Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Travel Med ; 31(4)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38457640

RESUMEN

BACKGROUND: Global temperatures are on the rise, leading to more frequent and severe heatwaves with associated health risks. Heat-related illnesses (HRIs) are an increasing threat for travellers to hot climate destinations. This study was designed to elucidate the interplay between increasing ambient temperatures, incidence of HRIs and the effectiveness of mitigation strategies during the annual Hajj mass gathering over a 40-year period. METHODS: An observational study was conducted utilizing historical records spanning four decades of meteorological data, and the rates of heat stroke (HS) and heat exhaustion (HE) during the Hajj pilgrimage in Mecca, Saudi Arabia. With an annual population exceeding 2 million participants from over 180 countries, the study analysed temporal variations in weather conditions over two distinct Hajj hot cycles and correlated it with the occurrence of HS and HE. The effectiveness of deployed mitigation measures in alleviating health vulnerabilities between the two cycles was also assessed. RESULTS: Throughout the study period, average dry and wet bulb temperatures in Mecca escalated by 0.4°C (Mann-Kendall P < 0.0001) and 0.2°C (Mann-Kendall P = 0.25) per decade, respectively. Both temperatures were strongly correlated with the incidence of HS and HE (P < 0.001). Despite the intensifying heat, the mitigation strategies including individual, structural and community measures were associated with a substantial 74.6% reduction in HS cases and a 47.6% decrease in case fatality rate. CONCLUSION: The study underscores the escalating climate-related health risks in Mecca over the study period. The mitigation measures' efficacy in such a globally representative setting emphasizes the findings' generalizability and the importance of refining public health interventions in the face of rising temperatures.


Asunto(s)
Islamismo , Viaje , Humanos , Arabia Saudita/epidemiología , Viaje/estadística & datos numéricos , Calor/efectos adversos , Cambio Climático , Masculino , Trastornos de Estrés por Calor/prevención & control , Trastornos de Estrés por Calor/epidemiología , Incidencia , Golpe de Calor/epidemiología , Golpe de Calor/prevención & control , Golpe de Calor/etiología , Femenino , Reuniones Masivas , Factores de Riesgo
2.
Environ Res ; 246: 118066, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38159667

RESUMEN

INTRODUCTION: The associations between non-optimal ambient temperature, air pollution and SARS-CoV-2 infection and post COVID-19 condition (PCC) remain constrained in current understanding. We conducted a retrospective analysis to explore how ambient temperature affected SARS-CoV-2 infection in individuals who later developed PCC compared to those who did not. We investigated if these associations were modified by air pollution. METHODS: We conducted a bidirectional time-stratified case-crossover study among individuals who tested positive for SARS-CoV-2 between May 2021 and June 2022. We included 6302 infections, with 2850 PCC cases. We used conditional logistic regression and distributed lag non-linear models to obtain odds ratios (OR) and 95% confidence intervals (CI) for non-optimal temperatures relative to the period median temperature (10.6 °C) on lags 0 to 5. For effect modification, daily average PM2.5 concentrations were categorized using the period median concentration (8.8 µg/m3). Z-tests were used to compare the results by PCC status and PM2.5. RESULTS: Non-optimal cold temperatures increased the cumulative odds of infection (OR = 1.93; 95%CI:1.67-2.23, OR = 3.53; 95%CI:2.72-4.58, for moderate and extreme cold, respectively), with the strongest associations observed for non-PCC cases. Non-optimal heat temperatures decreased the odds of infection except for moderate heat among PCC cases (OR = 1.32; 95%CI:0.89-1.96). When PM2.5 was >8.8 µg/m3, the associations with cold were stronger, and moderate heat doubled the odds of infection with later development of PCC (OR = 2.18; 95%CI:1.01-4.69). When PM2.5 was ≤8.8 µg/m3, exposure to non-optimal temperatures reduced the odds of infection. CONCLUSION: Exposure to cold increases SARS-CoV2 risk, especially on days with moderate to high air pollution. Heated temperatures and moderate to high air pollution during infection may cause PCC. These findings stress the need for mitigation and adaptation strategies for climate change to reduce increasing trends in the frequency of weather extremes that have consequences on air pollution concentrations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Temperatura , ARN Viral , Material Particulado/análisis , Bélgica/epidemiología , Estudios Retrospectivos , Estudios Cruzados , Exposición a Riesgos Ambientales/análisis , COVID-19/epidemiología , SARS-CoV-2 , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis
3.
Int Health ; 16(5): 475-478, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38147498

RESUMEN

We reflect on our fieldwork experience from the Climate Heat Maternal and Neonatal Health Africa (CHAMNHA) project in Kilifi, Kenya, which focused on studying the effects of extreme heat on women during pregnancy, delivery and the post-partum period. We describe the ethical and practical challenges encountered, highlighting valuable lessons learned. We propose potential solutions to address issues concerning the reciprocity of vulnerable participants and the provision of childcare and food for accompanying children. Further, we address challenges related to engaging specific participants, interview cancellations attributed to extreme temperatures and discuss the perpetuation of inequalities by ethics and academic institutions. With the anticipated increase in research at the intersection of climate change-induced heat exposure and its impacts on human populations, research institutions and ethics committees in low- and middle-income countries are responsible for instituting guidelines that account for the risks for the subjects under study and the field researchers.


Asunto(s)
Investigación Cualitativa , Humanos , Kenia , Femenino , Embarazo , Investigadores/ética , Investigadores/psicología , Ética en Investigación , Cambio Climático , Recién Nacido , Calor , Calor Extremo/efectos adversos , Poblaciones Vulnerables
4.
Plant Cell Physiol ; 65(3): 405-419, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38153763

RESUMEN

Phalaenopsis aphrodite can be induced to initiate spike growth and flowering by exposure to low ambient temperatures. However, the factors and mechanisms responsible for spike initiation in P. aphrodite remain largely unknown. In this study, we show that a repressor Flowing Locus T-like (FTL) gene, FTL, can act as a negative regulator of spike initiation in P. aphrodite. The mRNA transcripts of PaFTL are consistently high during high ambient temperature, thereby preventing premature spike initiation. However, during low ambient temperature, PaFTL expression falls while FT expression increases, allowing for spike initiation. Knock-down of PaFTL expression through virus-inducing gene silencing promoted spike initiation at 30/28°C. Moreover, PaFTL interacts with FLOWERING LOCUS D in a similar manner to FT to regulate downstream flowering initiation genes. Transgenic P. aphrodite plants exhibiting high expression of PaFTL do not undergo spike initiation, even when exposed to low ambient temperatures. These findings shed light on the flowering mechanisms in Phalaenopsis and provide new insights into how perennial plants govern spike initiation in response to temperature cues.


Asunto(s)
Orchidaceae , Temperatura , Orchidaceae/metabolismo , Flores/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas
5.
Yale J Biol Med ; 96(2): 189-196, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37396982

RESUMEN

Background: Relatively little attention has been paid to the potential effects of rising temperatures on changes in human behavior that lead to health and social consequences, including aggression. This study investigated the association between ambient temperature and aggression using assault death data from Seoul, South Korea (1991-2020). Methods: We conducted a time-stratified case-crossover analysis based on conditional logistic regression to control for relevant covariates. The exposure-response curve was explored, and stratified analyses were conducted by season and sociodemographic characteristics. Results: The overall risk of assault deaths significantly increased by 1.4% per 1°C increase in ambient temperature. A positive curvilinear relationship was observed between ambient temperature and assault deaths, which flattened out at 23.6°C during the warm season. Furthermore, risk increases were higher in males, teenagers, and those with the least education. Conclusion: This study highlighted the importance of understanding the impact of rising temperatures on aggression in the context of climate change and public health.


Asunto(s)
Agresión , Calor , Masculino , Adolescente , Humanos , Temperatura , Estaciones del Año , Exposición a Riesgos Ambientales
6.
Int J Hyg Environ Health ; 252: 114214, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37392524

RESUMEN

BACKGROUND: The effect of non-optimal ambient temperatures (low and high temperatures) on lung function and the underlying mechanisms remains unclear. METHODS: Forty-three (20 males, 23 females) healthy non-obese volunteers with an average of 23.9 years participated in the controlled temperature study. All volunteers underwent three temperature exposures in a sequence (moderate [18 °C], low [6 °C], and high [30 °C] temperatures) lasting 12 h with air pollutants controlled. lung function parameters (forced vital capacity [FVC], forced expiratory volume in 1 s [FEV1], and peak expiratory flow [PEF]) were determined in each exposure. Blood and urine samples were collected after each exposure and assayed for inflammatory markers [C-reactive protein (CRP), procalcitonin (PCT), platelet-lymphocyte ratio (PLR), and neutrophil-lymphocyte ratio (NLR)] and oxidative damage markers [protein carbonylation (PCO), 4-hydroxy-2-nominal-mercapturic acid (HNE-MA), 8-iso-prostaglandin-F2α (8-isoPGF2α), and 8-hydroxy-2-deoxyguanosine (8-OHdG)]. Mixed-effects models were constructed to assess the changes of the above indexes under low or high temperatures relative to moderate temperature, and then the repeated measures correlation analyses were performed. RESULTS: Compared with moderate temperature, a 2.20% and 2.59% net decrease in FVC, FEV1, and a 5.68% net increase for PEF were observed under low-temperature exposure, while a 1.59% net decrease in FVC and a 7.29% net increase in PEF under high-temperature exposure were found (all P < 0.05). In addition, low temperature elevated inflammatory markers (PCT, PLR, and NLR) and oxidative damage markers (8-isoPGF2α, 8-OHdG), and high temperature elevated HNE-MA. Repeated measures correlation analyses revealed that PCT (r = -0.33) and NLR (r = -0.31) were negatively correlated with FVC and HNE-MA (r = -0.35) and 8-OHdG (r = -0.31) were negatively correlated with the FEV1 under low-temperature exposure (all P < 0.05). CONCLUSION: Non-optimal ambient temperatures exposure alters lung function, inflammation, and oxidative damage. Inflammation and oxidative damage might be involved in low temperature-related lung function reduction.


Asunto(s)
Contaminantes Atmosféricos , Pulmón , Masculino , Femenino , Humanos , Temperatura , Pulmón/química , Voluntarios Sanos , Contaminantes Atmosféricos/análisis , Volumen Espiratorio Forzado , Inflamación
7.
Adv Sci (Weinh) ; 10(16): e2207253, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37017566

RESUMEN

Supported polyethyleneimine (PEI) adsorbent is one of the most promising commercial direct air capture (DAC) adsorbents with a long research history since 2002. Although great efforts have been input, there are still limited improvements for this material in its CO2 capacity and adsorption kinetics under ultradilute conditions. Supported PEI also suffers significantly reduced adsorption capacities when working at sub-ambient temperatures. This study reports that mixing diethanolamine (DEA) into supported PEI can increase 46% and 176% of pseudoequilibrium CO2 capacities at DAC conditions compared to the supported PEI and DEA, respectively. The mixed DEA/PEI functionalized adsorbents maintain the adsorption capacity at sub-ambient temperatures of -5 to 25 °C. In comparison, a 55% reduction of CO2 capacity is observed for supported PEI when the operating temperature decreases from 25 to -5 °C. In addition, the supported mixed DEA/PEI with a ratio of 1:1 also shows fast desorption kinetics at temperatures as low as 70 °C, resulting in maintaining high thermal and chemical stability over 50 DAC cycles with a high average CO2 working capacity of 1.29 mmol g-1 . These findings suggest that the concept of "mixed amine", widely studied in the solvent system, is also practical to supported amine for DAC applications.

8.
Int J Hyperthermia ; 40(1): 2179672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813265

RESUMEN

BACKGROUND: The aim of the study was to investigate the effect of a Finnish sauna on the immune status parameters. The hypothesis was that hyperthermia would improve immune system's functioning by changing the proportion of lymphocyte subpopulations and would activate heat shock proteins. We assumed that the responses of trained and untrained subjects would be different. MATERIAL AND METHODS: Healthy men (20-25 years old) were divided into groups: the trained (T; n = 10), and the untrained group (U; n = 10). All participants were subjected to 10 baths (each one consisted of: 3 × 15-minute exposure with cooled down for 2 min. Body composition, anthropometric measurements, VO2 peak were measured before 1st sauna bath. Blood was collected before the 1st and 10th sauna bath, and 10 min after their completion to asses an acute and a chronic effect. Body mass, rectal temperature and heart rate (HR) were assessed in the same time points. The serum levels of cortisol, Il-6, HSP70 were measured with use of ELISA method, IgA, IgG and IgM by turbidimetry. White blood cells (WBC), leukocyte populations counts: neutrophils, lymphocytes, eosinophils, monocytes, and basophils were determined with use of flow cytometry as well as T-cell subpopulations. RESULTS: No differences were found in the increase in rectal temperature, cortisol and immunoglobulins between groups. In response to the 1st sauna bath, a greater increase in HR was observed in the U group. After the last one, the HR value was lower in the T group. The impact of sauna baths on WBC, CD56+, CD3+, CD8+, IgA, IgG and IgM was different in trained and untrained subjects' responses. A positive correlation between the increase in cortisol concentrations and increase in internal temperatures after the 1st sauna was found in the T (r = 0.72) and U group (r = 0.77), between the increase in IL-6 and cortisol concentrations in the T group after the 1st treatment (r = 0.64), between the increase in IL-10 concentration and internal temperature (r = 0.75) and between the increase in IL-6 and IL-10 (r = 0.69) concentrations, also. CONCLUSIONS: Sauna bathing can be a way to improve the immune response, but only when it is undertaken as a series of treatments.


Asunto(s)
Baño de Vapor , Adulto , Humanos , Masculino , Adulto Joven , Temperatura Corporal/fisiología , Hidrocortisona , Inmunidad , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Interleucina-10 , Interleucina-6 , Proteínas HSP70 de Choque Térmico/metabolismo
9.
Data Brief ; 47: 108854, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36798599

RESUMEN

The present work exhibits the dynamic viscosity profile data of three distinct nanofluids, at a constant shear stress, and within a range of temperatures that include below-ambient conditions (from -10 to 20 °C). The nanofluids were as follows. Nanofluid I: 30% ethylene glycol and 70% distilled water (v/v), with graphene (0.32% in mass); Nanofluid II: 30% engine coolant NBR 13705; ASTM D-3306; ASTM D-4985) and 70% distilled water (v/v), with graphene (0.2% in mass); and Nanofluid III: 30% engine coolant and 70% distilled water (v/v), with Multi-Walled Carbon Nanotubes (MWCNT) (0.2% in mass). The present work was motivated by the scarcity of experimental data on the temperature dependence of viscosity for graphene, MWCNT, and their hybrid nanofluids, at below-ambient temperatures.

10.
Mol Reprod Dev ; 89(12): 565-578, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370428

RESUMEN

Long-term preservation of sperm, oocytes, and gonadal tissues at ambient temperatures has the potential to lower the costs and simplify biobanking in human reproductive medicine, as well as for the management of animal populations. Over the past decades, different dehydration protocols and long-term storage solutions at nonfreezing temperatures have been explored, mainly for mammalian sperm cells. Oocytes and gonadal tissues are more challenging to dehydrate so little to no progress have been made. Currently, the detrimental effects of the drying process itself are better characterized than the impact of long-term storage at nonfreezing temperatures. While structural and functional properties of germ cells can be preserved after dehydration, a long list of damages and stresses in nuclei, organelles, and cytoplasmic membranes have been reported and sometimes mitigated. Characterizing those damages and better understanding the response of germ cells and tissues to the stress of dehydration is fundamental. It will contribute to the development of optimal protocols while proving the safety of alternative storage options for fertility preservation. The objective of this review is to (1) document the types of damages and stress responses, as well as their mitigation in cells dried with different techniques, and (2) propose new research directions.


Asunto(s)
Preservación de la Fertilidad , Preservación de Semen , Animales , Masculino , Humanos , Temperatura , Bancos de Muestras Biológicas , Deshidratación , Preservación de Semen/métodos , Semen , Espermatozoides/fisiología , Criopreservación/métodos , Mamíferos
11.
Respir Res ; 23(1): 299, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316676

RESUMEN

BACKGROUND: The effect of ambient temperature on respiratory mortality has been consistently observed throughout the world under different climate change scenarios. Countries experiencing greater inter-annual variability in winter temperatures (and may not be lowest winter temperatures) have greater excess winter mortality compared to countries with colder winters. This study investigates the association between temperature and respiratory deaths in Malta which has one of the highest population densities in the world with a climate that is very hot in summer and mild in winter. METHODS: Daily number of respiratory deaths (7679 deaths) and meteorological data (daily average temperature, daily average humidity) were obtained from January 1992 to December 2017. The hot and cold effects were estimated at different temperatures using distributed lag non-linear models (DLNM) with a Poisson distribution, controlling for time trend, relative humidity and holidays. The reference temperature (MMT) for the minimum response-exposure relationship was estimated and the harvesting effects of daily temperature (0-27 lag days) were investigated for daily respiratory mortality. Effects were also explored for different age groups, gender and time periods. RESULTS: Cooler temperatures (8-15 °C) were significantly related to higher respiratory mortality. At 8.9 °C (1st percentile), the overall effect of daily mean temperature was related to respiratory deaths (RR 2.24, 95%CI 1.10-4.54). These effects were also found for males (95%CI 1.06-7.77) and males across different age groups (Males Over 65 years: RR 4.85, 95%CI 2.02-11.63 vs Males between 16 and 64 years: RR 5.00, 95%CI 2.08-12.03) but not for females. Interestingly, colder temperatures were related to respiratory deaths in the earliest time period (1992-2000), however, no strong cold effect was observed for later periods (2000-2017). In contrast, no heat effect was observed during the study period and across other groups. CONCLUSIONS: The higher risk for cold-related respiratory mortality observed in this study could be due to greater inter-annual variability in winter temperatures which needs further exploration after adjusting for potential physical and socio-demographic attributes. The study provides useful evidence for policymakers to improve local warning systems, adaptation, and intervention strategies to reduce the impact of cold temperatures.


Asunto(s)
Enfermedades Cardiovasculares , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Enfermedades Respiratorias , Masculino , Femenino , Humanos , Anciano , Temperatura , Densidad de Población , Calor , Malta , Enfermedad Iatrogénica , Enfermedades Respiratorias/diagnóstico , Mortalidad
12.
Bioresour Technol ; 363: 127864, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36055540

RESUMEN

A novel two-stage partial nitrification-anammox (PN-A) process was developed, achieving nitrogen removal from low carbon/nitrogen ratio municipal sewage under two typical operational modes and seasonal ambient temperatures. When complete nitritation-anammox was performed at temperatures greater than 19.4 °C, the effluent concentration of total inorganic nitrogen (TIN) was 4.1 mg/L, corresponding to a nitrogen removal efficiency (NRE) of 94.3 %. In contrast, when partial nitritation-anammox was performed at temperatures below 19.4 °C, the effluent TIN was 12.3 mg/L, corresponding to a NRE of 83.6 %. The relative abundance of Nitrosomonas and Nitrosomonadaceae increased from 0.02 % to 0.28 %, while Ca. Brocadia decreased from 1.85 % to 1.30 %, with the contribution of anammox to nitrogen removal being highest under low temperatures (19.4℃ to 13.8℃), at 59.0 %. This novel two-stage PN-A process provides a new approach for the stable operation of wastewater treatment plants (WWTPs) under low ambient temperatures.


Asunto(s)
Nitrificación , Nitrógeno , Aguas del Alcantarillado , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Carbono , Desnitrificación , Oxidación-Reducción , Estaciones del Año , Temperatura , Aguas Residuales
13.
Environ Res ; 214(Pt 4): 114116, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35988831

RESUMEN

BACKGROUND: Whether ambient temperature exposure contributes to death from asthma remains unknown to date. We therefore conducted a case-crossover study in China to quantitatively evaluate the association and burden of ambient temperature exposure on asthma mortality. METHODS: Using data from the National Mortality Surveillance System in China, we conducted a time-stratified case-crossover study of 15 888 individuals who lived in Hubei and Jiangsu province, China and died from asthma as the underlying cause in 2015-2019. Individual-level exposures to air temperature and apparent temperature on the date of death and 21 days prior were assessed based on each subject's residential address. Distributed lag nonlinear models based on conditional logistic regression were used to quantify exposure-response associations and calculate fraction and number of deaths attributable to non-optimum ambient temperatures. RESULTS: We observed a reverse J-shaped association between air temperature and risk of asthma mortality, with a minimum mortality temperature of 21.3 °C. Non-optimum ambient temperature is responsible for substantial excess mortality from asthma. In total, 26.3% of asthma mortality were attributable to non-optimum temperatures, with moderate cold, moderate hot, extreme cold and extreme hot responsible for 21.7%, 2.4%, 2.1% and 0.9% of asthma mortality, respectively. The total attributable fraction and number was significantly higher among adults aged less than 80 years in hot temperature. CONCLUSIONS: Exposure to non-optimum ambient temperature, especially moderate cold temperature, was responsible for substantial excess mortality from asthma. These findings have important implications for planning of public-health interventions to minimize the adverse respiratory damage from non-optimum ambient temperature.


Asunto(s)
Asma , Frío , Adulto , Asma/epidemiología , China/epidemiología , Estudios Cruzados , Calor , Humanos , Mortalidad , Temperatura
14.
Chemosphere ; 306: 135522, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35779684

RESUMEN

Road vehicles have become the primary source of fine particles in many large cities. Vehicle hot-start PN emissions at various ambient temperatures were studied previously. Still, these studies used the same rolling resistance setting at different ambient temperatures and the tests at various ambient temperatures have similar PN emissions. Vehicles get larger resistance at cold ambient temperatures, so this experimental setting (same resistance at various ambient temperatures) is beyond the natural conditions. To evaluate how ambient temperatures affect the PN emissions from fully warmed vehicles, two vehicles were tested at four ambient temperatures: -10 °C, 0 °C, 23 °C, and 40 °C. Vehicle resistance variations under different ambient temperatures were taken into consideration. The observed results proved that PN emission would significantly deteriorate under cold conditions even when the vehicles are thoroughly warmed. The PN emission factor at -10 °C could be six times higher than at 23 °C. The deteriorated PN emission is caused by enhanced fuel enrichment and GPF regeneration, and larger vehicle resistance under cold ambient temperatures is the underlying reason for the increased PN emission. For the first time, this study proved that PN emission from fully warmed vehicles would significantly deteriorate when the ambient temperature decreases. The results could be used for emission models, inventory, and regulations.

15.
Int J Biometeorol ; 66(8): 1683-1698, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35751701

RESUMEN

Global climate change is leading to higher ambient temperatures and more frequent heatwaves. To date, impacts of ambient extreme heat on childhood morbidity have been understudied, although-given children's physiologic susceptibility, with smaller body surface-to-mass ratios, and many years of increasing temperatures ahead-there is an urgent need for better information to inform public health policies and clinical approaches. In this review, we aim to (1) identify pediatric morbidity outcomes previously associated with extreme heat, (2) to identify predisposing co-morbidities which may make children more susceptible to heat-related outcomes, and (3) to map the current body of available literature. A scoping review of the current full-text literature was conducted using the Arksey and O'Malley framework Int J Soc Res Methodol 8:19-32, (2015). Search terms for (1) pediatric population, (2) heat exposures, (3) ambient conditions, and (4) adverse outcomes were combined into a comprehensive PubMed and Medline literature search. Of the 1753 publications identified, a total of 20 relevant studies were ultimately selected based on selection criteria of relevance to US urban populations. Most identified studies supported positive associations between high extreme temperature exposures and heat-related illness, dehydration/electrolyte imbalance, general symptoms, diarrhea and digestion disorders, infectious diseases/infections, asthma/wheeze, and injury. Most studies found no association with renal disease, cardiovascular diseases, or diabetes mellitus. Results were mixed for other respiratory diseases and mental health/psychological disorders. Very few of the identified studies examined susceptibility to pre-existing conditions; Cystic Fibrosis was the only co-morbidity for which we found significant evidence. Further research is needed to understand the nuances of associations between extreme heat and specific outcomes-particularly how associations may vary by child age, sex, race/ ethnicity, community characteristics, and other pre-existing conditions.


Asunto(s)
Calor Extremo , Trastornos de Estrés por Calor , Niño , Cambio Climático , Calor Extremo/efectos adversos , Trastornos de Estrés por Calor/epidemiología , Calor , Humanos , Morbilidad
16.
Sci Total Environ ; 830: 154731, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35331770

RESUMEN

Motor Vehicle Crashes (MVC) are a major cause of death and disability worldwide. Yet it remains unknown to what extent changes in cold and hot temperatures affect the MVC. Here we quantify the linkage between ambient temperature exposure and the MVC risk of the driver in four cities of the United States. After adjusting for confounding factors, we find both a cold effect and a hot effect on MVC in New York, and a cold effect on MVC in Chicago. A 1 °C decrease in mean daily temperature below a cold threshold of -4.8 °C is associated with an increase in the overall cumulative relative risk of MVC by 11.59% (95% CI: 5.17%-16.43%) over 0-28 lag days for New York. The respective risk increase is 1.58% (95% CI: 0.36%-2.79%) over 0-2 lag days for a 1 °C increase in mean daily temperature above the hot threshold of 26.1 °C for New York. There is no significant heat wave or cold spell effects except for the heat wave effect on the consecutive heat wave days 7-10 in New York. Our study provides evidence of the association between driver exposure to low or high temperatures and the MVC risk. Improved public- administration preventive measures and policymaking are needed to minimize the negative consequences of abnormal temperatures on road safety driving.


Asunto(s)
Accidentes de Tránsito , Frío , Chicago/epidemiología , Calor , Vehículos a Motor , New York , Temperatura
17.
Animals (Basel) ; 11(6)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205322

RESUMEN

Heat stress is a current challenge for livestock production, and its impact could dramatically increase if global temperatures continue to climb. Exposure of agricultural animals to high ambient temperatures and humidity would lead to substantial economic losses because it compromises animal performance, productivity, health, and welfare. The gut microbiota plays essential roles in nutrient absorption, energy balance, and immune defenses through profound symbiotic interactions with the host. The homeostasis of those diverse gut microorganisms is critical for the host's overall health and welfare status and also is sensitive to environmental stressors, like heat stress, reflected in altered composition and functionality. This article aims to summarize the research progress on the interactions between heat stress and gut microbiome and discuss the potential use of the gut microbiota composition as a biomarker of heat stress in monogastric animal species. A comprehensive understanding of the gut microbiota's role in responding to or regulating physiological activities induced by heat stress would contribute to developing mitigation strategies.

18.
Ann Indian Acad Neurol ; 23(4): 522-527, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33223671

RESUMEN

BACKGROUND AND PURPOSE: Studies looking at seasonal variation on cerebral venous thrombosis (CVT) are few with conflicting conclusions. In this region-specific study, we looked for climatic influence and seasonal trends on the incidence of CVT. METHODS: Imaging proven adult CVT cases treated over a period of 18 years from a specific geographical location with similar seasons and climatic conditions were studied. Metrological parameters prepared using 30 years of data was used. Quantum geographical information system (QGIS software) and SPSS v 22 were used for patient plotting and analysis. RESULTS: Total of 970 cases were studied. The incidence was significantly higher in summer 411 (42.3%) compared with autumn 317 (32.7%) and winter 242 (25.05); P = 0.038. This trend was consistent across all the 18 years in time series analysis. Mean age was 33.5 years (range 18-88 years). A significant majority 673 (69.4%) were below 40 years of age; P = 0.012. Females constituted 394 (40.6%) of cases. Postpartum CVT cases constituted 237 (30%). Interaction analysis showed younger age (<40 years) were more vulnerable for CVT in summer; P = 0.009. There was no seasonal influence on postpartum CVT. Apart for a weak positive correlation between rain fall (r = 0.18, P < 0.01); humidity and cloud cover was not influencing the incidence. CONCLUSIONS: Higher ambient temperatures were consistently associated with higher incidence of CVT. This is the largest region-specific study on CVT in the world. These results may be applicable to other regions with similar climatic conditions.

19.
ACS Appl Mater Interfaces ; 12(26): 29181-29193, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484323

RESUMEN

Water-in-salt (WIS) electrolytes are gaining increased interest as an alternative to conventional aqueous or organic ones. WIS electrolytes offer an interesting combination of safety, thanks to their aqueous character, and extended electrochemical stability window, thanks to the strong coordination between water molecules and ion salt. Nonetheless, cost, the tendency of salt precipitation, and sluggish ionic transfer leading to poor rate performance of devices are some intrinsic drawbacks of WIS electrolytes that yet need to be addressed for their technological implementation. It is worth noting that the absence of "free'' water molecules could also be achieved via the addition of a certain cosolvent capable of coordinating with water. This is the case of the eutectic mixture formed between DMSO and H2O with a molar ratio of 1:2 and a melting point as low as -140 °C. Interestingly, addition of salts at near-saturation conditions also resulted in an increase of the boiling point of the resulting solution. Herein, we used a eutectic mixture of DMSO and H2O for dissolution of LiTFSI in the 1.1-8.8 molality range. The resulting electrolyte (e.g., the so-called aqueous-eutectic-in-salt) exhibited excellent energy and power densities when operating in a supercapacitor cell over a wide range of extreme ambient temperatures, from as low as -35 °C to as high as +65 °C.

20.
Artículo en Inglés | MEDLINE | ID: mdl-32443548

RESUMEN

Low-cost houses make up the majority of the homes in townships (racially segregated areas which are usually underdeveloped) in South Africa and there has been limited research on the indoor temperatures experienced by residents of these homes. As a developing nation the price and availability of construction materials, often takes precedence over the potential thermal efficiency of the house. Occupants of low-cost houses are particularly vulnerable to climatic changes which may increase the likelihood of exposure to extreme temperatures in South Africa. This study focused on the relationship between indoor and ambient temperature in two study areas namely; Kathorus in Gauteng and Wakkerstroom in Mpumalanga. Three housing types were included in the study (government funded apartheid era houses, government funded post-apartheid houses and informal houses (shacks)). Temperature data loggers were installed in each home, in each area, from June 2017 to July 2018. Ambient temperature data were collected for the period June 2017 to July 2018. The houses studied were built with different materials which affect their thermal efficiency. The study also included semi-structured interviews where occupant's perspectives on housing could be surveyed. Household temperatures in Kathorus and Wakkerstroom, both in the warmer and colder months fluctuated substantially throughout the day. There was an 8 °C, 9 °C and 14 °C fluctuations in daily indoor temperatures of apartheid-era, post-apartheid and shacks houses, and daily outdoor fluctuations of 5-15 °C, with higher fluctuations measured in Wakkerstroom. Generally, ambient and indoor temperatures were correlated but showed high variability. Indoor data for the winter months were less well correlated. Data showed that residents are subjected to extreme temperatures and these are expected to increase. The householder's perceptions of thermal comfort were often not related to indoor temperature readings but to behavioural changes including the use of warm clothes and wood burning stoves. The study's findings suggest that a majority of low-cost houses are thermally inefficient especially for those built in the post-apartheid era and shacks. With these houses showing a clear link between ambient and indoor temperature fluctuations. The occupants of these homes are poor and vulnerable to health risks which could be exacerbated by temperature fluctuations. Small changes such as installation of ceilings and use of insulation could make a large difference in these houses.


Asunto(s)
Materiales de Construcción , Calor , Vivienda , Humanos , Estaciones del Año , Sudáfrica , Temperatura , Poblaciones Vulnerables
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA