Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cereal Chem ; 100(1): 9-22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064052

RESUMEN

Background and Objectives: Research on wheat grain proteins is reviewed, including achievements over the past century and priorities for future research. The focus is on three groups of proteins that have major impacts on wheat quality and utilization: the gluten proteins which determine dough viscoelasticity but also trigger celiac disease in susceptible individuals, the puroindolines which are major determinants of grain texture and the amylase/trypsin inhibitors which are food and respiratory allergens and are implicated in triggering celiac disease and nonceliac wheat sensitivity. Findings: Although earlier work focused on protein structure and properties, the development of genomics and high-sensitivity proteomics has resulted in the availability of a vast amount of information on the amino acid sequences of individual wheat proteins, including allelic variants of gluten proteins which are associated with good processing quality and of puroindolines, which are associated with a hard or soft grain texture, and on protein expression and polymorphism. Conclusions: However, our ability to exploit this knowledge is limited by a lack of detailed understanding of the structure:function relationships of wheat proteins. In particular, we need to understand how the three-dimensional structures of the individual proteins determine their interactions with other grain components (to determine functional properties) and with the immune systems of susceptible consumers (to trigger adverse responses), how these interactions are affected by allelic variation, and how they can be manipulated. Significance and Novelty: The article, therefore, identifies priorities for future research which should enable the adoption of a more rational approach to improving the quality of wheat grain proteins.

2.
Cells ; 11(15)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35954233

RESUMEN

Non-celiac wheat sensitivity (NCWS) is a clinical entity induced by the ingestion of gluten that leads to intestinal and/or extraintestinal symptoms, and is diagnosed when celiac disease and wheat allergy have been ruled out. In addition to gluten, other grains' components, including amylase trypsin inhibitors (ATIs) and fermentable short-chain carbohydrates (FODMAPs), may trigger symptoms in NCWS subjects. Several studies suggest that, compared with tetraploid and hexaploid modern wheats, ancient diploid wheats species could possess a lower immunogenicity for subjects suffering from NCWS. This review aims to discuss available evidence related to the immunological features of diploid wheats compared to common wheats, and at outlining new dietary opportunities for NCWS subjects.


Asunto(s)
Enfermedad Celíaca , Hipersensibilidad al Trigo , Enfermedad Celíaca/genética , Diploidia , Glútenes , Humanos , Intestinos , Hipersensibilidad al Trigo/diagnóstico
3.
Front Nutr ; 9: 977206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034932

RESUMEN

Wheat is a major source of nutrition, though in susceptible people it can elicit inappropriate immune responses. Wheat allergy and non-celiac wheat sensitivity are caused by various wheat proteins, including alpha-amylase trypsin inhibitors (ATIs). These proteins, like the gluten proteins which can cause celiac disease, are incompletely digested in the stomach such that immunogenic epitopes reach the lower digestive system where they elicit the undesirable immune response. The only completely effective treatment for these immune reactions is to eliminate the food trigger from the diet, though inadvertent or accidental consumption can still cause debilitating symptoms in susceptible people. One approach used is to prevent the causal proteins from provoking an immune reaction by enhancing their digestion using digestive protease supplements that act in the stomach or intestine, cleaving them to prevent or quench the harmful immune response. In this study, a digestive supplement enriched in caricain, an enzyme naturally present in papaya latex originally designed to act against gluten proteins was assessed for its ability to digest wheat ATIs. The digestion efficiency was quantitatively measured using liquid chromatography-mass spectrometry, including examination of the cleavage sites and the peptide products. The peptide products were measured across a digestion time course under conditions that mimic gastric digestion in vivo , involving the use of pepsin uniquely or in combination with the supplement to test for additive effects. The detection of diverse cleavage sites in the caricain supplement-treated samples suggests the presence of several proteolytic enzymes that act synergistically. Caricain showed rapid action in vitro against known immunogenic ATIs, indicating its utility for digestion of wheat ATIs in the upper digestive tract.

4.
Front Allergy ; 3: 822554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386651

RESUMEN

Wheat-dependent exercise-induced anaphylaxis (WDEIA) is a cofactor-induced wheat allergy. Gluten proteins, especially ω5-gliadins, are known as major allergens, but partially hydrolyzed wheat proteins (HWPs) also play a role. Our study investigated the link between the molecular composition of gluten or HWP and allergenicity. Saline extracts of gluten (G), gluten with reduced content of ω5-gliadins (G-ω5), slightly treated HWPs (sHWPs), and extensively treated HWPs (eHWPs) were prepared as allergen test solutions and their allergenicity assessed using the skin prick test and basophil activation test (BAT) on twelve patients with WDEIA and ten controls. Complementary sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE), high-performance liquid chromatography (HPLC), and mass spectrometry (MS) analyses revealed that non-gluten proteins, mainly α-amylase/trypsin inhibitors (ATIs), were predominant in the allergen test solutions of G, G-ω5, and sHWPs. Only eHWPs contained gliadins and glutenins as major fraction. All allergen test solutions induced significantly higher %CD63+ basophils/anti-FcεRI ratios in patients compared with controls. BAT using sHWPs yielded 100% sensitivity and 83% specificity at optimal cut-off and may be useful as another tool in WDEIA diagnosis. Our findings indicate that non-gluten proteins carrying yet unidentified allergenic epitopes appear to be relevant in WDEIA. Further research is needed to clarify the role of nutritional ATIs in WDEIA and identify specific mechanisms of immune activation.

5.
J Appl Microbiol ; 133(1): 120-129, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34724302

RESUMEN

AIMS: This study aimed to quantify α-amylase/trypsin inhibitor (ATI) CM3 and glutathione (GSH) during wheat sourdough breadmaking. METHODS AND RESULTS: Breads were made with two wheat cultivars and fermented with Fructilactobacillus sanfranciscensis, F. sanfranciscensis ΔgshR or Latilactobacillus sakei; chemically acidified and straight doughs served as controls. Samples were analysed after mixing, after proofing and after baking. GSH and CM3 were quantified by multi-reaction-monitoring-based methods on an LC-QTRAP mass spectrometer. Undigested ATI extracts were further examined by SDS-PAGE. CONCLUSIONS: GSH abundance was similar after mixing and after proofing but increased after baking (p < 0.001), regardless of fermentation. In breads baked with cv. Brennan, the samples fermented with lactobacilli had higher GSH abundance (p < 0.001) than in the controls. CM3 relative abundance remained similar after mixing and after proofing but decreased after baking (p < 0.001) across all treatments. This trend was supported by the SDS-PAGE analysis in which ATI band intensities decreased after baking (p < 0.001) in all experimental conditions. The overall effect of baking exerted a greater effect on the abundances of GSH and CM3 than fermentation conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report to quantify ATI over the course of breadmaking by LC-MS/MS in sourdough and straight dough processes.


Asunto(s)
Triticum , Inhibidores de Tripsina , Pan , Cromatografía Liquida , Fermentación , Glutatión , Espectrometría de Masas en Tándem , Tripsina , alfa-Amilasas
6.
J Proteome Res ; 20(3): 1544-1557, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33507751

RESUMEN

Wheat amylase/trypsin inhibitors (ATIs) have gained significant relevance as inducers of intestinal and extra-intestinal inflammation. In this study, we present a novel hybrid data-independent acquisition (DIA) liquid chromatography-mass spectrometry (LC-MS) approach, combining QconCAT technology with short microflow LC gradients and DIA and apply the method toward the quantitative proteome analysis of ATI extracts. The presented method is fast, robust, and reproducible and provides precise QconCAT-based absolute quantification of major ATI proteins while simultaneously quantifying the proteome by label-free quantification (LFQ). We analyzed extracts of 60 varieties of common wheat grown in replication and evaluated the reproducibility and precision of the workflow for the quantification of ATIs. Applying the method to analyze different wheat species (i.e., common wheat, spelt, durum wheat, emmer, and einkorn) and comparing the results to published data, we validated inter-laboratory and cross-methodology reproducibility of ATI quantification, which is essential in the context of large-scale breeding projects. Additionally, we applied our workflow to assess environmental effects on ATI expression, analyzing ATI content and proteome of same varieties grown at different locations. Finally, we explored the potential of combining QconCAT-based absolute quantification with DIA-based LFQ proteome analysis for the generation of new hypotheses or assay development.


Asunto(s)
Triticum , Inhibidores de Tripsina , Amilasas , Fitomejoramiento , Extractos Vegetales , Proteómica , Reproducibilidad de los Resultados , Triticum/genética , Tripsina
7.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823634

RESUMEN

Although wheat is used worldwide as a staple food, it can give rise to adverse reactions, for which the triggering factors have not been identified yet. These reactions can be caused mainly by kernel proteins, both gluten and non-gluten proteins. Among these latter proteins, α-amylase/trypsin inhibitors (ATI) are involved in baker's asthma and realistically in Non Celiac Wheat Sensitivity (NCWS). In this paper, we report characterization of three transgenic lines obtained from the bread wheat cultivar Bobwhite silenced by RNAi in the three ATI genes CM3, CM16 and 0.28. We have obtained transgenic lines showing an effective decrease in the activity of target genes that, although showing a higher trypsin inhibition as a pleiotropic effect, generate a lower reaction when tested with sera of patients allergic to wheat, accounting for the important role of the three target proteins in wheat allergies. Finally, these lines show unintended differences in high molecular weight glutenin subunits (HMW-GS) accumulation, involved in technological performances, but do not show differences in terms of yield. The development of new genotypes accumulating a lower amount of proteins potentially or effectively involved in allergies to wheat and NCWS, not only offers the possibility to use them as a basis for the production of varieties with a lower impact on adverse reaction, but also to test if these proteins are actually implicated in those pathologies for which the triggering factor has not been established yet.


Asunto(s)
Alérgenos/efectos adversos , Pan , Genes de Plantas , Interferencia de ARN , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Humanos , Hipersensibilidad/sangre , Inmunoglobulina E/metabolismo , Proteínas de Plantas/efectos adversos , Plantas Modificadas Genéticamente , Unión Proteica , Solubilidad , Transformación Genética , Triticum/crecimiento & desarrollo , alfa-Amilasas/metabolismo
9.
Nutrients ; 12(4)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316660

RESUMEN

We have identified a clinical association between self-reported non-celiac wheat sensitivity (NCWS) and Familial Mediterranean Fever (FMF). Objectives: A) To determine whether a 2-week double-blind placebo-controlled (DBPC) cross-over wheat vs. rice challenge exacerbates the clinical manifestations of FMF; B) to evaluate innate immune responses in NCWS/FMF patients challenged with wheat vs. rice. The study was conducted at the Department of Internal Medicine of the University Hospital of Palermo and the Hospital of Sciacca, Italy. Six female volunteers with FMF/NCWS (mean age 36 ± 6 years) were enrolled, 12 age-matched non-FMF, NCWS females, and 8 sex- and age-matched healthy subjects served as controls. We evaluated: 1. clinical symptoms by the FMF-specific AIDAI (Auto-Inflammatory Diseases Activity Index) score; 2. serum soluble CD14 (sCD14), C-reactive protein (CRP), and serum amyloid A (SSA); 3. circulating CD14+ monocytes expressing interleukin (IL)-1ß and tumor necrosis factor (TNF)-α. The AIDAI score significantly increased in FMF patients during DBPC with wheat, but not with rice (19 ± 6.3 vs. 7 ± 1.6; p = 0.028). sCD14 values did not differ in FMF patients before and after the challenge, but were higher in FMF patients than in healthy controls (median values 11357 vs. 8710 pg/ml; p = 0.002). The percentage of circulating CD14+/IL-1ß+ and of CD14+/TNF-α+ monocytes increased significantly after DBPC with wheat vs. baseline or rice challenge. Self-reported NCWS can hide an FMF diagnosis. Wheat ingestion exacerbated clinical and immunological features of FMF. Future studies performed on consecutive FMF patients recruited in centers for auto-inflammatory diseases will determine the real frequency and relevance of this association.


Asunto(s)
Fiebre Mediterránea Familiar/inmunología , Triticum/efectos adversos , Triticum/inmunología , Hipersensibilidad al Trigo/inmunología , Adulto , Estudios Cruzados , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Humanos , Interleucina-1beta/sangre , Receptores de Lipopolisacáridos/sangre , Masculino , Monocitos/inmunología , Factor de Necrosis Tumoral alfa
10.
Food Chem ; 299: 125038, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31284248

RESUMEN

Wheat is one of the world's most widely consumed staple food. However, the number of people suffering from wheat-related disorders has increased drastically. Amylase-trypsin inhibitors (ATIs) have recently been identified as one of the main triggers of non-celiac wheat sensitivity (NCWS). In this study, an enzymatic assay for the determination of trypsin inhibition activity in hexaploid wheat was developed. This method was optimized with respect to several parameters, such as extraction and incubation procedures, and was validated according to international standards, concerning accuracy, precision and robustness of the method. Results revealed that linear inhibition and thus accuracy occurred only in a narrow concentration range. However, after optimization of settings the novel method was found to be satisfactory for accurate determination of trypsin inhibition in wheat. Purification of the wheat extract with immobilized trypsin beads led to the identification of CM inhibitors (chloroform/methanol soluble proteins) as main contributors of trypsin inhibition.


Asunto(s)
Amilasas/farmacología , Pruebas de Enzimas/métodos , Triticum/enzimología , Inhibidores de Tripsina/farmacología , Tripsina/metabolismo , Alérgenos/farmacología , Humanos
11.
Front Plant Sci ; 10: 1530, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921226

RESUMEN

The consumption of wheat, rye, and barley may cause adverse reactions to wheat such as celiac disease, non-celiac gluten/wheat sensitivity, or wheat allergy. The storage proteins (gluten) are known as major triggers, but also other functional protein groups such as α-amylase/trypsin-inhibitors or enzymes are possibly harmful for people suffering of adverse reactions to wheat. Gluten is widely used as a collective term for the complex protein mixture of wheat, rye or barley and can be subdivided into the following gluten protein types (GPTs): α-gliadins, γ-gliadins, ω5-gliadins, ω1,2-gliadins, high- and low-molecular-weight glutenin subunits of wheat, ω-secalins, high-molecular-weight secalins, γ-75k-secalins and γ-40k-secalins of rye, and C-hordeins, γ-hordeins, B-hordeins, and D-hordeins of barley. GPTs isolated from the flours are useful as reference materials for clinical studies, diagnostics or in food analyses and to elucidate disease mechanisms. A combined strategy of protein separation according to solubility followed by preparative reversed-phase high-performance liquid chromatography was employed to purify the GPTs according to hydrophobicity. Due to the heterogeneity of gluten proteins and their partly polymeric nature, it is a challenge to obtain highly purified GPTs with only one protein group. Therefore, it is essential to characterize and identify the proteins and their proportions in each GPT. In this study, the complexity of gluten from wheat, rye, and barley was demonstrated by identification of the individual proteins employing an undirected proteomics strategy involving liquid chromatography-tandem mass spectrometry of tryptic and chymotryptic hydrolysates of the GPTs. Different protein groups were obtained and the relative composition of the GPTs was revealed. Multiple reaction monitoring liquid chromatography-tandem mass spectrometry was used for the relative quantitation of the most abundant gluten proteins. These analyses also allowed the identification of known wheat allergens and celiac disease-active peptides. Combined with functional assays, these findings may shed light on the mechanisms of gluten/wheat-related disorders and may be useful to characterize reference materials for analytical or diagnostic assays more precisely.

12.
Br J Nutr ; 121(4): 361-373, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30554574

RESUMEN

Gluten is only partially digested by intestinal enzymes and can generate peptides that can alter intestinal permeability, facilitating bacterial translocation, thus affecting the immune system. Few studies addressed the role of diet with gluten in the development of colitis. Therefore, we investigate the effects of wheat gluten-containing diet on the evolution of sodium dextran sulphate (DSS)-induced colitis. Mice were fed a standard diet without (colitis group) or with 4·5 % wheat gluten (colitis + gluten) for 15 d and received DSS solution (1·5 %, w/v) instead of water during the last 7 d. Compared with the colitis group, colitis + gluten mice presented a worse clinical score, a larger extension of colonic injury area, and increased mucosal inflammation. Both intestinal permeability and bacterial translocation were increased, propitiating bacteria migration for peripheral organs. The mechanism by which diet with gluten exacerbates colitis appears to be related to changes in protein production and organisation in adhesion junctions and desmosomes. The protein α-E-catenin was especially reduced in mice fed gluten, which compromised the localisation of E-cadherin and ß-catenin proteins, weakening the structure of desmosomes. The epithelial damage caused by gluten included shortening of microvilli, a high number of digestive vacuoles, and changes in the endosome/lysosome system. In conclusion, our results show that wheat gluten-containing diet exacerbates the mucosal damage caused by colitis, reducing intestinal barrier function and increasing bacterial translocation. These effects are related to the induction of weakness and disorganisation of adhesion junctions and desmosomes as well as shortening of microvilli and modification of the endocytic vesicle route.


Asunto(s)
Traslocación Bacteriana/inmunología , Colitis/inmunología , Dieta/efectos adversos , Glútenes/efectos adversos , Uniones Estrechas/inmunología , Animales , Colitis/inducido químicamente , Colitis/microbiología , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Ratones , Ratones Endogámicos C57BL , Permeabilidad , Triticum/química
13.
Plants (Basel) ; 7(4)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30453594

RESUMEN

Although wheat is a staple food for most of the human population, some of its components trigger adverse reactions. Among wheat components, the alpha-amylase/trypsin inhibitors (ATI) are important triggers of several allergies and activators of innate immunity. ATI are a group of exogenous protease inhibitors and include several polypeptides. The three ATI polypeptides named CM3, CM16 and 0.28 are considered major allergens, and might also play a role in other common wheat-related pathologies, such as Non Celiac Wheat Sensitivity and even Celiac Disease. On this basis, we pointed to obtain high amounts of them in purity and to evaluate their allergenicity potential. We thus isolated the mRNA corresponding to the three ATI genes CM3, CM16 and 0.28 from 28 days post-anthesis wheat kernels and the corresponding cDNAs were used for heterologous expression in Pichia pastoris. The three purified proteins were tested in degranulation assay against human sera of patients with food allergy to wheat. A large range of degranulation values was observed for each protein according to the sera tested. All of the three purified proteins CM3, CM16 and 0.28 were active as allergens because they were able to induce basophils degranulation on wheat allergic patients' sera, with the highest values of ß-hexosaminidase release observed for CM3 protein.

14.
J Agric Food Chem ; 66(46): 12395-12403, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30365312

RESUMEN

Amylase/trypsin-inhibitors (ATIs) are putative triggers of nonceliac gluten sensitivity, but contents of ATIs in different wheat species were not available. Therefore, the predominant ATIs 0.19 + 0.53, 0.28, CM2, CM3, and CM16 in eight cultivars each of common wheat, durum wheat, spelt, emmer, and einkorn grown under the same environmental conditions were quantitated by targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) and stable isotope dilution assays using specific marker peptides as internal standards. The results were compared to a label-free untargeted LC-MS/MS analysis, in which protein concentrations were determined by intensity based absolute quantitation. Both approaches yielded similar results. Spelt and emmer had higher ATI contents than common wheat, with durum wheat in between. Only three of eight einkorn cultivars contained ATIs in very low concentrations. The distribution of ATI types was characteristic for hexaploid, tetraploid, and diploid wheat species and suitable as species-specific fingerprint. The results point to a better tolerability of einkorn for NCGS patients, because of very low total ATI contents.


Asunto(s)
Amilasas/química , Glútenes/inmunología , Proteínas de Plantas/química , Triticum/química , Inhibidores de Tripsina/química , Hipersensibilidad al Trigo/inmunología , Amilasas/inmunología , Cromatografía Líquida de Alta Presión , Glútenes/efectos adversos , Humanos , Proteínas de Plantas/inmunología , Espectrometría de Masas en Tándem , Triticum/clasificación , Triticum/enzimología , Inhibidores de Tripsina/inmunología
15.
Nutrients ; 9(11)2017 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-29113045

RESUMEN

Many patients suspect wheat as being a major trigger of their irritable bowel syndrome (IBS) symptoms. Our aim was to evaluate whether sourdough wheat bread baked without baking improvers and using a long dough fermentation time (>12 h), would result in lower quantities of alpha-amylase/trypsin inhibitors (ATIs) and Fermentable, Oligo-, Di-, Mono-saccharides and Polyols (FODMAPs), and would be better tolerated than yeast-fermented wheat bread for subjects with IBS who have a poor subjective tolerance to wheat. The study was conducted as a randomised double-blind controlled 7-day study (n = 26). Tetrameric ATI structures were unravelled in both breads vs. baking flour, but the overall reduction in ATIs to their monomeric form was higher in the sourdough bread group. Sourdough bread was also lower in FODMAPs. However, no significant differences in gastrointestinal symptoms and markers of low-grade inflammation were found between the study breads. There were significantly more feelings of tiredness, joint symptoms, and decreased alertness when the participants ate the sourdough bread (p ≤ 0.03), but these results should be interpreted with caution. Our novel finding was that sourdough baking reduces the quantities of both ATIs and FODMAPs found in wheat. Nonetheless, the sourdough bread was not tolerated better than the yeast-fermented bread.


Asunto(s)
Pan/análisis , Síndrome del Colon Irritable/etiología , Saccharomyces cerevisiae/metabolismo , Triticum/química , Hipersensibilidad al Trigo , Adulto , Femenino , Fermentación , Harina/análisis , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Adulto Joven
16.
J Agric Food Chem ; 65(45): 9854-9860, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29059515

RESUMEN

In this work, the aim is to study the effectiveness of germination on wheat protein degradation, with a specific focus on proteins involved in adverse reactions to wheat. The effects of 8 days of germination at 25 °C on the chemical composition and the protein profile were determined. Germination did not have a significant effect on starch, protein, lipid, and ash contents. General protein profile, as indicated by SDS-PAGE analysis, revealed that germination induced a relevant degradation in protein fraction. After in vitro gastrointestinal digestion, gluten peptides involved in celiac disease (CD) were identified and quantified using UPLC/ESI-MS technique. Also, CM3 protein, involved in baker's asthma and intestinal inflammation, was quantified by measuring a marker peptide. Statistical analysis underlined that germination and genotype had significant impact on the amount of both components. Regarding gluten peptides related to CD, germination enabled an average reduction of 47% in peptides eliciting adaptive immune response and 46% in peptides eliciting innate immune response. CM3 protein showed also a high average reduction (56%). Thus, this study suggests that germination might be a good bioalternative to provide a low "impact" raw ingredient for special wheat-based foodstuffs.


Asunto(s)
Enfermedad Celíaca/inmunología , Germinación , Proteínas de Plantas/química , Semillas/crecimiento & desarrollo , Triticum/química , Electroforesis en Gel de Poliacrilamida , Glútenes/química , Glútenes/inmunología , Hidrólisis , Proteínas de Plantas/efectos adversos , Proteínas de Plantas/inmunología , Semillas/química , Semillas/inmunología , Espectrometría de Masa por Ionización de Electrospray , Triticum/efectos adversos , Triticum/crecimiento & desarrollo , Triticum/inmunología
17.
J Agric Food Chem ; 65(28): 5831-5836, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28644028

RESUMEN

Baker's asthma is a serious airway disease triggered by wheat protein CM3 α-amylase/trypsin inhibitor. The purpose of the present study was to investigate the impact of genotype and crop year on allergen CM3 α-amylase/trypsin inhibitor associated with baker's asthma. A historical series of Tunisian durum wheat (100 accessions), derived from three crop years, was used to compare the amount of CM3 from landraces to advanced cultivars. CM3 protein quantification was assessed after an enzymatic cleavage of the soluble protein extracts on a UPLC/ESI-MS system, using a marker peptide for its quantification. Combined data analysis of variance revealed an important effect of genotype, crop year, and their interaction. The CM3 allergenic proteins were found to significantly vary among studied genotypes, as confirmed by genetic variability, coefficient of variance, heritability, and genetic advance.


Asunto(s)
Asma/inmunología , Proteínas de Plantas/análisis , Triticum/genética , Hipersensibilidad al Trigo/inmunología , Cruzamiento , Genotipo , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Factores de Tiempo , Triticum/química , Triticum/crecimiento & desarrollo , Triticum/inmunología , Túnez
18.
Pestic Biochem Physiol ; 125: 17-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26615146

RESUMEN

This paper evaluates α-amylase inhibitor (α-AI) mediated defense of pigeonpea against Helicoverpa armigera. A bifunctional α-amylase/trypsin inhibitor was purified from the seeds of pigeonpea by native liquid phase isoelectric focusing (N-LP-IEF), affinity chromatography and preparative electrophoresis. Its in-vivo and in-vitro interaction with midgut amylases of H. armigera was studied along with growth inhibitory activity. One and two dimensional (2D) zymographic analyses revealed that the purified inhibitor is dimeric glycoprotein (60.2kDa and 56kDa) exist in a multi-isomeric form with five pI variants (pI 5.5 to 6.3). It was found to be heat labile with complete inactivation up to 80°C and stable over a wide range of pH (4-11). The slow binding and competitive type of α-amylase inhibition was observed with 0.08µM of dissociation constant (Ki) for the enzyme-inhibitor complex (EI). The internal protein sequence of two subunits obtained by mass spectrometry matched with cereal-type α-AI, a conserved domain from AAI_LTSS superfamily and sialyltransferase-like protein respectively. In-vivo studies indicated up-regulation of total midgut α-amylase activity with negative effect on growth rate of H. armigera suggesting its suitability for pest control.


Asunto(s)
Cajanus/química , Mariposas Nocturnas/efectos de los fármacos , Proteínas de Plantas/química , Semillas/química , Inhibidores de Tripsina/química , Secuencia de Aminoácidos , Animales , Cajanus/genética , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Cinética , Datos de Secuencia Molecular , Mariposas Nocturnas/química , Mariposas Nocturnas/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Alineación de Secuencia , Tripsina/química , Tripsina/genética , Tripsina/metabolismo , Inhibidores de Tripsina/aislamiento & purificación , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/química , alfa-Amilasas/genética , alfa-Amilasas/metabolismo
19.
J Agric Food Chem ; 63(10): 2660-7, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25682706

RESUMEN

The aim of the present study was to identify and characterize the celiacogenic/immunogenic proteins and peptides released during digestion of pasta (Triticum durum semolina). Cooked pasta was digested using a harmonized in vitro static model of oral-gastro-duodenal digestion. The course of pasta protein digestion was monitored by SDS-PAGE, and gluten proteins were specifically analyzed by Western blot using sera of celiac patients. Among the allergens, nonspecific lipid-transfer protein was highly resistant to gastro-duodenal hydrolysis, while other digestion-stable allergens such as α-amylase/trypsin inhibitors were not detected being totally released in the pasta cooking water. To simulate the final stage of intestinal degradation, the gastro-duodenal digesta were incubated with porcine jejunal brush-border membrane hydrolases. Sixty-one peptides surviving the brush-border membrane peptidases were identified by liquid chromatography-mass spectrometry, including several gluten-derived sequences encrypting different motifs responsible for the induction of celiac disease. These results provide new insights into the persistence of wheat-derived peptides during digestion of cooked pasta samples.


Asunto(s)
Antígenos de Plantas/metabolismo , Glútenes/metabolismo , Triticum/metabolismo , Animales , Antígenos de Plantas/química , Enfermedad Celíaca/metabolismo , Culinaria , Digestión , Electroforesis en Gel de Poliacrilamida , Glútenes/química , Humanos , Modelos Biológicos , Porcinos , Triticum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA