanoclusters offered additional adsorption sites and enlarged the pore size of the resulting ATTM@ZIF-8. The homogeneous dispersion of the nanoparticles in the three-dimensional network of polysaccharide gels prevents their agglomeration and thus improves the affinity for dye molecules. The resulting adsorbent AZP-20 at optimized composite ratios exhibits high activity, selectivity, interference resistance, reusability and cytocompatibility in dye adsorption applications, and possesses high removal rate of dye in real water systems. Batch experiments demonstrated that the adsorption rate of AZP-20 for MG and CR was 1645.28 mg g-1 and 680.33 mg g-1, and would be influenced by pH conditions. Adsorption kinetics followed pseudo-second-order model. Adsorption isotherms followed Langmuir model for MG and Freundlich model for CR. The adsorption of dye molecules primarily relied on electrostatic interaction (MG) and π-π stacking interaction (CR). Conclusively, the prepared AZPs adsorbent illuminated good application prospects in the treatment of complex component dye wastewater.

10.
Environ Res ; 262(Pt 2): 119966, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260722

RESUMEN

The removal of dyes from industrial wastewater is one of the most environmental challenges that should be addressed through sustainable technologies. In this study, a novel green and cost-effective granular from bentonite and bio-wastes of sawdust and corncob (GBSC) was prepared for sustainable treatment of acid orange 7 (AO7) dye wastewater. The d-optimal mixture method was employed to determine the optimum combination of the GBSC in terms of dye adsorption and structure stability. Characterizations of the GBSC were investigated using SEM, XRD, FTIR and BET analyses and compared with bentonite powder (BP), modified bentonite powder (MBP), and granular modified bentonite (GMB). According to the results, a mixture of bentonite 60 wt%, sawdust 20 wt% and corncob 20 wt% at 550 °C yielded the optimal combination of the GBSC which resulted to the highest adsorption capacity 135.22 mg/g, the lowest mass loss 3.1% and maximum crushing strength 12.275 N. The kinetic and isotherm of the adsorption data were fitted well by the pseudo-second-order model and Langmuir isotherm. Our finding suggested a green circular economy model by utilizing agriculture wastes (sawdust and corncob) to synthesize GBSC for sustainable dye wastewater treatment, which offers a cost-effective adsorbent (0.907 $/g) with high regeneration (4 times reusability with 40.5% removal rate) to keep them in circulation for as long as possible.

11.
Animals (Basel) ; 14(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39272353

RESUMEN

Olive oil coproducts and their phenolic extracts have shown beneficial effects when added to the diets of food-producing animals, whereas data on their effects on pets are scarce. The aim of this study was to evaluate the effects of dietary supplementation with olive flour (MOP®) on oxidative blood biomarkers in dogs. Thirty dogs were recruited and divided into two groups. Both groups were fed the same kibble feed twice daily. The treatment group (T) also received canned wet feed supplemented with 11.5 mg/kg of body weight of organic olive flour per day, whereas the control group (C) received the same wet feed without any supplementation. The findings showed that oil-free olive pulp flour supplementation led to a significant decrease in d-ROMs (p < 0.044) in the blood of the T group (from 101.26 to 86.67 U CARR), whereas no significant changes were observed in the C group. An increasing OXY trend was found in the blood of the T group. Polyphenols in olive flour at a dose of 11.5 mg/kg of body weight contributed to lowering the oxidative stress threshold in dogs, reducing the levels of d-ROMs in dogs and leading to increasing trends in the amount of blood antioxidants. The use of olive pulp flour in dog diets has proven to be beneficial for their health and could also reduce the waste associated with olive oil production.

12.
Foods ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39272472

RESUMEN

Removal of polar impurities, such as phospholipids, free fatty acids (FFA), and peroxides, can be challenging during the refining of crude canola oil. Current conventional refining methods are energy-intensive (e.g., hot water washes) and can generate significant waste (e.g., wastewater effluent) and neutral oil loss. This study investigated the joint use of nano-adsorbents and electrostatic field (E-field) treatment as a potential and sustainable alternative in removing these impurities during the oil refining process. Specifically, aluminum oxide (Al2O3) nanoparticles were employed to neutralize FFAs, achieving a 62.4% reduction in acid value while preserving the fatty acid profile of the oil. After refining, E-field treatment was successful in removing the spent nano-adsorbent from solution (up to 72.3% by weight), demonstrating enhanced efficiency compared to conventional methods (e.g., gravitational settling, filtration, and centrifugation). The neutral oil loss using Al2O3 nano-adsorbents was also comparable to conventional refining methods, with a 4.38% (by weight) loss. After E-field treatment, the Al2O3 nano-adsorbent was then calcined to assess reusability. The Al2O3 nano-adsorbent was effectively recycled for three refining cycles. the methods do not use of large amounts of water and generate minimal waste byproducts (e.g., effluent). Nonetheless, while the nano-adsorbents demonstrated promising results in FFA removal, they were less effective in eliminating peroxides and pigments. E-field techniques were also effective in removing spent nano-adsorbent; although, optimization of E-field parameters could further improve its binding capacity. Finally, future studies could potentially focus on the physicochemical modifications of the nano-adsorbent material to enhance their refining capacity and reusability. Overall, this study presents a sustainable alternative or addition to conventional refining methods and lays the groundwork for future research.

13.
J Chromatogr A ; 1736: 465351, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39260149

RESUMEN

On-site extraction plays a significant role in the reliable quantification of strong polar phenoxycarboxylic acid herbicides (PCAs) in aqueous samples. In current study, a new technique for the field sample preparation of PCAs was developed by means of three channels in-tip microextraction device (TCIM). To capture PCAs effectively, an extraction phase based on monolith (EPM) using vinylimidazole and divinylbenzene/ethylene dimethacrylate as monomer and cross-linkers, respectively, was in-situ synthesized in pipette tips. The EPM fabricated at optimal conditions were characterized by a series of techniques and employed as the adsorbent of TCIM for the on-site extraction of PCAs. The adsorption isotherm was studied so as to inspect the extraction behaviors of EPM towards PCAs. Results revealed that the proposed EPM/TCIM presented satisfactory extraction performance towards PCAs through multiple interactions. The enrichment factors and adsorption capacity were 74-277 and 20 mg g-1, respectively. Under the most beneficial extraction parameters, the developed EPM/TCIM was successfully employed to on-site extract PCAs, and then combining with HPLC equipped with diode array detector to monitor trace PCAs in actual waters. The limits of detection (LODs) towards investigated PCAs varied from 0.071 µg/L to 0.30 µg/L. In addition, the accuracy of established approach was inspected with documented method. Compared with existing lab-based sample preparation approaches, the introduced field sample preparation technique exhibits some merits such as avoidance of transporting large volume of water, prevention of analytes loss during sampling procedure, less usage of organic solvent and achievement of satisfactory efficient in sample preparation.

14.
J Hazard Mater ; 480: 135784, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39265394

RESUMEN

Due to dwindling terrestrial uranium resources and escalating ecological pressures, the long-term viability of uranium supply has become a critical concern. The immense uranium reserves in seawater present a potential solution, yet extraction technology faces dual challenges of efficiency and adaptability to complex marine environments. Current interconnected porous adsorbents, despite their high flux properties, are limited by low specific surface area and weak mechanical strength, which constrain their effectiveness. Here, inspired by the unique hierarchical structures of marine organisms, we describe an organic gel adsorbent with supermacroporous and interconnected channels (10 ∼ 100 µm) adorned with "nano-tentacle" structures. This design significantly enhances the specific surface area by 18 times, increasing adsorption sites and imparting antibacterial properties. Notably, this adsorbent maintains structural integrity and superior mechanical strength (1.32 MPa tensile and 2.44 MPa compressive strength) even when fully saturated. During a 23-day trial in natural seawater, a uranium adsorption rate of 0.332 mg g⁻¹ day⁻¹ was achieved. This work offers a pioneering approach for the design and fabrication of hierarchical structured adsorbents, highlighting the immense potential of extracting uranium from seawater for sustainable energy production.

15.
Environ Sci Pollut Res Int ; 31(43): 55462-55474, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39230814

RESUMEN

The study shows that the addition of gadolinium ions has a significant impact on the structure, morphology, and adsorption properties of Ni-Co spinel ferrite that was synthesized by the sol-gel auto-combustion method. The research also indicates that the higher the Gd content, the greater the increase in the lattice parameter, which suggests that Gd3+ ions uniformly replaced the octahedral Fe3+ ions. The morphology and chemical composition of Gd-doped Ni-Co ferrites have been studied using SEM and EDS. Gd adding to the NiCoFe matrix increases the BET surface area by 50% (from 48 to 72 m2/g) and promotes the formation of mesopores with an average radius from 3.9 to 4.9 nm. The pHPZC values of Gd-doped ferrites are in the range of 7.22-7.39, which means that the ferrite surface will acquire a positive charge at natural pH, so this will promote the adsorption of Congo red anionic dye through electrostatic interaction forces. Langmuir, Freundlich, and Dubinin-Radushkevich models were used to explain the mechanism of CR adsorption on the Ni0.5Co0.5GdxFe2-xO4 adsorbent surface. The ionic-covalent parameter has been estimated to describe the surface acid-base properties. Overall, this study highlights the potential of Gd3+ doping as a promising approach for enhancing the adsorption properties of nickel-cobalt ferrites.


Asunto(s)
Cobalto , Compuestos Férricos , Gadolinio , Níquel , Adsorción , Cobalto/química , Gadolinio/química , Níquel/química , Compuestos Férricos/química , Cinética
16.
Artículo en Inglés | MEDLINE | ID: mdl-39340606

RESUMEN

The co-contamination of dyes and heavy metal ions often used as mordants poses potential risks to environment and public health, and is a challenging problem that needs to be solved in water treatment. Meanwhile, improving the solid-liquid separation capability of adsorbents is of great significance for the application of adsorption technology. Herein, amidation modified hollow composite microspheres were prepared using hollow glass microsphere (HGM) as matrix through hydrolysis and condensation of silane coupling agent (A-1100) and subsequent amidation reaction. The material (HGMNE) not only exhibited good adsorption performance for DB86 and Ni2+ but also had stable self-floating capability. The adsorption of DB86 by HGMNE is mainly carried out by the electrostatic interaction between positively charged quaternary amine nitrogen and negatively charged DB86, while the adsorption of Ni2+ is achieved by the carboxyl group in EDTA group through complexation interaction to adsorb Ni2+ to form Ni complex. This research not only is devoted to the utilization of HGMNE to achieve the co-removal of DB86 and Ni2+ and flexible self-floating solid-liquid separation but also verifies the feasibility and applicability of the modification method of introducing organic adsorption functional groups through amidation reaction, so as to expand the preparation path of HGM-based adsorbents.

17.
Nanomaterials (Basel) ; 14(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39330667

RESUMEN

Developing environmentally friendly bulk materials capable of easily and thoroughly removing trace amounts of dye pollutants from water to rapidly obtain clean water has always been a goal pursued by researchers. Herein, a green material with a 3D architecture and with strong underwater rebounding and fatigue resistance ability was prepared by means of the assembly of biopolymer chitosan (CS) and natural caraganate fibers (CKFs) under freezing conditions. The CKFs can randomly and uniformly distribute in the lamellar structure formed during the freezing process of CS and CKFs, playing a role similar to that of "steel bars" in concrete, thus providing longitudinal support for the 3D-architecture material. The 2D layers formed by CS and CKFs as the main basic units can provide the material with a higher strength. The 3D-architecture material can bear the compressive force of a weight underwater for multiple cycles, meeting the requirements for water purification. The underwater compression test shows that the 3D-architecture material can quickly rebound to its original shape after removing the stress. This 3D-architecture material can be used to purify dye-containing water. When its dosage is 3 g/L, the material can remove 99.65% of the Congo Red (CR) in a 50 mg/L dye solution. The adsorption performance of the 3D architecture adsorbent for CR removal in actual water samples (i.e., tap water, seawater) is superior than that of commercial activated carbon. Due to its porous block characteristics, this material can be used for the continuous and efficient treatment of wastewater containing trace amounts of CR dye to obtain pure clean water, meaning that it has great potential for the effective purification of dye wastewater.

18.
Int J Mol Sci ; 25(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39337439

RESUMEN

Metal-organic frameworks (MOFs) are promising materials for processes such as carbon dioxide (CO2) capture or its storage. In this work, the adsorption of CO2 and nitrogen (N2) in Co3(ndc)3(dabco) MOF (ndc: 2,6-naphthalenedicarboxylate; dabco: 1,4-diazabicyclo[2.2.2]octane) is reported for the first time over the temperature range of 273-323 K and up to 35 bar. The adsorption isotherms are successfully described using the Langmuir isotherm model. The heats of adsorption for CO2 and N2, determined through the Clausius-Clapeyron equation, are 20-27 kJ/mol and 10-11 kJ/mol, respectively. The impact of using pressure and/or temperature swings on the CO2 working capacity is evaluated. If a flue gas with 15% CO2 is fed at 6 bar and 303 K and regenerated at 1 bar and 373 K, 1.58 moles of CO2 can be captured per kg of MOF. The analysis of the multicomponent adsorption of typical flue gas streams (15% CO2 balanced with N2), using the ideal adsorbed solution theory (IAST), shows that at 1 bar and 303 K, the CO2/N2 selectivity is 11.5. In summary, this work reports essential data for the design of adsorption-based processes for CO2 capture using a Co3(ndc)3(dabco) MOF, such as pressure swing adsorption (PSA).


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Nitrógeno , Dióxido de Carbono/química , Nitrógeno/química , Estructuras Metalorgánicas/química , Adsorción , Temperatura , Cobalto/química
19.
Environ Sci Pollut Res Int ; 31(39): 51540-51550, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39115731

RESUMEN

The successful adoption and widespread implementation of innovative acid mine drainage treatment and resource recovery methods hinge on their capacity to demonstrate enhanced performance, economic viability, and environmental sustainability compared to conventional approaches. Here, an evaluation of the efficacy of chromium-based metal-organic frameworks and amine-grafted SBA15 materials in adsorbing europium (Eu) from actual mining wastewater was conducted. The adsorbents underwent comprehensive characterization and examination for their affinity for Eu. Cr-MIL-PMIDA and SBA15-NH-PMIDA had a highest Langmuir adsorption capacity of 69 mg/g and 86 mg/g, respectively, for an optimum level of pH 4.8. Preferential adsorption tests followed using real AMD collected at a disused mine in the north of Norway. A comparative study utilizing pH-adjusted real AMD revealed that Cr-MIL-PMIDA (88%) exhibited slightly higher selectivity towards Eu compared to SBA15-NH-PMIDA (81%) in real mining wastewater. While Cr-MIL-PMIDA displays excellent properties for the selective recovery of REEs, practical challenges related to production costs and potential susceptibility to chromium leaching make it less appealing for widespread applications. A cost-benefit analysis was then undertaken to quantify the advantages of employing SBA15-NH-PMIDA material. The study disclosed that 193.2 g of EuCl3 with 99% purity can be recovered by treating 1000 m3 of AMD.


Asunto(s)
Europio , Minería , Adsorción , Europio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Cromo/química , Dióxido de Silicio/química , Estructuras Metalorgánicas/química
20.
J Chromatogr A ; 1734: 465251, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39191184

RESUMEN

In this study, we propose a model for the simulation of the pH-dependent separation of dicarboxylic acids from aqueous solutions using strongly hydrophobic adsorbents. Building upon results of our previous study, where we experimentally investigated the pH-dependent adsorption behavior of the individual acid species of itaconic acid (IA) on a strongly hydrophobic adsorbent using in-line Raman spectroscopy, we utilize a transport-dispersive model as the basis for our simulation model. Instead of considering IA as a single component in our model, we simulated each acid species of IA individually. For this purpose, we expanded the transport-dispersive model with reaction terms in all aqueous phases. The reaction terms include all dissociation reactions of all involved components for each time step and spatial discretization. This model enables the time and spatial dependent simulation of the pH value in the chromatographic column and thus the time and spatial dependent knowledge of each acid species concentration. The consideration of activity coefficients due to high local ionic strength is achieved using the Truesdell-Jones (TdJ) model. The simulation model is successfully validated using experimental data from our previous study and used in a simulation study that demonstrates the potential of the model approach for analyzing associated separation tasks.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Succinatos , Succinatos/química , Concentración de Iones de Hidrógeno , Adsorción , Modelos Químicos , Espectrometría Raman , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA