Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Genes Genomics ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373827

RESUMEN

BACKGROUND: Ginseng (Panax ginseng) is an herb with a long history and a wide range of applications. Ginsenoside is one of the most representative and active ginseng compounds, with various pharmacological effects. Therefore, the development of bioreactors using methyl jasmonate (MeJA) as an inducer for targeted ginsenoside production is of great commercial value. Combined with transcriptomic research tools, screenings to obtain candidate genes involved in ginsenoside biosynthesis are crucial for future discoveries about the molecular mechanism of MeJA-regulated ginsenoside biosynthesis. OBJECTIVE AND METHODS: In our study, the ginsenoside content of ginseng adventitious roots treated with MeJA at different times was analyzed. Transcriptome analysis was performed to investigate the effects of MeJA on changes in ginsenoside content in ginseng adventitious roots. RESULTS: The MeJA could significantly increase changes in the content of pro-ginsenodiol ginsenosides as well as pro-triol ginsenosides Rg3, Re, and Rf in ginseng adventitious roots. Differential gene expression analysis showed that a total of 14,009 differentially expressed genes were obtained from the screening of the present study. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that differentially expressed genes were mainly enriched under GO terms in response to stimuli, metabolic processes, and the regulation of biological processes, with significant annotation to the metabolic terms of terpenoids and polyketides. Two expression modules of genes highly related to ginsenoside biosynthesis were obtained via WGCNA. CONCLUSIONS: Our study provides a reference system for the targeted ginsenoside production using MeJA as an inducer, and also provides genetic and gene resources for subsequently validating genes related to the regulation of ginsenoside biosynthesis using weighted gene co-expression network analysis (WGCNA).

2.
Front Plant Sci ; 15: 1461322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290741

RESUMEN

WOXs are a class of plant-specific transcription factors that play key roles in plant growth and stress responses. However, the mechanism by which WOXs influence adventitious root development in Rosa hybrida remains unclear. In this study, RcWOX gene family in rose was identified and phylogenetically analyzed using bioinformatics analysis. A total of 381 RcWOX gene members were localized on seven chromosomes except of nine members. The main cis-acting elements involved in hormonal, light, developmental, and abiotic stress responses were identified in the promoters of RcWOX genes, suggesting their regulation by these signals. Nine RhWOX genes had significant different expression during rooting process of rose. RhWOX331, RhWOX308, RhWOX318 were positive with the formation of rose roots. RhWOX331 was positively involved in the formation of adventitious root primordia, which gene coding a transcription factor localized in the nucleus. The HOX conserved domain in the protein contributed to the self-activating activity of RhWOX331. We obtained genetically modified Arabidopsis to validate the function of RhWOX331. Overexpression of RhWOX331 gene alleviated the inhibition of root length of A. thaliana primary roots by high concentration of IBA and NPA, and significantly increased the number of lateral roots on the primary roots, as well as the height of A. thaliana plants. Additionally, RhWOX331 promoted adventitious root formation in A. thaliana and mitigated hormonal inhibition by exogenous 6-BA, NPA, and GA3. The RhWOX331 promoter contained cis-acting elements such as ABRE, Box 4 and CGTCA-motif et.al. GUS activity analysis showed that the gene acted at the cotyledon attachment site. Taken together, these studies identified a significant expansion of the RcWOX gene family, inferred roles of certain branch members in adventitious root formation, elucidated the function of RhWOX331 in adventitious root initiation, and laid the foundation for further research on the function of WOX gene family in roses.

3.
Planta ; 260(5): 109, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340535

RESUMEN

MAIN CONCLUSION: MiR171d and SCL6 are induced by the plant hormone auxin. MiR171d negatively regulates the expression of SCL6, thereby regulating the growth and development of plant adventitious roots. Under natural conditions, it is difficult to induce rooting in the process of propagating Acer rubrum L. via branches, which seriously limits its wide application in landscaping construction. In this study, the expression of Ar-miR171d was downregulated and the expression of ArSCL6 was upregulated after 300 mg/L indole-3-butyric acid (IBA) treatment. The transient interaction of Ar-miR171d and ArSCL6 in tobacco cells further confirmed their cleavage activity. Transgenic function verification confirmed that OE-Ar-miR171d inhibited adventitious root (AR) development, while OE-ArSCL6 promoted AR development. Tissue-specific expression verification of the ArSCL6 promoter demonstrated that it was specifically expressed in the plant root and leaf organs. Subcellular localization and transcriptional activation assays revealed that both ArSCL6 and ArbHLH089 were located in the nucleus and exhibited transcriptional activation activity. The interaction between the two was verified by bimolecular fluorescence complementarity (BIFC) experiments. These results help elucidate the regulatory mechanisms of the Ar-miR171d-ArSCL6 module during the propagation of A. rubrum and provide a molecular basis for the rooting of branches.


Asunto(s)
Acer , Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Acer/genética , Acer/crecimiento & desarrollo , Acer/metabolismo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Indoles/farmacología
4.
Plants (Basel) ; 13(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124205

RESUMEN

The aim of this study was to investigate the differences between Castanea sativa Mill. and Castanea crenata Siebold & Zucc. × Castanea sativa Mill. in rooting ability in relation to endogenous levels of auxin, auxin cofactors and inhibitors that influence rooting success. Leafy cuttings of the two commercial cultivars 'Marsol' and 'Maraval' (Castanea crenata × Castanea sativa) and the native accession 'Kozjak' (Castanea sativa) were analyzed. Endogenous indole-3-acetic acid (IAA) concentration was assessed at the beginning of propagation (day 0); in addition, strigolactones, flavonoids, rooting ability and quality were assessed 120 days after. The concentration of endogenous IAA in 'Maraval' (324.34 ± 28.66 ng g-1) and 'Marsol' (251.60 ± 35.44 ng g-1) was significantly higher than in 'Kozjak' (112.87 ± 35.44 ng g-1). The best rooting result was observed with the genotypes 'Maraval' (100.00 ± 0.00%) and 'Marsol' (90.48 ± 6.15%). A significantly lower strigol concentration was observed in the roots of 'Maraval' (75.54 ± 17.93 ng g-1) compared with other genotypes. The total flavonoid concentration in 'Maraval' was significantly higher (2794.99 ± 187.13 µg g-1) than in 'Kozjak' (1057.38 ± 61.05 µg g-1). Our results indicate that the concentration of endogenous IAA has a significant influence on rooting success. The results further indicate that in the case of flavonoids and strigolactones, not only the individual compounds but also their ratio is important for rooting success. Correlation coefficients calculated between analyzed compounds and rooting success point toward specific functions of flavonoids and strigolactones in the rooting of Castanea that need to be functionally analyzed.

5.
Dev Cell ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39043189

RESUMEN

Developmental reprogramming allows for flexibility in growth and adaptation to changing environmental conditions. In plants, wounding events can result in new stem cell niches and lateral organs. Adventitious roots develop from aerial parts of the plant and are regulated by multiple stimuli, including wounding. Here, we find that Arabidopsis thaliana seedlings wounded at the hypocotyl-root junction reprogram certain pericycle cells to produce adventitious roots proximal to the wound site. We have determined that competence for this reprogramming is controlled; basal cells close to the wound site can produce adventitious roots, whereas cells distal from the wound site mostly cannot. We found that altering cytokinin response or indole-3-butyric acid (IBA)-to-(indole-3-acetic acid) IAA conversion resulted in an expanded adventitious root competence zone and delineated the connection between these pathways. Our work highlights the importance of endogenous IBA-derived auxin and its interaction with cytokinin in adventitious root formation and the regenerative properties of plants.

6.
Genes (Basel) ; 15(3)2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540447

RESUMEN

Wounding and exogenous auxin are needed to induce adventitious roots in chestnut microshoots. However, the specific inductive role of wounding has not been characterized in this species. In the present work, two main goals were established: First, we prompted to optimize exogenous auxin treatments to improve the overall health status of the shoots at the end of the rooting cycle. Second, we developed a time-series transcriptomic analysis to compare gene expression in response to wounding alone and wounding plus auxin, focusing on the early events within the first days after treatments. Results suggest that the expression of many genes involved in the rooting process is under direct or indirect control of both stimuli. However, specific levels of expression of relevant genes are only attained when both treatments are applied simultaneously, leading to the successful development of roots. In this sense, we have identified four transcription factors upregulated by auxin (CsLBD16, CsERF113, Cs22D and CsIAA6), with some of them also being induced by wounding. The highest expression levels of these genes occurred when wounding and auxin treatments were applied simultaneously, correlating with the rooting response of the shoots. The results of this work clarify the genetic nature of the wounding response in chestnut, its relation to adventitious rooting, and might be helpful in the development of more specific protocols for the vegetative propagation of this species.


Asunto(s)
Ácidos Indolacéticos , Raíces de Plantas , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica
7.
Nat Prod Res ; : 1-8, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318698

RESUMEN

The scarcity of more effective wild ginseng has severely limited its use, culturing of adventitious roots from wild ginseng were its good substitute. In this study, we found ginsenoside Rf as the special component in adventitious roots extract significantly decreased melanin levels and tyrosinase activity in B16F10 cells and zebrafish, and suppressed the expression of microphthalmia-associated transcription factor and melanogenic enzymes in B16F10 cells. Notably, Rf treatment of B16F10 cells led to reduced cell levels of adenosine cyclic 3', 5'-monophosphate (cAMP), nitric oxide (NO), and guanoside cyclic 3', 5'-monophosphate (cGMP), and reduced activities of adenylate cyclase (AC), protein kinase A (PKA), guanylate cyclase (GC), and protein kinase G (PKG), which suggest Rf anti-melanogenic activity potentially involved inhibition of AC/cAMP/PKA and NO/GC/cGMP/PKG signalling pathway. This work provides experimental basis for skin-lightening effect of wild ginseng adventitious roots and their functional part.

8.
Plant Mol Biol ; 114(1): 9, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315324

RESUMEN

To select poplar clones with excellent adventitious roots development (ARD) and deepen the understanding of its molecular mechanism, a comprehensive evaluation was conducted on 38 Populus germplasm resources with cuttings cultured in the greenhouse. Genetic differences between poplar clones with good ARD and with poor ARD were explored from the perspectives of genomics and transcriptomics. By cluster analysis of the seven adventitious roots (AR) traits, the materials were classified into three clusters, of which cluster I indicated excellent AR developmental capability and promising breeding potential, especially P.×canadensis 'Guariento', P. 'jingtong1', P. deltoides 'Zhongcheng5', P. deltoides 'Zhongcheng2'. At the genomic level, the cross-population composite likelihood ratio (XP-CLR) analysis identified 1944 positive selection regions related to ARD, and variation detection analysis identified 3426 specific SNPs and 687 specific Indels in the clones with good ARD, 3212 specific SNPs and 583 specific Indels in the clones with poor ARD, respectively. Through XP-CLR, variation detection, and weighted gene co-expression network analysis based on transcriptome data, eight major putative genes associated with poplar ARD were primary identified, and a co-expression network of eight genes was constructed, it was discovered that CSD1 and WRKY6 may be important in the ARD. Subsequently, we confirmed that SWEET17 had a non-synonymous mutation at the site of 928,404 in the clones with poor ARD, resulting in an alteration of the amino acid. After exploring phenotypic differences and the genetic variation of adventitious roots development in different poplar clones, this study provides valuable reference information for future poplar breeding and genetic improvement.


Asunto(s)
Populus , Populus/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Fenotipo , Raíces de Plantas/genética
9.
Plant J ; 118(3): 879-891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271219

RESUMEN

As sessile organisms, plants experience variable environments and encounter diverse stresses during their growth and development. Adventitious rooting, orchestrated by multiple coordinated signaling pathways, represents an adaptive strategy evolved by plants to adapt to cope with changing environmental conditions. This study uncovered the role of the miR159a-PeMYB33 module in the formation of adventitious roots (ARs) synergistically with abscisic acid (ABA) signaling in poplar. Overexpression of miR159a increased the number of ARs and plant height while reducing sensitivity to ABA in transgenic plants. In contrast, inhibition of miR159a (using Short Tandem Target Mimic) or overexpression of PeMYB33 decreased the number of ARs in transgenic plants. Additionally, miR159a targets and cleaves transcripts of PeMYB33 using degradome analysis, which was further confirmed by a transient expression experiment of poplar protoplast. We show the miR159a-PeMYB33 module controls ARs development in poplar through ABA signaling. In particular, we demonstrated that miR159a promotes the expression of genes in the ABA signaling pathway. The findings from this study shed light on the intricate regulatory mechanisms governing the development of ARs in poplar plants. The miR159a-PeMYB33 module, in conjunction with ABA signaling, plays a crucial role in modulating AR formation and subsequent plant growth.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Populus , Transducción de Señal , Ácido Abscísico/metabolismo , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
10.
BMC Plant Biol ; 24(1): 6, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163891

RESUMEN

Unpredictable rainfall frequently results in excess moisture, which is detrimental to the landscape because it interferes with the genetic, morphological, and physiological processes of plants, even though the majority of urban landscapes frequently experience moisture shortages. A study was conducted to analyze the effects of a 36-day waterlogging phase and a subsequent 12-day recovery period on the morpho-physiological responses of 17 Crassulaceae species with the goal of identifying those which were more tolerant of the conditions. Results revealed that waterlogging stress has an impact on all morpho-physiological parameters. Sensitive materials (S7, Hylotelephium telephium 'Purple Emperor' and S15, S. sexangulare) showed severe ornamental quality damage, mortality, decreases in total dry biomass, root-shoot ratio, and chlorophyll content, as well as higher MDA concentrations. Lower reductions in these parameters, along with improved antioxidant enzyme activities and greater recovery capabilities after drainage, were observed in the most tolerant materials S2 (H. spectabile 'Brilliant'), S3 (H. spectabile 'Carl'), and S5 (H. telephium 'Autumn Joy'). Furthermore, with the exception of early death materials (S7 and S15), all materials showed varying intensities of adventitious root formation in response to waterlogging. The 17 species were divided into 4 clusters based on the comprehensive evaluation value. The first group included S1-S3, S5-S6, S8-S12, which were waterlogged tolerant with the highest values (0.63-0.82). S14 belongs to the intermediate waterlogging tolerant. S4, S13, S16, and S17 were clustered into the low waterlogging-tolerant group. S7 and S15 were the most susceptible to waterlogging. The survival and success of Crassulaceae species (especially, the first and second cluster), throughout this prolonged period of waterlogging (36 days) and recovery were attributed to a combination of physiological and morphological responses, indicating that they are an appealing species for the creation of rain gardens or obstructed drainage locations.


Asunto(s)
Clorofila , Estaciones del Año , Biomasa
11.
BMC Plant Biol ; 24(1): 17, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163907

RESUMEN

Adventitious root formation is a key step in vegetative propagation via cuttings. It is crucial for establishing birch plantations and preserve birch varieties. Although previous studies have highlighted role of WOX11 in controlling adventitious root formation, no such study has been conducted in birch. Understanding the mechanism of adventitious root formation is essential for improvement of rooting or survival rate using stem cuttings in birch. In this study, we cloned BpWOX11 and produced BpWOX11 overexpression (OE) transgenic lines using the Agrobacterium-mediated plant transformation. OE lines exhibited early initiated adventitious root formation, leading to increase the rooting rate of stem cuttings plants. RNA sequencing analysis revealed that OE lines induced the gene expression related to expansin and cell division pathway, as well as defense and stress response genes. These may be important factors for the BpWOX11 gene to promote adventitious root formation in birch cuttings. The results of this study will help to further understand the molecular mechanisms controlling the formation of adventitious roots in birch.


Asunto(s)
Betula , Genes de Plantas , Raíces de Plantas , Raíces de Plantas/crecimiento & desarrollo , Betula/genética , Betula/crecimiento & desarrollo
12.
Biology (Basel) ; 12(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38132301

RESUMEN

A WUSCHEL-related homeobox (WOX) gene family has been implicated in promoting vegetative organs to embryonic transition and maintaining plant embryonic stem cell identity. Using genome-wide analysis, we identified 17 candidates, WOX genes in ramie (Boehmeria nivea). The genes (BnWOX) showed highly conserved homeodomain regions typical of WOX. Based on phylogenetic analysis, they were classified into three distinct groups: modern, intermediate, and ancient clades. The genes displayed 65% and 35% collinearities with their Arabidopsis thaliana and Oryza sativa ortholog, respectively, and exhibited similar motifs, suggesting similar functions. Furthermore, four segmental duplications (BnWOX10/14, BnWOX13A/13B, BnWOX9A/9B, and BnWOX6A/Maker00021031) and a tandem-duplicated pair (BnWOX5/7) among the putative ramie WOX genes were obtained, suggesting that whole-genome duplication (WGD) played a role in WOX gene expansion. Expression profiling analysis of the genes in the bud, leaf, stem, and root of the stem cuttings revealed higher expression levels of BnWOX10 and BnWOX14 in the stem and root and lower in the leaf consistent with the qRT-PCR analysis, suggesting their direct roles in ramie root formation. Analysis of the rooting characteristics and expression in the stem cuttings of sixty-seven different ramie genetic resources showed a possible involvement of BnWOX14 in the adventitious rooting of ramie. Thus, this study provides valuable information on ramie WOX genes and lays the foundation for further research.

13.
Planta ; 259(1): 9, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030751

RESUMEN

MAIN CONCLUSION: Adaptive traits in rice responding to flooding, a compound stress, are associated with morpho-anatomical and physiological changes which are regulated at the genetic level. Therefore, understanding submergence stress tolerance in rice will help development of adapted cultivars that can help mitigate agricultural losses. Rice is an important dietary component of daily human consumption and is cultivated as a staple crop worldwide. Flooding is a compound stress which imposes significant financial losses to farmers. Flood-affected rainfed rice ecosystems led to the development of various adaptive traits in different cultivars for their optimal growth and survival. Some cultivars can tolerate hypoxia by temporarily arresting elongation and conserving their energy sources, which they utilize to regrow after the stress conditions subside. However, few other cultivars rapidly elongate to escape hypoxia using carbohydrate resources. These contrasting characters are regulated at the genetic level through different quantitative trait loci that contain ERF transcription factors (TFs), Submergence and Snorkels. TFs can simultaneously activate the transcription of various genes involved in stress and development responses. These TFs are of prime importance because the introgressed and near-isogenic lines showed promising results with increased submergence tolerance without affecting yield or quality. However, the entire landscape of submergence tolerance is not entirely depicted, and further exploration in the field is necessary to understand the mechanism in rice completely. Therefore, this review will highlight the significant adaptive traits observed in flooded rice varieties and how they are regulated mechanistically.


Asunto(s)
Oryza , Adaptación Fisiológica/genética , Ecosistema , Hipoxia/genética , Oryza/fisiología , Fenotipo , Sitios de Carácter Cuantitativo
14.
Plants (Basel) ; 12(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37895985

RESUMEN

Allochrusa gypsophiloides is a rare Central Asian species, a super-producer of triterpene saponins with pharmacological and technical value. In this work, a comparative evaluation of the in vitro culture of adventitious roots (ARs), in vitro adventitious microshoots (ASs), natural roots and aboveground parts of wild plants from Kazakhstan to define the total saponin (TS), phenol (TP) and flavonoid (TF) content, as well as antioxidant (AOA) and antimicrobial activity, is presented for the first time. In the AR culture, growth index (GI), TS, TP and TF were evaluated on days 25, 45 and 60 of cultivation on ½ MS medium without (control) and with auxin application. It was found out that TS and TF were higher in the in vitro AR culture. The amount of TP and TF are higher in the aerial part of vegetative plants with maximum AOA. The concentration of the extract required to inhibit 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical formation (ICO50) in extracts from natural material negatively correlated with TS, TP, TF and in the in vitro AR culture with TF. Control extracts from the in vitro AR culture with high TS levels showed growth-inhibitory activity against S. thermophillus, S. cerevisiae and C. albicans. The influence shares of medium composition factor, cultivation duration factor and their interaction with GI, TS, TP and TF were determined. The in vitro AR culture is promising for obtaining triterpene saponins TSR with high antibacterial and antifungal activity, and the in vitro ASs culture-for shoot multiplication with antioxidant properties.

15.
Bot Stud ; 64(1): 26, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736799

RESUMEN

BACKGROUND: The climbing strategies of lianas and herbaceous vines influence climber competition abilities and survival. The aim of this study was to investigate the climbing strategies of each plant species and observe their organs of origin. RESULTS: The results showed that all Taiwan climbers were approximately 555 species, accounting for 11% of the native flora. Among the 555 climbers, the twining stem type was the most common, with a total of 255 species (46%), the remaining climbing methods accounted for 300 species. Approximately twenty one climbing methods, including nine combination types, were exhibited, of which the most common type was the twining stem, followed by simple scrambling and twining tendrils. Most species of Fabaceae and Apocynaceae were twining stems in dextrorse, excluding Wisteriopsis reticulata and Alyxia taiwanensis, which were in sinistrorse. The prehensile branch of Fissistigma genus, Ventilago genus, and Dalbergia benthamii, originated from second-order or modified stems. In the simple scrambling type, some climbers were covered spines and prickles to attach the host, and the others were clinging to the supports or creeping on the ground without speculation. The hooks or grapnels of the genus Uncaria are derived from the branches, and a pair of curved hooks or a spine of Artabotrys hexapetalus are originated from the inflorescence to tightly attach to a host. The Piper genus use adhesive roots to climb their hosts. Among the genus Trichosanthes, only Trichosanthes homophylla exhibits a combination of twining modified shoots and adhesive roots. Gentianales includes four families with seven climbing mechanisms, while Fabales includes only Fabaceae, which presents six climbing methods. CONCLUSIONS: The twining tendrils had nine organs of origin in Taiwan climber, that these opinions of originated organs might be available to the studies of convergent evolution. The data presented herein provide crucial basic information of the climber habits types and origin structures, which are available for terms standardization to improve field investigation. The terminologies would aid in the establishment of climber habits as commonly taxon-specific and the combination of two climber habits could be a characteristic of taxonomic value.

16.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569257

RESUMEN

The cuttage rooting method for Acer species is difficult to achieve a good efficacy as trees maintain good characteristics at the rejuvenation stage, thus improving the rooting of Acer species. The addition of exogenous hormones and rejuvenation can improve the rooting effect of cuttings; however, the specific regulatory mechanism is still unclear. Here, Acer mono Maxim rejuvenation and non-rejuvenation cuttings were used as test subjects, to investigate the effects of exogenous hormones on the activities of endogenous hormones and antioxidant enzymes in the rooting process of young cuttings. The results showed that exogenous growth-regulating substances significantly improved the rooting rate of A. mono. Exogenous hormones naphthylacetic acid (NAA) + indolebutyric acid (IBA) increased the initial levels of the endogenous hormones, indoleacetic acid (IAA) and abscisic acid (ABA), and the enzyme activities of peroxidase (POD) and polyphenol oxidase (PPO). Rejuvenation treatment prolonged the time of increase in ABA content and indoleacetic acid oxidase (IAAO) activity at the root primordium induction stage, while increasing trans-zeatin riboside (ZR) content and decreasing POD enzyme activity in cuttings. These results demonstrate that A. mono cuttings can achieve the purpose of improving the rooting rate by adding the exogenous hormone (NAA + IBA), which is closely related to the changes of endogenous hormone content and enzyme activity, and these changes of A. mono rejuvenation cuttings are different from non-rejuvenation cuttings.


Asunto(s)
Acer , Reguladores del Crecimiento de las Plantas , Humanos , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas , Ácidos Indolacéticos/farmacología , Ácido Abscísico/farmacología , Oxidorreductasas , Peroxidasas , Peroxidasa/farmacología , Hormonas/farmacología
17.
Crit Rev Biotechnol ; : 1-23, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500186

RESUMEN

In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.

18.
PeerJ ; 11: e15448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483980

RESUMEN

Background: We developed a novel, non-destructive, expandable, ebb and flow soilless phenotyping system to deliver a capable way to study early root system architectural traits in stem-derived adventitious roots of sweetpotato (Ipomoea batatas L.). The platform was designed to accommodate up to 12 stems in a relatively small area for root screening. This platform was designed with inexpensive materials and equipped with an automatic watering system. Methods: To test this platform, we designed a screening experiment for root traits using two contrasting sweetpotato genotypes, 'Covington' and 'NC10-275'. We monitored and imaged root growth, architecture, and branching patterns every five days up to 20 days. Results: We observed significant differences in both architectural and morphological root traits for both genotypes tested. After 10 days, root length, surface root area, and root volume were higher in 'NC10-275' compared to 'Covington'. However, average root diameter and root branching density were higher in 'Covington'. Conclusion: These results validated the effective and efficient use of this novel root phenotyping platforming for screening root traits in early stem-derived adventitious roots. This platform allowed for monitoring and 2D imaging of root growth over time with minimal disturbance and no destructive root sampling. This platform can be easily tailored for abiotic stress experiments, and permit root growth mapping and temporal and dynamic root measurements of primary and secondary adventitious roots. This phenotyping platform can be a suitable tool for examining root system architecture and traits of clonally propagated material for a large set of replicates in a relatively small space.


Asunto(s)
Ipomoea batatas , Ipomoea batatas/genética , Raíces de Plantas/genética , Fenotipo , Genotipo
19.
Plant Signal Behav ; 18(1): 2218670, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37288791

RESUMEN

Adventitious roots (ARs), developing from non-root tissue, play an important role in some plants. Here, the molecular mechanism of AR differentiation in Lotus japonicus L. (L. japonicus) with the transformed chicken interferon alpha gene (ChIFNα) encoding cytokine was studied. ChIFNα transgenic plants (TP) were identified by GUS staining, PCR, RT-PCR, and ELISA. Up to 0.175 µg/kg rChIFNα was detected in TP2 lines. Expressing rChIFNα promotes AR development by producing longer roots than controls. We found that the effect was enhanced with the auxin precursor IBA treatment in TP. IAA contents, POD, and PPO activities associated with auxin regulation were higher than wild type (WT) in TP and exogenous ChIFNα treatment plants. Transcriptome analysis revealed 48 auxin-related differentially expressed genes (DEGs) (FDR < 0.05), which expression levels were verified by RT-qPCR analysis. GO enrichment analysis of DEGs also highlighted the auxin pathway. Further analysis found that ChIFNα significantly enhanced auxin synthesis and signaling mainly with up-regulated genes of ALDH, and GH3. Our study reveals that ChIFNα can promote plant AR development by mediating auxin regulation. The findings help explore the role of ChIFNα cytokines and expand animal gene sources for the molecular breeding of growth regulation of forage plants.


Asunto(s)
Ácidos Indolacéticos , Lotus , Animales , Ácidos Indolacéticos/metabolismo , Lotus/genética , Lotus/metabolismo , Interferón-alfa/genética , Interferón-alfa/metabolismo , Pollos/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
20.
Mycologia ; 115(4): 470-483, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37262388

RESUMEN

Canopy soils occur on tree branches throughout the temperate rainforests of the Pacific Northwest Coast and are recognized as a defining characteristic of these ecosystems. Certain tree species extend adventitious roots into these canopy soil environments. Yet, research on adventitious root-associated fungi remains limited. Our study used microscopy to compare fungal colonization intensity between canopy and forest floor roots of old-growth bigleaf maple (Acer macrophyllum) trees. Subsequently, two high-throughput sequencing platforms were used to explore the spatial and seasonal variation of root-associated fungi between the two soil environments over one year. We found that canopy and forest floor roots had similar colonization intensity and were associating with a diversity of arbuscular mycorrhizal fungi and other potential symbionts, many of which were resolved to species level. Soil environment and seasonality affected root-associated fungal community composition, and several fungal species were indicative of the canopy soil environment. In Washington State's (USA) temperate old-growth rainforests, these canopy soil environments host a unique suite of root-associated fungi. The presence of arbuscular mycorrhizae provides further evidence that adventitious roots form fungal associations to exploit canopy soils for resources, and there may be novel relationships forming with other fungi. These soils may be providing a redundancy compartment (i.e., "nutrient reserve"), imparting a resiliency to disturbances for certain old-growth trees.


Asunto(s)
Acer , Micorrizas , Árboles/microbiología , Ecosistema , Raíces de Plantas/microbiología , Suelo , Microbiología del Suelo , Hongos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA