Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(23): 11345-11350, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31085633

RESUMEN

Amber is fossilized tree resin, and inclusions usually comprise terrestrial and, rarely, aquatic organisms. Marine fossils are extremely rare in Cretaceous and Cenozoic ambers. Here, we report a record of an ammonite with marine gastropods, intertidal isopods, and diverse terrestrial arthropods as syninclusions in mid-Cretaceous Burmese amber. We used X-ray-microcomputed tomography (CT) to obtain high-resolution 3D images of the ammonite, including its sutures, which are diagnostically important for ammonites. The ammonite is a juvenile Puzosia (Bhimaites) and provides supporting evidence for a Late Albian-Early Cenomanian age of the amber. There is a diverse assemblage (at least 40 individuals) of arthropods in this amber sample from both terrestrial and marine habitats, including Isopoda, Acari (mites), Araneae (spiders), Diplopoda (millipedes), and representatives of the insect orders Blattodea (cockroaches), Coleoptera (beetles), Diptera (true flies), and Hymenoptera (wasps). The incomplete preservation and lack of soft body of the ammonite and marine gastropods suggest that they were dead and underwent abrasion on the seashore before entombment. It is most likely that the resin fell to the beach from coastal trees, picking up terrestrial arthropods and beach shells and, exceptionally, surviving the high-energy beach environment to be preserved as amber. Our findings not only represent a record of an ammonite in amber but also provide insights into the taphonomy of amber and the paleoecology of Cretaceous amber forests.


Asunto(s)
Ámbar/química , Animales , Ecosistema , Bosques , Fósiles , Gastrópodos/química , Resinas de Plantas/química , Árboles/química , Microtomografía por Rayos X/métodos
2.
Syst Biol ; 66(1): 23-37, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28173595

RESUMEN

Ontogeny is rarely included in phylogenetic analyses of morphological data. When used, the ontogenetic information is reduced to one character for two or three different ontogenetic stages. Several examples show that current methods miss a major part of the information. We here propose a new method for including the ontogenetic dimension in coding schemes of phylogenetic analyses. Our goal was to maximize the phylogenetic information extracted from ontogenetic trajectories. For discrete features, we recommend including precise timings of transformation(s) from one state to another in the ontogenetic trajectories. For continuously varying features, growth laws are modeled on raw data using least-square regressions. Then, parameters of models are included in the coding scheme as continuous characters. This method is employed to reconstruct phylogenetic relationships using the ammonite family Amaltheidae as a test subject. Based on the same data set, a second analysis has been performed only for characters of the adult stage. Comparisons of retention index, bootstrap support, and stratigraphic congruence between the two analyses show that the inclusion of ontogeny yields better phylogenetic reconstruction. Morphological traits in ammonites which are usually the most homoplastic show a better fit to most parsimonious trees by including the ontogenetic dimension. In several cases, growth rates and patterns of growth have better fit to phylogeny than adult shapes, implying that paths of ontogeny can be more relevant than its products.


Asunto(s)
Clasificación/métodos , Filogenia , Animales , Artrópodos/anatomía & histología , Artrópodos/clasificación , Artrópodos/crecimiento & desarrollo
3.
Proc Natl Acad Sci U S A ; 112(51): 15562-7, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26630003

RESUMEN

Ammonites are among the best-known fossils of the Phanerozoic, yet their habitat is poorly understood. Three common ammonite families (Baculitidae, Scaphitidae, and Sphenodiscidae) co-occur with well-preserved planktonic and benthic organisms at the type locality of the upper Maastrichtian Owl Creek Formation, offering an excellent opportunity to constrain their depth habitats through isotopic comparisons among taxa. Based on sedimentary evidence and the micro- and macrofauna at this site, we infer that the 9-m-thick sequence was deposited at a paleodepth of 70-150 m. Taxa present throughout the sequence include a diverse assemblage of ammonites, bivalves, and gastropods, abundant benthic foraminifera, and rare planktonic foraminifera. No stratigraphic trends are observed in the isotopic data of any taxon, and thus all of the data from each taxon are considered as replicates. Oxygen isotope-based temperature estimates from the baculites and scaphites overlap with those of the benthos and are distinct from those of the plankton. In contrast, sphenodiscid temperature estimates span a range that includes estimates of the planktonic foraminifera and of the warmer half of the benthic values. These results suggest baculites and scaphites lived close to the seafloor, whereas sphenodiscids sometimes inhabited the upper water column and/or lived closer to shore. In fact, the rarity and poorer preservation of the sphenodiscids relative to the baculites and scaphites suggests that the sphenodiscid shells may have only reached the Owl Creek locality by drifting seaward after death.


Asunto(s)
Evolución Biológica , Cefalópodos/química , Ecosistema , Fósiles , Animales , Isótopos de Carbono/análisis , Cefalópodos/clasificación , Foraminíferos/química , Foraminíferos/clasificación , Moluscos/química , Moluscos/clasificación , Isótopos de Oxígeno/análisis , Paleontología , Plancton/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA