Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Br J Pharmacol ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853468

RESUMEN

BACKGROUND AND PURPOSE: Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH: The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS: The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS: Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.

2.
Biol Pharm Bull ; 47(6): 1119-1122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38839363

RESUMEN

DNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations. However, it remains unclear how NO-induced DNA hypomethylation regulates gene expression and whether this mechanism is maintained in normal cells and triggers disease-related changes. To address these issues, we focused on carbonic anhydrase 9 (CA9), which is upregulated under nitrosative stress in cancer cells. We pharmacologically evaluated its regulatory mechanisms using human small airway epithelial cells (SAECs) and DBIC. We demonstrated that nitrosative stress promotes the recruitment of hypoxia-inducible factor 1 alpha to the CA9 promoter region and epigenetically induces CA9 expression in SAECs. Our results suggest that nitrosative stress is a key epigenetic regulator that may cause diseases by altering normal cell function.


Asunto(s)
Anhidrasa Carbónica IX , Metilación de ADN , Epigénesis Genética , Células Epiteliales , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Células Epiteliales/metabolismo , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica IX/genética , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Regiones Promotoras Genéticas , Células Cultivadas
3.
Stem Cell Reports ; 19(4): 545-561, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38552631

RESUMEN

The emergence of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) variants necessitated a rapid evaluation system for their pathogenesis. Lung epithelial cells are their entry points; however, in addition to their limited source, the culture of human alveolar epithelial cells is especially complicated. Induced pluripotent stem cells (iPSCs) are an alternative source of human primary stem cells. Here, we report a model for distinguishing SARS-CoV-2 variants at high resolution, using separately induced iPSC-derived alveolar and airway cells in micro-patterned culture plates. The position-specific signals induced the apical-out alveolar type 2 and multiciliated airway cells at the periphery and center of the colonies, respectively. The infection studies in each lineage enabled profiling of the pathogenesis of SARS-CoV-2 variants: infection efficiency, tropism to alveolar and airway lineages, and their responses. These results indicate that this culture system is suitable for predicting the pathogenesis of emergent SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , SARS-CoV-2/fisiología , Pulmón
4.
Zhen Ci Yan Jiu ; 49(1): 23-29, 2024 Jan 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38239135

RESUMEN

OBJECTIVES: To observe the effect of catgut embedding at "Feishu"(BL13), "Dingchuan" (EX-B1) and "Danzhong" (CV17) on expression of phosphorylated p38 mitogen activated protein kinase (p-p38 MAPK), interleukin-4 (IL-4), interferon-γ (IFN-γ) and changes of airway epithelial cells (AEC) in the lung tissue of bronchial asthma (BA) rats, so as to explore its mechanisms underlying improvement of BA. METHODS: Forty male Wistar rats were randomly and equally divided into blank control, model, dexamethasone (DEX) and catgut embedding groups. The BA model was established by intraperitoneal injection of suspension of ovalbumin and aluminum hydroxide. Rats of the DEX group received intraperitoneal injection of DEX (1.5 mg/kg), once daily for 2 weeks, and those of the catgut embedding group received catgut embedding at BL13, EX-B1 and CV17 only one time. The rats' sneezing times per miniute in each group were recorded. H.E. staining was used to observe the histopathological changes of the lung tissue under light microscope. A transmission electron microscope (TEM) was used to observe the ultrastructural changes of AEC in the lung tissue, including the thickness of bronchial wall and bronchial smooth muscle by using an image analysis software. The protein expressions of p-p38 MAPK, IL-4 and INF-γ in the lung tissue were determined using Western blot. RESULTS: Morphological observation revealed that in the model group, light microscope showed deformed and swollen bronchial tube wall with increased folds and thickened bronchial smooth muscle;and TEM showed a large number of autophagy vesicles containing swollen and deformed organelles in the AEC, and apparent reduction of intracellular mitochondria, these situations were obviously milder in both DEX and catgut embedding groups. Compared with the blank control group, the sneezing times, thickness of bronchial wall and bronchial smooth muscle in the model group were significantly increased (P<0.01), and the expressions of p-p38 MAPK and IL-4 in lung tissue were significantly increased (P<0.01), while the expression of IFN-γ was significantly decreased (P<0.01) in the model group. In comparison with the model group, the sneezing times, thickness of bronchial wall and bronchial smooth muscle, protein expressions of p-p38 MAPK and IL-4 were significantly decreased (P<0.01), while the expression of IFN-γ was obviously increased (P<0.01) in both the DEX and catgut embedding groups. CONCLUSIONS: Acupoint catgut embedding can reduce the expression of IL-4 and increase the expression of IFN-γ by inhibiting p38 MAPK signal pathway of lung tissues in BA rats, which may contribute to its effect in alleviating the degree of airway epithelial cells damage.


Asunto(s)
Asma , Interleucina-4 , Ratas , Masculino , Animales , Ratas Wistar , Interleucina-4/genética , Catgut , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Puntos de Acupuntura , Estornudo , Pulmón , Asma/genética , Asma/terapia
5.
Tissue Eng Part A ; 30(3-4): 144-153, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37950719

RESUMEN

The airway epithelia (AE) play a role in the clearance of foreign substances through ciliary motility and mucus secreted. We developed an artificial trachea that is made of collagen sponges and polypropylene mesh for the regeneration of the tracheal defect, and it was used for a clinical study. Then, a model in which the luminal surface of an artificial trachea was covered with a human-induced pluripotent stem cell-derived AE (hiPSC-AE) was transplanted into the tracheal defect of nude rats to promote epithelialization. In the future, this model was expected to be applied to research on infectious diseases and drug discovery as a trachea-humanized rat model. However, at present, sufficient engraftment has not been achieved to evaluate functional recovery in transplanted cells. Therefore, this study focused on immunosuppression in recipient rats. Nude rats lack T cell function and are widely used for transplantation experiments; however, more severe immunosuppressed recipients are preferred for xenotransplantation. Several strains of immunodeficient rats were created as rats that exhibit more severe immunodeficiency until now. In this study, to establish a trachea-humanized rat model in which human AE function can be analyzed to improve engraftment efficiency, engraftment efficiency in nude rats and X-linked severe combined immunodeficiency (X-SCID) rats following hiPSC-AE transplantation was compared. In the analysis of the proportion of engrafted cells in total cells at the graft site, the engraftment efficiency of epithelial cells tended to be high in X-SCID rats, although no statistical difference was found between the two groups, whereas the engraftment efficiency of mesenchymal cells was higher in X-SCID rats. Furthermore, the number of immune cells that accumulated in the grafts showed that a pan T cell marker, that is, CD3-positive cells, did not differ between the two strains; however, CD45-positive cells and major histocompatibility complex (MHC) class II-positive cells significantly decreased in X-SCID rats. These results indicate that X-SCID rats are more useful for the transplantation of hiPSC-AE into the tracheae to generate trachea-humanized rat models.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades por Inmunodeficiencia Combinada Ligada al Cromosoma X , Humanos , Ratas , Animales , Ratones , Ratas Desnudas , Linfocitos T , Tráquea , Ratones SCID
6.
mSphere ; 8(5): e0031423, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37578262

RESUMEN

During the initiation of invasive aspergillosis, inhaled Aspergillus fumigatus conidia are deposited on the epithelial cells lining the bronchi, terminal bronchioles, and alveoli. While the interactions of A. fumigatus with bronchial and type II alveolar cell lines have been investigated in vitro, little is known about the interactions of this fungus with terminal bronchiolar epithelial cells. Using the HSAEC1-KT human small airway epithelial (HSAE) cell line, we developed an in vitro model to study the interaction of two strains of A. fumigatus with these cells. We then compared the interactions of A. fumigatus with the A549 type II alveolar epithelial cell line and the HSAE cell line. We found that A. fumigatus conidia were poorly endocytosed by A549 cells, but avidly endocytosed by HSAE cells. A. fumigatus germlings invaded both cell types by induced endocytosis, but not by active penetration. A549 cell endocytosis of A. fumigatus was independent of fungal viability, more dependent on host microfilaments than microtubules, and induced by A. fumigatus CalA interacting with host cell integrin α5ß1. By contrast, HSAE cell endocytosis required fungal viability, was more dependent on microtubules than microfilaments, and did not require CalA or integrin α5ß1. HSAE cells were more susceptible than A549 cells to damage caused by direct contact with killed A. fumigatus germlings and by secreted fungal products. In response to A. fumigatus infection, A549 cells secreted a broader profile of cytokines and chemokines than HSAE cells. Taken together, these results demonstrate that studies of HSAE cells provide complementary data to A549 cells and thus represent a useful model for probing the interactions of A. fumigatus with bronchiolar epithelial cells in vitro. Importance During the initiation of invasive aspergillosis, Aspergillus fumigatus interacts with the epithelial cells that line the airways and alveoli. Previous studies of A. fumigatus-epithelial cell interactions in vitro used either large airway epithelial cell lines or the A549 type II alveolar epithelial cell line; the interactions of fungi with terminal bronchiolar epithelial cells were not investigated. Using the TERT-immortalized human small airway epithelial HSAEC1-KT (HSAE) cell line, we developed an in vitro model of the interactions of A. fumigatus with bronchiolar epithelial cells. We discovered that A. fumigatus invades and damages A549 and HSAE cell lines by distinct mechanisms. Also, the proinflammatory responses of the cell lines to A. fumigatus are different. These results provide insight into how A. fumigatus interacts with different types of epithelial cells during invasive aspergillosis and demonstrate that HSAE cells are useful in vitro model for investigating the interactions of this fungus with bronchiolar epithelial cells.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/metabolismo , Integrina alfa5beta1/metabolismo , Células Epiteliales/microbiología , Pulmón/microbiología , Línea Celular
7.
Nutrients ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37571300

RESUMEN

Unripe Rubus occidentalis (uRO) contains various natural polyphenols with beneficial physiological activities and is particularly rich in ellagic acid (EA). EA has ameliorated type 2 inflammation and airway hyperresponsiveness in animal models of eosinophilic asthma. EA is metabolized by the gut microbiota to urolithin A (UA), which exhibits anti-inflammatory properties. However, it remains unclear whether uRO, EA, and UA reduce inflammatory responses and oxidative stress in respiratory epithelial cells and neutrophils. In this study, inflammation was induced in A549 (human lung epithelial cells) and dHL-60 cells (neutrophil-like cells differentiated from human promyelocytic leukemia HL-60 cells) and treated with various concentrations of water extract of uRO (uRO-w), EA, and UA. EA, uRO-w and UA suppressed the inflammatory cytokine and chemokine levels and reduced the expression of matrix metalloproteinase-9 in A549 cells stimulated with IL-1ß. As a result of analyzing the mechanism by which these inflammatory molecules are expressed, it was found that EA, uRO-w, and UA regulated corticosteroid-sensitive mitogen activated protein kinase, nuclear factor κB, and corticosteroid-insensitive AKT. In addition, uRO-w, EA, and UA significantly reduced reactive oxygen species levels in phorbol 12-myristate 13-acetate-stimulated dHL-60 cells and inhibited neutrophil extracellular trap formation. Therefore, our results suggest that uRO-w, EA, and UA are potential therapeutic agents for preventing and treating inflammatory respiratory diseases.


Asunto(s)
Ácido Elágico , Rubus , Animales , Humanos , Células HL-60 , Ácido Elágico/farmacología , Rubus/metabolismo , Células A549 , Inflamación/tratamiento farmacológico
8.
Front Mol Biosci ; 10: 1148501, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325471

RESUMEN

Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 µA/cm2) and not enhanced with ETI (5.73 ± 0.48 µA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.

9.
Lung ; 201(3): 287-295, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37261529

RESUMEN

INTRODUCTION: Airway epithelial mitochondrial injury is an important pathogenesis of chronic obstructive pulmonary disease (COPD). Cyclophilin D (CypD) is a component of mitochondrial permeability transition pore and related to mitochondrial damage. However, the role of CypD in airway epithelial mitochondrial injury and COPD pathogenesis remains unclear. METHODS: CypD expression in human airway epithelium was determined by immunohistochemistry, and mitochondrial structure of airway epithelial cell was observed under the transmission electron microscopy. The expression of CypD signaling pathway in cigarette smoke extract (CSE)-treated airway epithelial cells was measured by real-time PCR and Western-blot. CSE-induced damage of airway epithelial cell and mitochondria was further studied. RESULTS: Immunohistochemistry and transmission electron microscopy analysis revealed that CypD expression in airway epithelium was significantly increased associated with notable airway epithelial mitochondrial structure damage in the patients with COPD. The mRNA and protein expression of CypD was significantly increased in concentration- and time-dependent manners when airway epithelial cells were treated with CSE. CypD siRNA pretreatment significantly suppressed the increases of CypD and Bax expression, and reduced the decline of Bcl-2 expression in 7.5% CSE-treated airway epithelial cells. Furthermore, CypD silencing significantly attenuated mitochondrial damage and cell apoptosis, and increased cell viability when airway epithelial cells were stimulated with 7.5% CSE. CONCLUSION: These data suggest that CypD signaling pathway is involved in the pathogenesis of COPD and provide a potential therapeutic target for COPD.


Asunto(s)
Bronquios , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Peptidil-Prolil Isomerasa F/metabolismo , Bronquios/patología , Transducción de Señal , Nicotiana/metabolismo , Células Epiteliales/metabolismo , Mitocondrias
10.
J Biol Chem ; 299(6): 104820, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37187291

RESUMEN

Patients with cystic fibrosis (CF) have decreased severity of severe acute respiratory syndrome-like coronavirus-2 (SARS-CoV-2) infections, but the underlying cause is unknown. Patients with CF have high levels of neutrophil elastase (NE) in the airway. We examined whether respiratory epithelial angiotensin-converting enzyme 2 (ACE-2), the receptor for the SARS-CoV-2 spike protein, is a proteolytic target of NE. Soluble ACE-2 levels were quantified by ELISA in airway secretions and serum from patients with and without CF, the association between soluble ACE-2 and NE activity levels was evaluated in CF sputum. We determined that NE activity was directly correlated with increased ACE-2 in CF sputum. Additionally, primary human bronchial epithelial (HBE) cells, exposed to NE or control vehicle, were evaluated by Western analysis for the release of cleaved ACE-2 ectodomain fragment into conditioned media, flow cytometry for the loss of cell surface ACE-2, its impact on SARS-CoV-2 spike protein binding. We found that NE treatment released ACE-2 ectodomain fragment from HBE and decreased spike protein binding to HBE. Furthermore, we performed NE treatment of recombinant ACE-2-Fc-tagged protein in vitro to assess whether NE was sufficient to cleave recombinant ACE-2-Fc protein. Proteomic analysis identified specific NE cleavage sites in the ACE-2 ectodomain that would result in loss of the putative N-terminal spike-binding domain. Collectively, data support that NE plays a disruptive role in SARS-CoV-2 infection by catalyzing ACE-2 ectodomain shedding from the airway epithelia. This mechanism may reduce SARS-CoV-2 virus binding to respiratory epithelial cells and decrease the severity of COVID19 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Fibrosis Quística , Elastasa de Leucocito , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , Fibrosis Quística/metabolismo , Elastasa de Leucocito/metabolismo , Unión Proteica , Proteómica , Mucosa Respiratoria/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
11.
J Leukoc Biol ; 113(2): 216-227, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822178

RESUMEN

Airway epithelial cells (AECs) are the first cell barrier of the respiratory system against external stimuli that play a critical role in the development of asthma. It is known that AECs play a key role in asthma susceptibility and severity. ITGB4 is a downregulated adhesion molecule in the airway epithelia of asthma patients, which was involved in the exaggerated lung inflammation after allergy stimulation. Toll-like receptor 4 (TLR4) in AECs has also been shown to play a crucial role in the development of lung inflammation in asthma patients. However, the specific intrinsic regulatory mechanism of TLR4 in AECs are still obscure. In this article, we demonstrated that ITGB4 deficiency in AECs enhances HDM-induced airway inflammation through hyperactivation of the TLR4 signaling pathway, which is mediated by inhibition of FYN phosphorylation. Moreover, TLR4-antagonist treatment or blockade of FYN can inhibit or exaggerate lung inflammation in HDM-stressed ITGB4-deficient mice, separately. Together, these results demonstrated that ITGB4 deficiency in AECs enhances HDM-induced lung inflammatory response through the ITGB4-FYN-TLR4 axis, which may provide new therapeutic approaches for the management of lung inflammation in asthma.


Asunto(s)
Asma , Integrina beta4 , Neumonía , Receptor Toll-Like 4 , Animales , Ratones , Asma/metabolismo , Modelos Animales de Enfermedad , Inflamación , Pulmón/metabolismo , Pyroglyphidae , Transducción de Señal , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo , Integrina beta4/metabolismo
12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-995272

RESUMEN

Objective:To isolate and culture WU polyomavirus (WUPyV), and to analyze the genome-wide evolutionary patterns, homology and population dynamics.Methods:Real-time quantitative PCR was used to detect the nasopharyngeal aspirate samples of hospitalized children with respiratory tract infection in Beijing Friendship Hospital during 2020 to 2022. Primary human airway epithelial cells cultured at the air-liquid interface were used to isolate and culture WUPyV. Whole genome sequence of the isolated strain was obtained by Sanger sequencing. For phylogenetic and evolutionary dynamics analysis, the whole genome was compared with the published whole genome sequences in GenBank database.Results:The detection rate of WUPyV was 4.7% (31/659) during 2020 to 2022, and a clinical strain BJ0593 of WUPyV type Ⅲc was successfully isolated. The homology of the whole genome and gene fragments of WUPyV was high. The average evolutionary rate of VP2 gene was about 1.256×10 -4 substitution/site every year, and the population dynamics of WUPyV tended to be flat in the last decade. Conclusions:This study successfully isolated a clinical WUPyV type Ⅲ strain for the first time, which provided the basis for further investigation on the molecular evolution and pathogenicity of WUPyV.

13.
Front Immunol ; 13: 947067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505412

RESUMEN

The circadian clock is closely associated with inflammatory reactions. Increased inflammatory cytokine levels have been detected in the airways of nocturnal asthma. However, the mechanisms that contribute to the nocturnal increase in inflammatory responses and the relationship with circadian clock remain unknown. Methods: Inflammatory cytokine levels were measured in asthma patients with and without nocturnal symptoms. Allergic airway disease was induced in mice by ovalbumin (OVA), and different periods of light/dark cycles were used to induce circadian rhythm disorders. Serum shock was used to stimulate the rhythmic expression in human bronchial epidermal cells (16HBE). The expression and oscillation of circadian clock genes and inflammatory cytokines in 16HBE cells subjected to brain and muscle ARNT-like protein-1 (BMAL1) and Forkhead Box A2 (FOXA2) knockdown and treatment with a FOXA2 overexpression plasmid were assessed. Results: Serum IL-6 was found to be significantly higher in asthmatic patients with nocturnal symptoms than those without nocturnal symptoms. The OVA-induced asthma model with a circadian rhythm disorder and 16HBE cells treated with serum shock showed an increase in IL-6 levels and a negative correlation with BMAL1 and FOXA2. The knockdown of BMAL1 resulted in a lower correlation between IL-6 and other rhythm clock genes. Furthermore, knockdown of the BMAL1 and FOXA2 in 16HBE cells reduced the expression and rhythmic fluctuations of IL-6. Conclusions: Our findings suggest that there are increased IL-6 levels in nocturnal asthma resulting from inhibition of the BMAL1/FOXA2 signalling pathway in airway epithelial cells.


Asunto(s)
Asma , Hipersensibilidad , Animales , Humanos , Ratones , Citocinas , Factor Nuclear 3-beta del Hepatocito/genética , Interleucina-6 , Ovalbúmina
14.
Front Pediatr ; 10: 1062766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467478

RESUMEN

Cystic Fibrosis (CF) results from over 400 different disease-causing mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. These CFTR mutations lead to numerous defects in CFTR protein function. A novel class of targeted therapies (CFTR modulators) have been developed that can restore defects in CFTR folding and gating. This study aimed to characterize the functional and structural defects of S945L-CFTR and interrogate the efficacy of modulators with two modes of action: gating potentiator [ivacaftor (IVA)] and folding corrector [tezacaftor (TEZ)]. The response to these modulators in vitro in airway differentiated cell models created from a participant with S945L/G542X-CFTR was correlated with in vivo clinical outcomes of that participant at least 12 months pre and post modulator therapy. In this participants' airway cell models, CFTR-mediated chloride transport was assessed via ion transport electrophysiology. Monotherapy with IVA or TEZ increased CFTR activity, albeit not reaching statistical significance. Combination therapy with TEZ/IVA significantly (p = 0.02) increased CFTR activity 1.62-fold above baseline. Assessment of CFTR expression and maturation via western blot validated the presence of mature, fully glycosylated CFTR, which increased 4.1-fold in TEZ/IVA-treated cells. The in vitro S945L-CFTR response to modulator correlated with an improvement in in vivo lung function (ppFEV1) from 77.19 in the 12 months pre TEZ/IVA to 80.79 in the 12 months post TEZ/IVA. The slope of decline in ppFEV1 significantly (p = 0.02) changed in the 24 months post TEZ/IVA, becoming positive. Furthermore, there was a significant improvement in clinical parameters and a fall in sweat chloride from 68 to 28 mmol/L. The mechanism of dysfunction of S945L-CFTR was elucidated by in silico molecular dynamics (MD) simulations. S945L-CFTR caused misfolding of transmembrane helix 8 and disruption of the R domain, a CFTR domain critical to channel gating. This study showed in vitro and in silico that S945L causes both folding and gating defects in CFTR and demonstrated in vitro and in vivo that TEZ/IVA is an efficacious modulator combination to address these defects. As such, we support the utility of patient-derived cell models and MD simulations in predicting and understanding the effect of modulators on CFTR function on an individualized basis.

15.
BMC Pulm Med ; 22(1): 434, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36414945

RESUMEN

BACKGROUND: Effective-component compatibility of Bufei Yishen formula III (ECC-BYF III) demonstrates positive effects on stable chronic obstructive pulmonary disease (COPD). PURPOSE: To investigate the mechanisms of ECC-BYF III on COPD rats from the aspect of airway epithelial cell senescence. METHODS: COPD model rats (Sprague-Dawley rat) were treated with ECC-BYF III for 8 weeks, and the efficacy was evaluated. Cigarette smoke extract (CSE)-induced senescence model of airway epithelial cells was treated with ECC-BYF III, and related enzymes and proteins involved in oxidative stress and mitophagy were detected. RESULTS: ECC-BYF III markedly rescued pulmonary function and histopathological changes, which might be associated with the amelioration of lung senescence, including the reduction of malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and matrix metalloproteinase (MMP)-9 levels, increase of the level in total superoxide dismutase (T-SOD), and decease in the p21 level in the airways. Furthermore, ECC-BYF III suppressed p16 and p21 expressions and senescence-associated ß-galactosidase (SA-ß-Gal) in CSE-induced airway epithelial cells. Moreover, ECC-BYF III upregulated mitophagy-related proteins, including the co-localizations of TOM20 and LC3B, PINK1 and PARK2, and improved mitochondrial function by upregulating mitochondrial mitofusin (MFN)2 and reducing dynamin-related protein 1 (DRP1) expression. ECC-BYF III enhanced the activities of T-SOD and GSH-PX by up-regulating NRF2, thus inhibiting oxidative stress. After intervention with NRF2 inhibitor, the regulation effects of ECC-BYF III on oxidative stress, mitophagy and senescence in airway epithelial cells were significantly suppressed. CONCLUSIONS: ECC-BYF III exerts beneficial effects on COPD rats by ameliorating airway epithelial cell senescence, which is mediated by inhibiting oxidative stress and subsequently enhancing mitophagy through the activation of NRF2 signaling.


Asunto(s)
Mitofagia , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley , Senescencia Celular , Células Epiteliales/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Superóxido Dismutasa/metabolismo
16.
Pediatr Allergy Immunol ; 33(10): e13871, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36282138

RESUMEN

BACKGROUND: DNA damage in airway epithelia under exogenous disruptors can trigger various pulmonary diseases. Integrin beta 4 (ITGB4) is a structural adhesion molecule, which is indicated to regulate the process of DNA damage in airway epithelia for its unique long cytoplasmic domain subunit. METHODS: The expression level of ITGB4 and the degree of DNA damage were observed in the house dust mite (HDM)-stressed model and ozone-challenged model, respectively. Besides, ITGB4 conditional knockout mice and ITGB4-deficient airway epithelial cells were constructed to observe the influence of ITGB4 deficiency on DNA damage. Furthermore, the influence of ITGB4 deficiency on HDAC1 expression in airway epithelia was determined under stress stimulation. Finally, corresponding intervention strategies were carried out to verify the involvement of the ITGB4-mediated HDAC1 pathway in DNA damage of airway epithelial cells. RESULTS: HDM stress and ozone challenge reduced the expression of ITGB4, which is accompanied by the increased expression of 8-oxoG and γ-H2AX both in vivo and in vitro. Moreover, ITGB4 deficiency in airway epithelia aggravates the degree of DNA damage under HDM stimulation and ozone stress, respectively. Furthermore, ITGB4 deficiency downregulated the expression of HDAC1 during DNA damage, and restoring HDAC1 can reverse the enhanced DNA damage in airway epithelial cells after exogenous stress. CONCLUSIONS: This study confirmed the involvement of ITGB4 in the regulation of DNA damage through mediating HDAC1 in airway epithelial cells under exogenous stress. These results supply some useful insights into the mechanism of DNA damage in airway epithelial cells, which would provide possible targets for early prediction and intervention of pulmonary diseases.


Asunto(s)
Enfermedades Pulmonares , Ozono , Animales , Humanos , Ratones , Daño del ADN , Células Epiteliales/fisiología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Integrina beta4/metabolismo , Enfermedades Pulmonares/metabolismo , Pyroglyphidae
17.
Front Immunol ; 13: 912095, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958591

RESUMEN

Background: The heterogeneity of RSV-infected pathology phenotype in early life is strongly associate with increased susceptibility of asthma in later life. However, the inner mechanism of this heterogeneity is still obscure. ITGB4 is a down-regulated adhesion molecular in the airway epithelia of asthma patients which may participate in the regulation of RSV infection related intracellular pathways. Object: This study was designed to observe the involvement of ITGB4 in the process of RSV infection and the effect of ITGB4 deficiency on anti-RSV responses of airway epithelia. Results: RSV infection caused a transient decrease of ITGB4 expression both in vitro and in vivo. Besides, ITGB4 deficiency induced not only exacerbated RSV infection, but also enhanced HDM sensitivity in later life. Moreover, IFN III (IFN-λ) was significantly suppressed during RSV infection in ITGB4 deficient airway epithelial cells. Furthermore, the suppression of IFN-λ were regulated by IRF-1 through the phosphorylation of EGFR in airway epithelial cells after RSV infection. Conclusion: These results demonstrated the involvement of ITGB4 deficiency in the development of enhance RSV infection in early life and the increased HDM sensitivity in later life by down-regulation of IFN-λ through EGFR/IRF-1 pathway in airway epithelial cells.


Asunto(s)
Asma , Infecciones por Virus Sincitial Respiratorio , Asma/patología , Epitelio/patología , Receptores ErbB , Humanos , Integrina beta4/genética , Infecciones por Virus Sincitial Respiratorio/patología , Sistema Respiratorio/patología
18.
Respir Res ; 23(1): 216, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999544

RESUMEN

BACKGROUND: Electronic cigarettes (e-cigarettes) are used worldwide as a substitute for conventional cigarettes. Although they are primarily intended to support smoking cessation, e-cigarettes have been identified as a gateway to smoking habits for young people. Multiple recent reports have described the health effects of inhaling e-cigarettes. E-cigarette liquid (e-liquid) is mainly composed of propylene glycol (PG) and glycerol (Gly), and the aerosol generated by these devices primarily contains these two components. Thus, this study aimed to evaluate the effects of PG and Gly on human small airway epithelial cells (SAECs). METHODS: SAECs were exposed to PG or Gly, and cell proliferation, cell viability, lactate dehydrogenase (LDH) release, DNA damage, cell cycle, and apoptosis were evaluated. Additionally, SAECs derived from chronic obstructive pulmonary disease (COPD) patients (COPD-SAECs) were investigated. RESULTS: Exposure of SAECs to PG significantly inhibited proliferation (1%, PG, p = 0.021; 2-4% PG, p < 0.0001) and decreased cell viability (1-4% PG, p < 0.0001) in a concentration-dependent manner. Gly elicited similar effects but to a reduced degree as compared to the same concentration of PG. PG also increased LDH release in a concentration-dependent manner (3% PG, p = 0.0055; 4% PG, p < 0.0001), whereas Gly did not show a significant effect on LDH release. SAECs exposed to 4% PG contained more cells that were positive for phosphorylated histone H2AX (p < 0.0001), a marker of DNA damage, and an increased proportion of cells in the G1 phase (p < 0.0001) and increased p21 expression (p = 0.0005). Moreover, caspase 3/7-activated cells and cleaved poly (ADP-ribose) polymerase 1 expression were increased in SAECs exposed to 4% PG (p = 0.0054). Furthermore, comparing COPD-SAECs to SAECs without COPD in PG exposure, cell proliferation, cell viability, DNA damage and apoptosis were significantly greater in COPD-SAECs. CONCLUSION: PG damaged SAECs more than Gly. In addition, COPD-SAECs were more susceptible to PG than SAECs without COPD. Usage of e-cigarettes may be harmful to the respiratory system, especially in patients with COPD.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Enfermedad Pulmonar Obstructiva Crónica , Adolescente , Células Epiteliales/metabolismo , Glicerol , Humanos , Propilenglicol/toxicidad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Aerosoles y Gotitas Respiratorias
19.
ACS Infect Dis ; 8(8): 1646-1662, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35767828

RESUMEN

The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.


Asunto(s)
Burkholderia , Metabolómica , Animales , Burkholderia/metabolismo , Técnicas de Cocultivo , Mamíferos , Proteómica
20.
Biomol Ther (Seoul) ; 30(2): 170-178, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35221299

RESUMEN

The airway epithelium is equipped with the ability to resist respiratory disease development and airway damage, including the migration of airway epithelial cells and the activation of TLR3, which recognizes double-stranded (ds) RNA. Primary cilia on airway epithelial cells are involved in the cell cycle and cell differentiation and repair. In this study, we used Beas-2B human bronchial epithelial cells to investigate the effects of the TLR3 agonist polyinosinic:polycytidylic acid [Poly(I:C)] on airway cell migration and primary cilia (PC) formation. PC formation increased in cells incubated under serum deprivation. Migration was faster in Beas-2B cells pretreated with Poly(I:C) than in control cells, as judged by a wound healing assay, single-cell path tracking, and a Transwell migration assay. No changes in cell migration were observed when the cells were incubated in conditioned medium from Poly(I:C)-treated cells. PC formation was enhanced by Poly(I:C) treatment, but was reduced when the cells were exposed to the ciliogenesis inhibitor ciliobrevin A (CilioA). The inhibition of Beas-2B cell migration by CilioA was also assessed and a slight decrease in ciliogenesis was detected in SARS-CoV-2 spike protein (SP)-treated Beas-2B cells overexpressing ACE2 compared to control cells. Cell migration was decreased by SP but restored by Poly(I:C) treatment. Taken together, our results demonstrate that impaired migration by SP-treated cells can be attenuated by Poly(I:C) treatment, thus increasing airway cell migration through the regulation of ciliogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA