Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 662, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956488

RESUMEN

BACKGROUND: The MADS-box gene family is widely distributed in the plant kingdom, and its members typically encoding transcription factors to regulate various aspects of plant growth and development. In particular, the MIKC-type MADS-box genes play a crucial role in the determination of floral organ development and identity recognition. As a type of androdioecy plant, Chionanthus retusus have unique gender differentiation. Manifested as male individuals with only male flowers and female individuals with only bisexual flowers. However, due to the lack of reference genome information, the characteristics of MIKC-type MADS-box genes in C. retusus and its role in gender differentiation of C. retusus remain largely unknown. Therefore, it is necessary to identify and characterize the MADS-box gene family within the genome of the C. retusus. RESULTS: In this study, we performed a genome-wide identification and analysis of MIKC-type MADS-box genes in C. retusus (2n = 2x = 46), utilizing the latest reference genome, and studied its expression pattern in individuals of different genders. As a result, we identified a total of 61 MIKC-type MADS-box genes in C. retusus. 61 MIKC-type MADS-box genes can be divided into 12 subfamilies and distributed on 18 chromosomes. Genome collinearity analysis revealed their conservation in evolution, while gene structure, domains and motif analysis indicated their conservation in structure. Finally, based on their expression patterns in floral organs of different sexes, we have identified that CrMADS45 and CrMADS60 may potentially be involved in the gender differentiation of C. retusus. CONCLUSIONS: Our studies have provided a general understanding of the conservation and characteristics of the MIKC-type MADS-box genes family in C. retusus. And it has been demonstrated that members of the AG subfamily, CrMADS45 and CrMADS60, may play important roles in the gender differentiation of C. retusus. This provides a reference for future breeding efforts to improve flower types in C. retusus and further investigate the role of MIKC-type MADS-box genes in gender differentiation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Filogenia , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Genoma de Planta , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolución Molecular , Familia de Multigenes
2.
Acta Biotheor ; 72(2): 7, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869631

RESUMEN

In angiosperms cytoplasmic DNA is typically passed on maternally through ovules. Genes in the mtDNA may cause male sterility. When male-sterile (female) cytotypes produce more seeds than cosexuals, they pass on more copies of their mtDNA and will co-occur with cosexuals with a neutral cytotype. Cytoplasmic gynodioecy is a well-known phenomenon in angiosperms, both in wild and crop plants. In some conifer families (e.g. Pinaceae) mitochondria are also maternally inherited. However in some other families (e.g. Taxaceae and Cupressaceae) mtDNA is paternally inherited through the pollen. With paternal mtDNA inheritance, male cytotypes that produce more pollen than cosexuals are expected to co-occur with cosexuals. This is uncharted territory. An ESS model shows that the presence of male cytotypes selects for more female allocation in the cosexual, i.e. for sexual specialisation. An allele that switches sex from male to female can then invade. This leads to rapid loss of the neutral cytotype of the cosexual, fixation of the male cytotype and dioecy with 50% males and 50% females. The models suggest that paternal inheritance of mtDNA facilitates the evolution dioecy. Consistent with this hypothesis the Pinaceae are 100% monoecious, while dioecy is common in the Taxaceae family and in the genus Juniperus (Cupressaceae). However, no reliable data are yet available on both mode of inheritance of mtDNA and gender variation of the same species. When cosexuals benefit from reproductive assurance (high selfing rate, low inbreeding depression, low fertilisation) they maintain themselves next to males and females. This predicted pattern with three sex types present in the same population is observed in conifers in nature.


Asunto(s)
ADN Mitocondrial , Herencia Paterna , Tracheophyta , ADN Mitocondrial/genética , Tracheophyta/genética , Reproducción/genética , Polen/genética , ADN de Plantas/genética
3.
Proc Biol Sci ; 290(2011): 20232137, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018108

RESUMEN

In dioecious populations, males and females may evolve different trait values to increase fitness through their respective sexual functions. Because hermaphrodites express both sexual functions, resolving sexual conflict is potentially more difficult for them. Here, we show that hermaphrodite plants can partially resolve sexual conflict by expressing different trait values in different male and female modules (e.g. different flowers, inflorescences, branches etc.). We analysed the flowering phenology, sex allocation and selection gradients on floral traits of flowers of the andromonoecious plant Pulsatilla alpina, which produces both bisexual and male flowers. Our results indicate that strong protogyny prevents early bisexual flowers from profiting from high siring opportunities early in the reproductive season at a time when male flowers could achieve high siring success. The production of unisexual male flowers thus resolves this sexual conflict because it allows the flowers to express their male function without waiting until after the female function has been performed. Our study illustrates the resolution of sexual conflict arising from phenological constraints via modular divergence in sex allocation. We discuss the extent to which modular variation in sex allocation in the context of other sexual systems may be similarly explained.


Asunto(s)
Flores , Reproducción , Inflorescencia , Plantas , Fenotipo
4.
Ann Bot ; 132(7): 1219-1232, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37930793

RESUMEN

BACKGROUND AND AIMS: Androdioecy, the co-occurrence of males and hermaphrodites, is a rare reproductive system. Males can be maintained if they benefit from a higher male fitness than hermaphrodites, referred to as male advantage. Male advantage can emerge from increased fertility owing to resource reallocation. However, empirical studies usually compare sexual phenotypes over a single flowering season, thus ignoring potential cumulative effects over successive seasons in perennials. In this study, we quantify various components of male fertility advantage, both within and between seasons, in the long-lived perennial shrub Phillyrea angustifolia (Oleaceae). Although, owing to a peculiar diallelic self-incompatibility system and female sterility mutation strictly associated with a breakdown of incompatibility, males do not need fertility advantage to persist in this species, this advantage remains an important determinant of their equilibrium frequency. METHODS: A survey of >1000 full-sib plants allowed us to compare males and hermaphrodites for several components of male fertility. Individuals were characterized for proxies of pollen production and vegetative growth. By analysing maternal progeny, we compared the siring success of males and hermaphrodites. Finally, using a multistate capture-recapture model we assessed, for each sexual morph, how the intensity of flowering in one year impacts next-year growth and reproduction. KEY RESULTS: Males benefitted from a greater vegetative growth and flowering intensity. Within one season, males sired twice as many seeds as equidistant, compatible hermaphroditic competitors. In addition, males more often maintained intense flowering over successive years. Finally, investment in male reproductive function appeared to differ between the two incompatibility groups of hermaphrodites. CONCLUSION: Males, by sparing the cost of female reproduction, have a higher flowering frequency and vegetative growth, both of which contribute to male advantage over an individual lifetime. This suggests that studies analysing sexual phenotypes during only single reproductive periods are likely to provide inadequate estimates of male advantage in perennials.


Asunto(s)
Oleaceae , Reproducción , Humanos , Masculino , Femenino , Estaciones del Año , Fertilidad , Oleaceae/genética , Plantas
5.
Tree Physiol ; 43(3): 486-500, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36401877

RESUMEN

The mechanism of sex differentiation in androdioecy is of great significance for illuminating the origin and evolution of dioecy. Tapiscia sinensis Oliv. is a functionally androdioecious species with both male and hermaphroditic individuals. Male flowers of T. sinensis lack the ovules of gynoecia compared with hermaphrodites. To identify sex simply and accurately, and further find the potential determinants of sex differentiation in T. sinensis, we found that TsRPL10a', a duplicate of TsRPL10a, was a male-linked gene. The promoter (5' untranslated region and the first intron) of TsRPL10a' can be used to accurately identify sex in T. sinensis. TsRPL10a is a ribosomal protein that is involved in gynoecium development, and sufficient ribosomal levels are necessary for female gametogenesis. The expression level of TsRPL10a was significantly downregulated in male flower primordia compared with hermaphrodites. The RNA fluorescence in situ hybridization (FISH) assay demonstrated that TsRPL10a was almost undetectable in male gynoecia at the gynoecial ridge stage, which was a key period of ovule formation by scanning electron microscope observation. In male flowers, although the promoter activity of TsRPL10a was significantly higher than TsRPL10a' verified by transgenic Arabidopsis thaliana, the transcriptional expression ratio of TsRPL10a was obviously lower than TsRPL10a' and reached its lowest at the gynoecial ridge stage, indicating the existence of a female suppressor. The promoter similarity of TsRPL10a and TsRPL10a' was only 45.29%; the genomic sequence similarity was 89.8%; four amino acids were altered in TsRPL10a'. The secondary structure of TsRPL10a' was different from TsRPL10a, and TsRPL10a' did not exhibit FISH and GUS expression in the gynoecium the way TsRPL10a did. From the perspective of RT-qPCR, its high expression level, followed by the low expression level of TsRPL10a in male flowers, indicates its antagonism function with TsRPL10a. The evolutionary analysis, subcellular localization and flower expression pattern suggested that TsRPL10a might be functionally conserved with AtRPL10aA, AtRPL10aB and AtRPL10aC in A. thaliana. Overall, we speculated that TsRPL10a and its duplicate TsRPL10a' might be involved in sex differentiation by influencing gynoecium development in T. sinensis.


Asunto(s)
Arabidopsis , Diferenciación Sexual , Diferenciación Sexual/genética , Árboles , Hibridación Fluorescente in Situ , Flores , Arabidopsis/metabolismo
6.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142310

RESUMEN

Androdioecy is the crucial transition state in the evolutionary direction of hermaphroditism to dioecy, however, the molecular mechanisms underlying the formation of this sex system remain unclear. While popular in China for its ornamental and cultural value, Osmanthus fragrans has an extremely rare androdioecy breeding system, meaning that there are both male and hermaphroditic plants in a population. To unravel the mechanisms underlying the formation of androdioecy, we performed small RNA sequencing studies on male and hermaphroditic O. fragrans. A total of 334 miRNAs were identified, of which 59 were differentially expressed. Functional categorization revealed that the target genes of differentially expressed miRNAs were mainly involved in the biological processes of reproductive development and the hormone signal transduction pathway. We speculated that the miRNA160, miRNA167, miRNA393 and miRNA396 families may influence the sex differentiation in O. fragrans. Overall, our study is the first exploration of miRNAs in the growth and development process of O. fragrans, and is also the first study of androdioecious plants from the miRNA sequencing perspective. The analysis of miRNAs and target genes that may be involved in the sex differentiation process lay a foundation for the ultimate discovery of the androdioecious molecular mechanism in O. fragrans.


Asunto(s)
MicroARNs , Oleaceae , Hormonas , Humanos , MicroARNs/genética , Oleaceae/genética , Fitomejoramiento , Diferenciación Sexual/genética
7.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210224, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35306889

RESUMEN

The plant genus Mercurialis includes dioecious, monoecious and androdioecious species (where males coexist with hermaphrodites). Its diversification involved reticulate evolution via hybridization and polyploidization. The Y chromosome of the diploid species Mercurialis annua shows only mild signs of degeneration. We used sequence variation at a Y-linked locus in several species and at multiple autosomal and pseudoautosomal loci to investigate the origin and evolution of the Y chromosome across the genus. Our study provides evidence for further cases of allopolyploid speciation. It also reveals that all lineages with separate sexes (with one possible exception) share the same ancestral Y chromosome. Surprisingly, males in androdioecious populations of hexaploid M. annua carry a Y chromosome that is not derived from either of its two putative progenitor lineages but from a more distantly related perennial dioecious lineage via introgression. These results throw new light on the evolution of sexual systems and polyploidy in Mercurialis and secure it as a promising model for further study of plant sex chromosomes. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Asunto(s)
Euphorbiaceae , Diploidia , Euphorbiaceae/genética , Genes de Plantas , Poliploidía , Cromosomas Sexuales/genética
8.
Plants (Basel) ; 11(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35336635

RESUMEN

Androdioecy is a rare reproductive system. Fraxinus platypoda, a woody canopy species in Japan's mountainous riparian zones, is described as a morphologically androdioecious species. In this study, we tried to detect whether F. platypoda is also functionally androdioecious. We analyzed its sexual expression, seed development, pollen morphology and germination ability, pollination systems, and mast flowering behavior. We found that the hermaphrodite trees are andromonoecious, with inflorescences bearing male and hermaphroditic flowers, whereas male individuals had only male flowers. Pollen morphology was identical in male flowers, in hermaphrodite flowers of an andromonoecious individual, and in male flowers of male individuals. Pollen from both types of individuals was capable of germination both ex vivo (on nutrient medium) and in vivo in pollination experiments. However, compared with pollen from andromonoecious trees, pollen from male trees showed a higher germination rate. The self-pollination rate of bagged hermaphroditic flowers was almost zero. The fruit set rate following cross-pollination with male pollen from a male tree was higher than that following natural pollination, whereas the rate with hermaphroditic pollen was the same. The flowering and fruiting of F. platypoda have fluctuated over 17 years; the flowering of the two types of sexual individuals exhibited clear synchronization during this period. The frequency of male individuals within the populations is 50%. The maintenance of such a proportion of males in populations of the self-incompatible F. platypoda is either indicative of a true androdioecious species with a diallelic self-incompatibility system or a cryptic-dioecious species. This alternative is discussed here.

9.
BMC Plant Biol ; 21(1): 468, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645403

RESUMEN

BACKGROUND: The fragrant flower plant Osmanthus fragrans has an extremely rare androdioecious breeding system displaying the occurrence of males and hermaphrodites in a single population, which occupies a crucial intermediate stage in the evolutionary transition between hermaphroditism and dioecy. However, the molecular mechanism of androdioecy plant is very limited and still largely unknown. RESULTS: Here, we used SWATH-MS-based quantitative approach to study the proteome changes between male and hermaphroditic O. fragrans pistils. A total of 428 proteins of diverse functions were determined to show significant abundance changes including 210 up-regulated and 218 down-regulated proteins in male compared to hermaphroditic pistils. Functional categorization revealed that the differentially expressed proteins (DEPs) primarily distributed in the carbohydrate metabolism, secondary metabolism as well as signaling cascades. Further experimental analysis showed the substantial carbohydrates accumulation associated with promoted net photosynthetic rate and water use efficiency were observed in purplish red pedicel of hermaphroditic flower compared with green pedicel of male flower, implicating glucose metabolism serves as nutritional modulator for the differentiation of male and hermaphroditic flower. Meanwhile, the entire upregulation of secondary metabolism including flavonoids, isoprenoids and lignins seem to protect and maintain the male function in male flowers, well explaining important feature of androdioecy that aborted pistil of a male flower still has a male function. Furthermore, nine selected DEPs were validated via gene expression analysis, suggesting an extra layer of post-transcriptional regulation occurs during O. fragrans floral development. CONCLUSION: Taken together, our findings represent the first SWATH-MS-based proteomic report in androdioecy plant O. fragrans, which reveal carbohydrate metabolism, secondary metabolism and post-transcriptional regulation contributing to the androdioecy breeding system and ultimately extend our understanding on genetic basis as well as the industrialization development of O. fragrans.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Flores/crecimiento & desarrollo , Flores/genética , Oleaceae/crecimiento & desarrollo , Oleaceae/genética , Oleaceae/metabolismo , Reproducción/genética , Reproducción/fisiología , Evolución Biológica , China , Regulación de la Expresión Génica de las Plantas , Variación Genética , Organismos Hermafroditas/genética , Organismos Hermafroditas/crecimiento & desarrollo , Organismos Hermafroditas/metabolismo , Fenotipo , Proteómica
10.
Evolution ; 75(11): 2972-2983, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33844310

RESUMEN

Androdioecy (the coexistence of males and hermaphrodites) is a rare mating system for which the evolutionary dynamics are poorly understood. Here, we investigate the cottony cushion scale, Icerya purchasi, one of only three reported cases of androdioecy in insects. In this species, female-like hermaphrodites have been shown to produce sperm and self-fertilize. However, males are ocassionally observed as well. In a large genetic analysis, we show for the first time that, although self-fertilization appears to be the primary mode of reproduction, rare outbreeding events do occur in natural populations, supporting the hypothesis that hermaphrodites mate with males and hence androdioecy is the mating system of I. purchasi. Thus, this globally invasive pest insect appears to enjoy the colonization advantages of a selfing organism while also benefitting from periodic reintroduction of genetic variation through outbreeding with males.


Asunto(s)
Hemípteros , Animales , Femenino , Insectos/genética , Masculino
11.
J Theor Biol ; 513: 110594, 2021 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-33460652

RESUMEN

Androdioecy, the coexistence of hermaphrodites and males, is very rare in vertebrates but occurs in mangrove killifish living in ephemeral or unstable habitats. Hermaphrodites reproduce both by outcrossing with males and by selfing. Outbreeding is advantageous because of inbreeding depression, but it requires encounters with males. The advantages of a propensity for outcrossing among hermaphrodites and the production of males affect each other very strongly. To study the evolutionary coupling of these two aspects, we here analyze a simple evolutionary game for a population composed of three phenotypes: outcrossing-oriented hermaphrodites, selfing-oriented hermaphrodites, and males. Outcrossing-oriented hermaphrodites first attempt to search for males and perform outcrossing if they encounter males. If they fail to encounter males, they reproduce via selfing. Selfing-oriented hermaphrodites simply reproduce by selfing. The replicator dynamics may show bistability, in which both the androdioecious population (with outcrossing-oriented hermaphrodites and males) and the pure hermaphroditic population are locally stable. The model shows the fraction of males is either zero or relatively high (more than 25%), which is not consistent with the observed low fraction of males (less than 5%). To explain this discrepancy, we studied several models including immigration and enforced copulation. We concluded that the observed pattern can be most likely explained by a population dominated by selfing-oriented hermaphrodites receiving immigration of males.


Asunto(s)
Evolución Biológica , Cruzamiento , Trastornos del Desarrollo Sexual , Teoría del Juego , Reproducción , Animales , Emigración e Inmigración , Fundulidae/fisiología , Masculino , Reproducción/fisiología , Conducta Sexual Animal
12.
J Evol Biol ; 34(2): 416-422, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33098734

RESUMEN

In dioecious plants, males and females frequently show 'leaky' sex expression, with individuals occasionally producing flowers of the opposite sex. This leaky sex expression may have enabled the colonization of oceanic islands by dioecious plant species, and it is likely to represent the sort of variation upon which selection acts to bring about evolutionary transitions from dioecy to hermaphroditism. Although leakiness is commonly reported for dioecious species, it is not known whether it has plastic component. The question is interesting because males or females with an ability to enhance their leakiness plastically in the absence of mates would have an advantage of being able to produce progeny by self-fertilization. Here, we demonstrate that leaky sex expression in the wind-pollinated dioecious herb Mercurialis annua is plastically responsive to its mating context. We compared experimental populations of females growing either with or without males. Females growing in the absence of males were leakier in their sex expression than controls growing with males, producing more than twice as many male flowers. Our results thus provide a striking instance of plasticity in the reproductive behaviour of plants that is likely adaptive. We consider how females might sense their mating environment as a function of pollen availability, and we discuss possible constraints on the evolution of plasticity in sex expression when the environmental signals that individuals receive are unreliable.


Asunto(s)
Adaptación Fisiológica , Euphorbiaceae/fisiología , Flores/crecimiento & desarrollo , Polinización
13.
Zool Stud ; 59: e34, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262856

RESUMEN

One of the most perplexing questions within evolutionary biology is: "why are there so many methods of reproduction?" Contemporary theories assume that sexual reproduction should allow long term survival as dispersal and recombination of genetic material provides a population of organisms with the ability to adapt to environmental change. One of the most frustrating aspects of studying the evolution of reproductive systems is that we have not yet been able to utilize information locked within the fossil record to assess breeding system evolution in deep time. While the fossil record provides us with information on an organism's living environment, as well as some aspects of its ecology, the preservation of biological interactions (reproduction, feeding, symbiosis, communication) is exceedingly rare. Using both information from extant taxa uncovered by a plethora of biological and ecological studies and the rich representation of the Spinicaudata (Branchiopoda: Crustacea) throughout the fossil record (from the Devonian to today), we address two hypotheses of reproductive evolutionary theory: (1) that unisexual species should be short lived and less speciose than their outcrossing counterparts and (2) that androdioecy (mixtures of males and hermaphrodites) is an unstable, transitionary system that should not persist over long periods of time. We find no evidence of all-unisexual spinicaudatan taxa (clam shrimp) in the fossil record, but do find evidence of both androdioecious and dioecious clam shrimp. We find that clades with many androdioecious species are less speciose but persist longer than their mostly dioecious counterparts. These data suggest that all-unisexual lineages likely do not persist long whereas mixtures of unisexual and sexual breeding can persist for evolutionarily long periods but tend to produce fewer species than mostly sexual breeding.

14.
Proc Biol Sci ; 287(1936): 20201718, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33023418

RESUMEN

Individual plants can produce leaves that differ substantially in size, morphology and many other traits. However, leaves that play a specific role in reproduction have rarely been reported. Here, we report leaves specialized to enclose fruit clusters and enhance seed production in an annual vine, Schizopepon bryoniifolius. Enclosure leaves were produced at the end of the growing season in late autumn. They were different in greenness and structure from other leaves. Under solar radiation, the ambient temperature inside an intact enclosure was up to 4.6°C higher than that near a fruit cluster whose enclosure leaves had been removed. We found that enclosures were thicker at colder sites. Removal of enclosing leaves negatively affected fruit survival and/or growth, but we could not identify the exact mechanism. The results suggested that enclosures allow the plant to produce seeds under the cold weather the plant encounters at the end of its life. Vegetative and reproductive traits of plants have usually been studied separately. This study indicates how they can dynamically interact, as shown by an examination of associations among leaf and reproductive trait changes according to life stages.


Asunto(s)
Cucurbitaceae/fisiología , Frutas/fisiología , Hojas de la Planta/fisiología , Flores , Plantas , Reproducción , Estaciones del Año , Semillas
15.
Mol Biol Rep ; 47(6): 4885-4890, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32378167

RESUMEN

The gooseneck barnacle Octolasmis warwickii has a rare sexual system called androdioecy, in which hermaphrodites and dwarf males co-occur. It has been hypothesized that dwarf males can coexist with conspecific hermaphrodites when dwarf males are capable of leaving more offspring than hermaphrodites via male reproduction. This hypothesis of reproductive superiority of dwarf males can be validated by comparing the reproductive success between dwarf males and hermaphrodites through DNA marker-based parentage testing. In the present study, we developed microsatellite DNA markers for O. warwickii, and evaluated the power of these markers to infer parentage based on simulation analysis. Using next generation sequencing, we obtained 344 microsatellite sequences suitable for designing primer sets for amplification in polymerase chain reaction (PCR). Of these, we examined the PCR amplification efficiency of 54 primer sets, of which 11 passed our primer screening in a population sample (n = 35). The developed markers exhibited moderate to high levels of polymorphisms, and met Hardy-Weinberg equilibrium with little evidence of significant allelic association to each other. Our simulated paternity inference suggested that the combinational use of the markers allows a high resolution of parentage (success rate of > 99.9%) if all candidate fathers are available.


Asunto(s)
Repeticiones de Microsatélite/genética , Thoracica/genética , Alelos , Animales , Padre , Frecuencia de los Genes/genética , Marcadores Genéticos/genética , Genotipo , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Masculino , Polimorfismo Genético/genética , Reproducción/genética
16.
Tree Physiol ; 40(1): 108-118, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31340033

RESUMEN

Tapiscia sinensis Oliv. (Tapisciaceae) has been proven to be a functional androdioecious species with both male and hermaphroditic individuals, and the pollen viability of males is far higher than that of hermaphrodites. To better understand the causes of the low pollen viability in hermaphroditic flowers, different stages of anther development were observed. We found that hermaphroditic flowers exhibit abnormal tapetum development, resulting in low pollen viability. To clarify the underlying molecular mechanism of abnormal tapetum development in hermaphrodites, quantitative real-time PCR analyses were performed. The results revealed that the expression levels of an important transcription factor for tapetum development and function, T. sinensis DYSFUNCTIONAL TAPETUM1 (TsDYT1), and its potential downstream regulatory genes T. sinensis DEFECTIVE in TAPETAL DEVELOPMENT and FUNCTION1 (TsTDF1), T. sinensis ABORTED MICROSPORE (TsAMS) and T. sinensis MALE STERILITY 1 (TsMS1) were all significantly downregulated in hermaphrodites compared with males at some key stages of anther development. The amino acid sequence similarity, expression pattern, gene structure and subcellular localization of these genes were analyzed, and the results indicated functional conservation between T. sinensis and homologues in Arabidopsis thaliana. Next, rapid amplification of cDNA end and thermal asymmetric interlaced PCR were employed to clone the full-length cDNA and promoter sequences of these genes, respectively. In addition, results of yeast two-hybrid analysis showed that TsDYT1 can form heterodimers with TsAMS, and yeast one-hybrid analysis demonstrated that TsDYT1 directly binds to the promoter regions of TsTDF1 and TsMS1. TsTDF1 can directly regulate expression of TsAMS, suggesting that a functionally conserved pathway exists between A. thaliana and T. sinensis to regulate tapetum development. In conclusion, the results suggest that abnormal expression of core transcription factors for tapetum development, including TsDYT1, TsTDF1, TsAMS and TsMS1, plays an important role in the abnormal development of the tapetum in T. sinensis hermaphrodites. Furthermore, a hermaphroditic tapetum with abnormal function causes the low pollen viability of hermaphroditic trees. Our results provide new insight into our understanding of the underlying mechanism of why pollen viability is much higher in males than hermaphrodites of the androdioecious tree T. sinensis.


Asunto(s)
Arabidopsis/genética , Árboles , Flores/genética , Regulación de la Expresión Génica de las Plantas , Polen
17.
Genetics ; 213(2): 615-632, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31395653

RESUMEN

The diversity in sperm shape and size represents a powerful paradigm to understand how selection drives the evolutionary diversification of cell morphology. Experimental work on the sperm biology of the male-hermaphrodite nematode Caenorhabditis elegans has elucidated diverse factors important for sperm fertilization success, including the competitive superiority of larger sperm. Yet despite extensive research, the molecular mechanisms regulating C. elegans sperm size and the genetic basis underlying natural variation in sperm size remain unknown. To address these questions, we quantified male sperm size variation of a worldwide panel of 97 genetically distinct C. elegans strains, allowing us to uncover significant genetic variation in male sperm size. Aiming to characterize the molecular genetic basis of C. elegans male sperm size variation using a genome-wide association study, we did not detect any significant quantitative trait loci. We therefore focused on the genetic analysis of pronounced sperm size differences observed between recently diverged laboratory strains (N2 vs. LSJ1/2). Using mutants and quantitative complementation tests, we demonstrate that variation in the gene nurf-1 underlies the evolution of small sperm in the LSJ lineage. Given the previous discovery that this same nurf-1 variation was central for hermaphrodite laboratory adaptation, the evolution of reduced male sperm size in LSJ strains likely reflects a pleiotropic consequence. Together, our results provide a comprehensive quantification of natural variation in C. elegans sperm size and first insights into the genetic determinants of Caenorhabditis sperm size, pointing at an involvement of the NURF chromatin remodeling complex.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Tamaño de la Célula , Proteínas Cromosómicas no Histona/genética , Espermatozoides/citología , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Linaje de la Célula/genética , Ensamble y Desensamble de Cromatina , Trastornos del Desarrollo Sexual/genética , Trastornos del Desarrollo Sexual/patología , Fertilización/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Masculino , Sitios de Carácter Cuantitativo/genética , Espermatozoides/crecimiento & desarrollo
18.
Proc Natl Acad Sci U S A ; 116(26): 12919-12924, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31189601

RESUMEN

The maintenance of males at intermediate frequencies is an important evolutionary problem. Several species of Caenorhabditis nematodes have evolved a mating system in which selfing hermaphrodites and males coexist. While selfing produces XX hermaphrodites, cross-fertilization produces 50% XO male progeny. Thus, male mating success dictates the sex ratio. Here, we focus on the contribution of the male secreted short (mss) gene family to male mating success, sex ratio, and population growth. The mss family is essential for sperm competitiveness in gonochoristic species, but has been lost in parallel in androdioecious species. Using a transgene to restore mss function to the androdioecious Caenorhabditis briggsae, we examined how mating system and population subdivision influence the fitness of the mss+ genotype. Consistent with theoretical expectations, when mss+ and mss-null (i.e., wild type) genotypes compete, mss+ is positively selected in both mixed-mating and strictly outcrossing situations, though more strongly in the latter. Thus, while sexual mode alone affects the fitness of mss+, it is insufficient to explain its parallel loss. However, in genetically homogenous androdioecious populations, mss+ both increases male frequency and depresses population growth. We propose that the lack of inbreeding depression and the strong subdivision that characterize natural Caenorhabditis populations impose selection on sex ratio that makes loss of mss adaptive after self-fertility evolves.


Asunto(s)
Caenorhabditis/genética , Evolución Molecular , Eliminación de Gen , Razón de Masculinidad , Animales , Proteínas de Caenorhabditis elegans/genética , Femenino , Organismos Hermafroditas/genética , Infertilidad Masculina/genética , Masculino , Selección Genética , Autofecundación/genética , Espermatozoides/metabolismo
19.
J Evol Biol ; 31(9): 1405-1412, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29908091

RESUMEN

Most dioecious plants are perennial and subject to trade-offs between sexual reproduction and vegetative performance. However, these broader life-history trade-offs have not usually been incorporated into theoretical analyses of the evolution of separate sexes. One such analysis has indicated that hermaphroditism is favoured over unisexuality when female and male sex functions involve the allocation of nonoverlapping types of resources to each sex function (e.g. allocations of carbon to female function vs. allocations of nitrogen to male function). However, some dioecious plants appear to conform to this pattern of resource allocation, with different resource types allocated to female vs. male sex functions. Using an evolutionarily stable strategy approach, we show that life-history trade-offs between sexual reproduction and vegetative performance enable the evolution of unisexual phenotypes even when there are no direct resource-based trade-offs between female and male sex functions. This result might help explain the preponderance of perennial life histories among dioecious plants and why many dioecious plants with annual life histories have indeterminate growth with ongoing trade-offs between sexual reproduction and vegetative growth.


Asunto(s)
Evolución Biológica , Modelos Genéticos , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Aptitud Genética , Rasgos de la Historia de Vida , Fenotipo , Reproducción
20.
Mol Phylogenet Evol ; 118: 379-391, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29111476

RESUMEN

Androdioecy is the rarest sexual system among plants. The majority of androdioecious species are herbaceous plants that have evolved from dioecious ancestors. Nevertheless, some woody and androdioecious plants have hermaphrodite ancestors, as in the Annonaceae, where androdioecious genera have arisen several times in different lineages. The majority of androdioecious species of Annonaceae belong to the Neotropical tribe Malmeeae. In addition to these species, Pseudoxandra spiritus-sancti was recently confirmed to be androdioecious. Here, we describe the morphology of male and bisexual flowers of Pseudoxandra spiritus-sancti, and investigate the evolution of androdioecy in Malmeeae. The phylogeny of tribe Malmeeae was reconstructed using Bayesian inference, maximum parsimony and maximum likelihood of 32 taxa, using DNA sequences of 66 molecular markers of the chloroplast genome, sequenced by next generation sequencing. The reconstruction of ancestral states was performed for characters associated with sexual systems and floral morphology. The phylogenetic analyses reconstructed three main groups in Malmeeae, (Malmea (Cremastosperma, Pseudoxandra)) sister to the rest of the tribe, and (Unonopsis (Bocageopsis, Onychopetalum)) sister to (Mosannona, Ephedranthus, Klarobelia, Oxandra, Pseudephedranthus fragrans, Pseudomalmea, Ruizodendron ovale). Hermaphroditism is plesiomorphic in the tribe, with four independent evolutions of androdieocy, which represents a synapomorphy of two groups, one that includes three genera and 14 species, the other with a single genus of seven species. Male flowers are unisexual from inception and bisexual flowers possess staminodes and functional stamens. Pseudoxandra spiritus-sancti is structurally androdioecious.


Asunto(s)
Annonaceae/clasificación , Annonaceae/anatomía & histología , Annonaceae/genética , Teorema de Bayes , Evolución Biológica , Cloroplastos/genética , ADN de Cloroplastos/química , ADN de Cloroplastos/aislamiento & purificación , ADN de Cloroplastos/metabolismo , Flores/anatomía & histología , Flores/genética , Funciones de Verosimilitud , Microscopía Electrónica de Rastreo , Fenotipo , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA