Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 112(5): 1081-1092, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34698542

RESUMEN

The somatic embryogenesis receptor kinase (SERK) gene family has been intensively studied in several plant species. Here we confirmed the existence of five SERK genes in grapevine (Chinese wild grapevine Vitis quinquangularis) and named them VqSERK1, VqSERK2, VqSERK3, VqSERK4, and VqSERK5. Analysis of the predicted structures of these SERK proteins revealed they include a signal peptide domain, a leucine zipper domain, a Ser-Pro-Pro domain, a single transmembrane domain, different leucine-rich repeats, and an intracellular kinase activity domain. The SERK genes of grapevine showed different gene expression patterns when treated with powdery mildew (Erysiphe necator) and hormones (salicylic acid, jasmonic acid, abscisic acid, and ethylene). Subcellular localization assays confirmed that VqSERK family proteins localized to the cell membrane. Moreover, we cloned the SERK3/BAK1 gene from the Chinese wild grapevine V. quinquangularis clone 'Shang-24'. Heterologous VqSERK3/BAK1 expression in the Arabidopsis bak1-4 mutant lines restored control of cell death, increased resistance to powdery mildew, and strengthened stomatal immunity. Our work may provide the foundation for further studies of SERK genes for pathogen resistance and hormone treatment in grapevine.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Vitis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Desarrollo Embrionario , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Vitis/genética
2.
Phytopathology ; 112(7): 1431-1443, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34384240

RESUMEN

Policymakers and donors often need to identify the locations where technologies are most likely to have important effects, to increase the benefits from agricultural development or extension efforts. Higher-quality information may help to target the high-benefit locations, but often actions are needed with limited information. The value of information (VOI) in this context is formalized by evaluating the results of decision making guided by a set of specific information compared with the results of acting without considering that information. We present a framework for management performance mapping that includes evaluating the VOI for decision making about geographic priorities in regional intervention strategies, in case studies of Andean and Kenyan potato seed systems. We illustrate the use of recursive partitioning, XGBoost, and Bayesian network models to characterize the relationships among seed health and yield responses and environmental and management predictors used in studies of seed degeneration. These analyses address the expected performance of an intervention based on geographic predictor variables. In the Andean example, positive selection of seed from asymptomatic plants was more effective at high altitudes in Ecuador. In the Kenyan example, there was the potential to target locations with higher technology adoption rates and with higher potato cropland connectivity, i.e., a likely more important role in regional epidemics. Targeting training to high management performance areas would often provide more benefits than would random selection of target areas. We illustrate how assessing the VOI can contribute to targeted development programs and support a culture of continuous improvement for interventions.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Semillas , Solanum tuberosum , Teorema de Bayes , Ecuador , Kenia , Enfermedades de las Plantas/prevención & control
3.
Phytopathology ; 112(2): 387-395, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34242064

RESUMEN

The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. Here, a highly resistant Chinese wild grapevine, Vitis amurensis 'Shuangyou' (SY), and the susceptible V. vinifera 'Red Globe' (RG) were selected for study, and their pathogenic infection and biochemical responses to B. cinerea were evaluated. The results revealed more trichomes on and a thicker cuticle for leaves of SY than RG under scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both SEM and TEM also showed that conidial germination, appressorium formation, and hyphal development of B. cinerea were delayed on the leaves of resistant SY. Fewer infected hyphae were also observed in leaves of resistant SY when compared with susceptible RG. The infected leaves of resistant SY harbored higher levels of cellulase and pectinase activity during the early infection stages of B. cinerea at 4 h postinoculation (hpi), and higher glucanase and chitinase activity were maintained in the inoculated leaves of SY from 4 through 18 hpi. Lignin was deposited in the infected leaves of susceptible RG but not in resistant SY. Taken together, these results provide insights into the ultrastructural characterizations and physical changes in resistant and susceptible grapevines.


Asunto(s)
Enfermedades de las Plantas , Vitis , Botrytis/fisiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Vitis/microbiología
4.
Phytopathology ; 111(11): 2067-2079, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33787286

RESUMEN

Reactive oxygen species (ROSs) are critical for the growth, development, proliferation, and pathogenicity of microbial pathogens; however, excessive levels of ROSs are toxic. Little is known about the signaling cascades in response to ROS stress in oomycetes such as Phytophthora infestans, the causal agent of potato late blight. Here, P. infestans was used as a model system to investigate the mechanism underlying the response to ROS stress in oomycete pathogens. Results showed severe defects in sporangium germination, mycelium growth, appressorium formation, and virulence of P. infestans in response to H2O2 stress. Importantly, these phenotypes mimic those of P. infestans treated with rapamycin, the inhibitor of target of rapamycin (TOR, 1-phosphatidylinositol-3-kinase). Strong synergism occurred when P. infestans was treated with a combination of H2O2 and rapamycin, suggesting that a crosstalk exists between ROS stress and the TOR signaling pathway. Comprehensive analysis of transcriptome, proteome, and phosphorylation omics showed that H2O2 stress significantly induced the operation of the TOR-mediated autophagy pathway. Monodansylcadaverine staining showed that in the presence of H2O2 and rapamycin, the autophagosome level increased in a dosage-dependent manner. Furthermore, transgenic potatoes containing double-stranded RNA of TOR in P. infestans (PiTOR) displayed high resistance to P. infestans. Therefore, TOR is involved in the ROS response and is a potential target for control of oomycete diseases, because host-mediated silencing of PiTOR increases potato resistance to late blight.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Peróxido de Hidrógeno , Enfermedades de las Plantas , Especies Reactivas de Oxígeno
5.
Phytopathology ; 111(9): 1686-1691, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33673752

RESUMEN

Though Verticillium dahliae is an asexually reproducing fungus, it is considered heterothallic owing to the presence of only one of the two mating-type idiomorphs (MAT1-1 or MAT1-2) in individual isolates. But sexual reproduction has never been observed either in nature or in the laboratory. All of the genomic information in the literature thus far has therefore come from studies on isolates carrying only the MAT1-2 idiomorph. Herein, we sequenced and compared high-quality reference genomes of MAT1-1 strain S011 and MAT1-2 strain S023 obtained from the same sunflower field. The two genomic sequences displayed high synteny, and encoded similar number genes, a similarity especially notable among pathogenicity-related genes. Homolog analysis between these two genomes revealed that 80% of encoded genes are highly conserved (95% identity and coverage), but only 20% of the single copy genes were identical. These novel genome resources will support the analysis of the structure and function of the two idiomorphs and provide valuable tools to elucidate the evolution and potential mechanisms of sexual reproduction in V. dahliae.


Asunto(s)
Genómica , Enfermedades de las Plantas , Ascomicetos
6.
Phytopathology ; 111(3): 509-520, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32880514

RESUMEN

Since 2006 there has been a decline in Colorado blue spruce (CBS; Picea pungens) planted as landscape trees and for Christmas tree production throughout the Lower Peninsula of Michigan. This decline is characterized by a slow loss of needles in the lower portion of the tree starting at branch tips, followed by entire branch dieback, which progresses upward over several years. This dieback has been linked to shallow branch cankers visible in the phloem when the bark layer is removed. Isolates in the fungal genus Diaporthe have been consistently isolated from lesion margins on symptomatic branches. Before the initial reports of declining CBS in landscape and Christmas trees, Diaporthe was known only as a nursery disease of CBS. To determine the species of Diaporthe linked to the decline of CBS in Michigan, seven gene regions were sequenced from a collection of Diaporthe isolates collected in 2011 through 2018 from CBS and other coniferous hosts. Subsequent phylogenetic analyses indicated that Diaporthe eres and a novel Diaporthe clade were present on symptomatic CBS in Michigan. The new species D. brevicancria nov. is described, and Koch's postulates were confirmed for D. brevicancria nov. and D. eres. D. brevicancria nov. produced the largest cankers in greenhouse pathogenicity trials, and dual inoculations of D. brevicancria nov. and D. eres produced intermediate cankers.


Asunto(s)
Picea , Ascomicetos , Colorado , Michigan , Filogenia , Enfermedades de las Plantas
7.
Phytopathology ; 111(1): 96-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33026300

RESUMEN

Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Variaciones en el Número de Copia de ADN , Manejo de la Enfermedad , Phytophthora infestans/genética , Fitomejoramiento , Enfermedades de las Plantas
8.
Phytopathology ; 111(7): 1137-1151, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33174819

RESUMEN

Biological control of plant diseases is important in organic greenhouse vegetable production, where fungicide use is limited. Organic producers use microbially diverse substrates, including composts, as media for plant growth. Previous research into the impact of vermicompost on the efficacy of applied biocontrol agents is limited. An in vitro assay was developed to test the efficacy of two biological control agents in a competitive microbial background. Suppression of the pathogen Fusarium oxysporum f. sp. radicis-cucumerinum by Clonostachys rosea f. catenulata (Gliocladium catenulatum strain J1446 [Prestop]) and Bacillus subtilis strain QST 713 (Rhapsody), was assessed on agar media amended with aerated vermicompost tea (ACT). Pathogen growth was reduced more by C. rosea than ACT alone, and C. rosea was equally effective when combined with ACT. In contrast, B. subtilis reduced pathogen growth less than ACT and, when combined, reduced pathogen growth no more than ACT alone. Both biocontrol agents were similarly tested with ACT against F. oxysporum f. sp. radicis-cucumerinum and Rhizoctonia solani on cucumber and radish. Additive, neutral, and antagonistic responses, depending on host, pathogen, and biocontrol agent, were observed. ACT alone provided more consistent disease suppression on cucumber compared with B. subtilis or C. rosea. In combination, disease suppression was most often better than each biocontrol alone but not better than ACT alone. ACT had antagonistic or additive interactions with C. rosea in the radish/R. solani pathosystem, depending on the experiment. The specific and general suppression of plant diseases by biological control agents in microbially rich environments is variable and warrants further study.


Asunto(s)
Fusarium , Agentes de Control Biológico , Hypocreales , Enfermedades de las Plantas/prevención & control , Rhizoctonia ,
9.
Phytopathology ; 111(5): 799-807, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33079021

RESUMEN

Elsinoë ampelina is the main cause of grape anthracnose, and the majority of grapevine cultivars are susceptible to this fungus. Some Chinese wild grape cultivars are resistant, however. It is therefore apt to compare the pathogenesis and immune responses in susceptible and resistant cultivars of grapevine to explore the detailed molecular and biochemical mechanisms of resistance to this fungus. In this study, ultrastructural and histopathological observations were used to demonstrate the resistance responses to E. ampelina in the resistant Chinese wild cultivar Vitis quinquangularis clone 'Shang-24' and the susceptible cultivars V. davidii 'Tangwei' and V. vinifera 'Thompson Seedless'. Seventy-two hours postinoculation (hpi) with E. ampelina, brown necrotic spots were clearly visible on the leaves of the susceptible 'Tangwei' and 'Thompson Seedless'. The infection was characterized by rapid colonization of the host cells by hyphae and massive spread of the pathogen in the intercellular spaces, ultimately leading to host cell collapse, cuticle dissolution, and extensive hyphal growth. In the resistant clone 'Shang-24', the conidia were lysed, a large quantity of electronically dense matter appeared, the hyphal growth was suppressed, and the host cells remained intact. In addition, six genes associated with disease resistance were differentially expressed in the susceptible and resistant cultivars. These disease-related genes were significantly up-regulated following infection with E. ampelina. This study illustrates the differences in infection and colonization of E. ampelina in resistant and susceptible grape leaves.


Asunto(s)
Ascomicetos , Vitis , Inmunidad , Enfermedades de las Plantas
10.
Phytopathology ; 111(8): 1369-1379, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33369479

RESUMEN

Hypochlorite is often used as a disinfestant of fungal pathogens in a range of agricultural and horticultural settings. However, reports of its effectiveness are variable across studies and it is unclear what factors could potentially influence the reported estimates of its efficacy. A systematic review and meta-analysis was conducted to assess the efficacy of hypochlorite against fungal pathogens and explore factors that may explain the observed heterogeneity in estimates of efficacy. Standardized mean effect size, Hedges' g, was calculated for each of the 109 selected studies, published from 1972 to 2019, that met the criteria defined for the systematic review. A random-effects model was used to estimate the overall mean effect size ([Formula: see text]) and determine the heterogeneity in g among studies. Hypochlorite resulted in a significant (P < 0.001) reduction in either disease intensity or propagule viability with [Formula: see text]= 2.25, suggesting a large overall effect. However, 95% prediction intervals ranged from -0.18 to 4.68, indicating that hypochlorite could be ineffective against some fungi or when targeting some substrate materials. An estimate of the within-study variability, τ2, was 1.48 and the proportion of heterogeneity in g among studies due to true effects was 71.5%. Inclusion of categorical moderator variables in the random effects model showed that hypochlorite treatments were significantly (P < 0.0062) more effective when used to disinfest spores in an aqueous solution ([Formula: see text]= 4.58) than when used on plastic ([Formula: see text]= 2.13), plant ([Formula: see text]= 2.13), and wood ([Formula: see text]= 0.79). Similarly, hypochlorite treatments were significantly (P < 0.0083) more effective in disinfesting fungal propagules of Thielaviopsis spp. ([Formula: see text]= 2.51) than those of Verticillium spp. ([Formula: see text]= 1.21). A meta-regression indicated that the effect of dose (ß = -3.54; P = 0.0398) and contact time (ß = -0.05; P = 0.0001) on [Formula: see text] were highly significant. Further, [Formula: see text]was significantly affected by the dose × time interaction (ß = -0.017; P = 0.0269). In the meta-regression models, dose and time explained 0 and 16% of the variance in true effects, respectively. In meta-regression models with a continuous variable of dose or time, a categorical variable of target or genus and their interaction term, genus and target explained an additional 7 to 19% of the variance in true effects. These results show that although the current recommended dose and contact time for commercial bleach products are expected to result in effective disinfestation, the target material and genera of the fungal pathogen of interest will likely influence their efficacy.


Asunto(s)
Ácido Hipocloroso , Enfermedades de las Plantas , Hongos
11.
Phytopathology ; 110(12): 1908-1922, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32689899

RESUMEN

Trials were conducted to quantify the stability (or lack of G × E interaction) of 15 maize hybrids to Gibberella ear rot (GER; caused by Fusarium graminearum) and deoxynivalenol (DON) contamination of grain across 30 Ohio environments (3 years × 10 locations). In each environment, one plot of each hybrid was planted and 10 ears per plot were inoculated via the silk channel. GER severity (proportion of ear area diseased) and DON contamination of grain (ppm) were quantified. Multiple rank-based methods, including Kendall's concordance coefficient (W) and Piepho's U, were used to quantify hybrid stability. The results found insufficient evidence to suggest crossover G × E interaction of ranks, with W greater than zero for GER (W = 0.28) and DON (W = 0.26), and U not statistically significant for either variable (P > 0.20). Linear mixed models (LMMs) were also used to quantify hybrid stability, accounting for crossover or noncrossover G × E interaction of transformed observed data. Based on information criteria and likelihood ratio tests for GER and DON response variables, the models with more complex variance-covariance structures-heterogeneous compound symmetry and factor-analytic-provided a better fit than the model with the simpler compound symmetry structure, indicating that one or more hybrids differed in stability. Overall, hybrids were stable based on rank-based methods, which indicated a lack of crossover G × E interaction, but the LMMs identified a few hybrids that were sensitive to environment. Resistant hybrids were generally more stable than susceptible hybrids.


Asunto(s)
Fusarium , Gibberella , Ohio , Enfermedades de las Plantas , Tricotecenos , Zea mays
12.
Phytopathology ; 110(10): 1632-1646, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32370661

RESUMEN

Sometimes plant pathologists assess disease intensity when they are primarily interested in other response variables, such as yield loss or toxin concentration in harvested products. In these situations, disease intensity potentially could be considered a surrogate of yield or toxin. A surrogate is a variable which can be used instead of the variable of interest in the evaluation of experimental treatments or in making predictions. Surrogates can be measured earlier, more conveniently, or more cheaply than the variable of primary interest, but the reliability or validity of the surrogate must be shown. We demonstrate ways of quantifying two facets of surrogacy by using a protocol originally developed by Buyse and colleagues for medical research. Coefficient-of-determination type statistics can be used to conveniently assess the strength of surrogacy on a unitless scale. As a case study, we evaluated whether field severity of Fusarium head blight (i.e., FHB index) can be used as a surrogate for yield loss and deoxynivalenol (DON) toxin concentration in harvested wheat grain. Bivariate mixed models and corresponding approximations were fitted to data from 82 uniform fungicide trials conducted from 2008 to 2013. Individual-level surrogacy-for predicting the variable of interest (yield or DON) from the surrogate (index) in plots with the same treatment-was very low. Trial-level surrogacy-for predicting the effect of treatment (e.g., mean difference) for the variable of interest based on the effect of the treatment on the surrogate (index)-was moderate for yield, and only low for DON. Challenges in using disease severity as a surrogate for yield and toxin are discussed.


Asunto(s)
Fusarium , Tricotecenos , Enfermedades de las Plantas , Reproducibilidad de los Resultados , Triazoles , Triticum
13.
Phytopathology ; 110(8): 1398-1409, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32228378

RESUMEN

Nonribosomal peptide synthetases (NPS) are known for the biosynthesis of antibiotics, toxins, and siderophore production. They are also a virulence determinant in different phytopathogens. However, until now, the functional characterization of NPS in Verticillium dahliae has not been reported. Deletion of the NPS gene in V. dahliae led to the decrease of conidia, microsclerotia, and pathogenicity. ΔVdNPS strains were tolerant to H2O2, and the genes involved in H2O2 detoxification, iron/copper transport, and cytoskeleton were differentially expressed in ΔVdNPS. Interestingly, ΔVdNPS strains exhibited hypersensitivity to salicylic acid (SA), and the genes involved in SA hydroxylation were up-regulated in ΔVdNPS compared with wild-type V. dahliae under SA stress. Additionally, during infection, ΔVdNPS induced more pathogenesis-related gene expression, higher reactive oxygen species production, and stronger SA-mediated signaling transduction in host to overcome pathogen. Uncovering the function of VdNPS in pathogenicity could provide a reliable theoretical basis for the development of cultivars with durable resistance against V. dahliae-associated diseases.


Asunto(s)
Verticillium , Proteínas Fúngicas , Peróxido de Hidrógeno , Péptido Sintasas , Enfermedades de las Plantas , Virulencia
14.
Phytopathology ; 110(8): 1428-1436, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32301679

RESUMEN

Common bean (Phaseolus vulgaris) is one of the most consumed agricultural products in the world. Its production is affected by common bacterial blight (CBB) caused by Xanthomonas citri pv. fuscans and X. phaseoli pv. phaseoli. In this work, we investigated the spectrum, genetics, and inheritance of common bean resistance to X. citri pv. fuscans. Inoculation of nine selected cultivars with an X. citri pv. fuscans strain showed that BRS Radiante and IAPAR 16 were resistant. These two cultivars were also resistant to six X. phaseoli pv. phaseoli strains of different geographic origins, demonstrating their broad-spectrum resistances. BRS Radiante sustained smaller X. citri pv. fuscans populations than two susceptible cultivars. Stomatal densities of IAPAR 16 and BRS Radiante were significantly higher than or not different from susceptible cultivars. BRS Radiante showed the lowest general combining ability values and the combination BRS Radiante × Carioca MG the lowest specific combining ability (SCA) values, revealing the capacity of BRS Radiante to increase resistance to X. citri pv. fuscans. Positive and negative parental SCA values indicated dominant and recessive genes involved in X. citri pv. fuscans resistance. Resistance of the BRS Radiante × Carioca MG cross segregated in a 9:7 ratio in the F2 population, indicating that it is governed by two complementary dominant genes. Maximum likelihood analysis showed that the resistance of BRS Radiante to X. citri pv. fuscans is conferred by a gene of major effect with contribution of additional polygenes. This study contributes with important knowledge on the resistance against CBB in Brazilian common bean cultivars as well as with molecular tools for confirmation of common bean hybrids.


Asunto(s)
Phaseolus/genética , Xanthomonas/genética , Brasil , ADN Bacteriano , Enfermedades de las Plantas
15.
Phytopathology ; 110(7): 1294-1304, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32223641

RESUMEN

Australian macadamia production is threatened by a disorder known as abnormal vertical growth (AVG), for which the etiology is unknown. AVG is characterized by vigorous upright growth and reduced lateral branching, flowering, and nut set that results in over 70% yield loss annually. Six commercial macadamia orchards were surveyed in 2012 and again in 2018 to examine spatiotemporal dynamics of the epidemic. Data were subjected to point-pattern and geostatistical analyses. AVG incidence in all orchards showed a better fit to the beta-binomial distribution than the binomial distribution. AVG incidence in the different orchards varied between 5 and 47% in 2012, and 13 and 55% in 2018 and the rate of spread was slow, averaging at about 2% increase in disease incidence per annum. Spatial patterns of AVG were highly aggregated on both survey years and spread was mainly between neighboring trees in a row or trees that were opposite to each other in different rows. Semivariograms showed large range values (approximately 15 to 120), indicating aggregation of AVG-affected trees beyond quadrat levels. Furthermore, clusters of disease were mainly at the edge of the orchard on the first survey date and the disease progressed toward the center of the orchard over time. It is concluded that AVG is caused by an infectious agent, and based on patterns of spread, we hypothesize that spread is facilitated by root grafting or root-to-root contact. Furthermore, a vascular-limited pathogen could be involved that modulates plant hormone production.


Asunto(s)
Macadamia , Enfermedades de las Plantas , Australia , Árboles
16.
Phytopathology ; 110(7): 1280-1293, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32212893

RESUMEN

This study combined phytosanitary surveys, laboratory analyses, and mathematical modeling to show how hail-induced wounds can foster the infections of the blight pathogen Cryphonectria parasitica, locally associated with extensive dieback of chestnut (Castanea sativa). Orchards and coppices located within and outside the assessed dieback area in a single location in the North West of Italy were inspected to appraise the abundance of hail-induced wounds and C. parasitica infections. The incidence of C. parasitica was significantly higher within the dieback area compared with outside (92% versus 60%; P < 0.05). Hail-induced wounds were observed on small branches and shoots of all trees sampled within the dieback area, whereas they were less abundant outside (20% of trees), suggesting either that the dieback was directly associated with the injuries caused by the hailstorms or that those injuries may have facilitated infections of C. parasitica. Isolations conducted on 359 branches and shoots showed that hail-induced wounds served as infection courts for C. parasitica and that infections depended on the size rather than on the number of hail wounds. We fitted a logistic model showing that hail-induced wounds whose perimeter was larger than 66 mm were at particular risk of C. parasitica infection. A newly designed geometrical-based model is proposed to relate hailstones size, hail wound perimeter, and the risk of infection. We established that hail-induced wounds are entry points for virulent and hypovirulent strains of C. parasitica, since 6.5% of isolates were infected by Cryphonectria hypovirus-1.


Asunto(s)
Ascomicetos , Fagaceae , Infecciones , Humanos , Italia , Enfermedades de las Plantas
17.
Phytopathology ; 110(4): 723-725, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31913742

RESUMEN

Thelonectria rubi is the causal agent of Nectria canker of Rubus spp. Here, we report a high-quality draft genome sequence for this pathogen, which also represents the first genome sequence for a Thelonectria species. The genome assembly was 44.6 Mb in size, assembled into 669 scaffolds and consisting of 12,973 predicted protein-coding genes. The availability of genome data for T. rubi provides a critical additional resource for an important plant pathogen and will be useful for fungal biology, comparative genomic, taxonomic and population studies of this and related species.


Asunto(s)
Hypocreales , Nectria , Rubus , Genómica , Enfermedades de las Plantas
18.
Phytopathology ; 110(3): 648-655, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31697198

RESUMEN

'Candidatus Liberibacter solanacearum' is a plant pathogen affecting the families Solanaceae and Apiaceae in different parts of the world. 'Ca. L. solanacearum' is a Gram-negative, fastidious α-proteobacterium that is vectored by different psyllid species. Plant-pathogenic bacteria are known for interfering with the host physiology or defense mechanisms, often by secreting bacterial effectors. Effector proteins are critical for virulence; therefore, the identification of effectors could help with disease management. In this study, we characterized the Sec-translocon-dependent 'Ca. L. solanacearum'-hypothetical protein effector 1 (Lso-HPE1). We compared this protein sequence in the different 'Ca. L. solanacearum' haplotypes. We predicted the signal peptide and validated its function using Escherichia coli's alkaline phosphatase fusion assay. Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana demonstrated that Lso-HPE1 from 'Ca. L. solanacearum' haplotypes A and B were able to inhibit the induction of cell death in plants. We also compared gene expression of the Lso-HPE1- transcripts in 'Ca. L. solanacearum' haplotypes A and B in tomato and in the vector Bactericera cockerelli. This work validates the identification of a Sec-translocon-dependent 'Ca. L. solanacearum' protein possibly involved in suppression of plant cell death.


Asunto(s)
Hemípteros , Rhizobiaceae , Solanum lycopersicum , Animales , Enfermedades de las Plantas , Inmunidad de la Planta
19.
Phytopathology ; 110(4): 780-789, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31804903

RESUMEN

Pseudomonas fuscovaginae, first reported from Japan in 1976, is now present in many agroecological regions around the world; it causes sheath brown rot of rice and is reported as a pathogen of a broad range of hosts. The pathogen can infect rice plants at all stages of growth and is known to cause significant losses due to grain discoloration, poor spike emergence and panicle sterility. Limited information is available on the virulence and mechanisms of pathogenicity for P. fuscovaginae. To address this, an analysis of genomes was conducted, which identified the presence of a gene showing homology to one of the genes contributing to syringopeptin synthetase (sypA) of P. syringae pv. syringae. To study the potential role of this gene in the virulence and pathogenicity of P. fuscovaginae, a site-specific mutation was created. Following inoculation of seeds and plantlets of rice and wheat with P. fuscovaginae wild types and their respective mutants, we demonstrated that the mutation significantly reduced virulence. This was evident on rice and wheat inoculated with mutants causing a significantly higher number of roots, length of roots and seedling height compared with their respective wild types. Characteristic disease symptoms of necrotic lesions were significantly less in rice seedlings infected with bacterial suspensions of mutants indicating a reduction in virulence. Chromatography analysis of bacterial exudates showed suppression of synthesis of metabolites analogous to syringopeptin in the mutants. These data demonstrate that the protein encoded by this sypA homolog gene is a major virulence determinant of P. fuscovaginae.


Asunto(s)
Ligasas , Pseudomonas , Proteínas Bacterianas , Japón , Enfermedades de las Plantas , Pseudomonas syringae , Virulencia
20.
Phytopathology ; 110(4): 851-862, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31880984

RESUMEN

Populations of Phytophthora infestans, the oomycete causal agent of potato late blight in the United States, are predominantly asexual, and isolates are characterized by clonal lineage or asexual descendants of a single genotype. Current tools for clonal lineage identification are time consuming and require laboratory equipment. We previously found that foliar spectroscopy can be used for high-accuracy pre- and postsymptomatic detection of P. infestans infections caused by clonal lineages US-08 and US-23. In this work, we found subtle but distinct differences in spectral responses of potato foliage infected by these clonal lineages in both growth-chamber time-course experiments (12- to 24-h intervals over 5 days) and naturally infected samples from commercial production fields. In both settings, we measured continuous visible to shortwave infrared reflectance (400 to 2,500 nm) on leaves using a portable spectrometer with contact probe. We consistently discriminated between infections caused by the two clonal lineages across all stages of disease progression using partial least squares (PLS) discriminant analysis, with total accuracies ranging from 88 to 98%. Three-class random forest differentiation between control, US-08, and US-23 yielded total discrimination accuracy ranging from 68 to 76%. Differences were greatest during presymptomatic infection stages and progressed toward uniformity as symptoms advanced. Using PLS-regression trait models, we found that total phenolics, sugar, and leaf mass per area were different between lineages. Shortwave infrared wavelengths (>1,100 nm) were important for clonal lineage differentiation. This work provides a foundation for future use of hyperspectral sensing as a nondestructive tool for pathovar differentiation.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Genotipo , Enfermedades de las Plantas , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA