Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125701

RESUMEN

Anethole is a terpenoid with antioxidant, anti-inflammatory, and neuronal blockade effects, and the present work was undertaken to study the neuroprotective activity of anethole against diabetes mellitus (DM)-induced neuropathy. Streptozotocin-induced DM rats were used to investigate the effects of anethole treatment on morphological, electrophysiological, and biochemical alterations of the sciatic nerve (SN). Anethole partially prevented the mechanical hyposensitivity caused by DM and fully prevented the DM-induced decrease in the cross-sectional area of the SN. In relation to electrophysiological properties of SN fibers, DM reduced the frequency of occurrence of the 3rd component of the compound action potential (CAP) by 15%. It also significantly reduced the conduction velocity of the 1st and 2nd CAP components from 104.6 ± 3.47 and 39.8 ± 1.02 to 89.9 ± 3.03 and 35.4 ± 1.56 m/s, respectively, and increased the duration of the 2nd CAP component from 0.66 ± 0.04 to 0.82 ± 0.09 ms. DM also increases oxidative stress in the SN, altering values related to thiol, TBARS, SOD, and CAT activities. Anethole was capable of fully preventing all these DM electrophysiological and biochemical alterations in the nerve. Thus, the magnitude of the DM-induced neural effects seen in this work, and the prevention afforded by anethole treatment, place this compound in a very favorable position as a potential therapeutic agent for treating diabetic peripheral neuropathy.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Diabetes Mellitus Experimental , Estrés Oxidativo , Nervio Ciático , Animales , Derivados de Alilbenceno/farmacología , Nervio Ciático/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas , Anisoles/farmacología , Anisoles/uso terapéutico , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/prevención & control , Neuropatías Diabéticas/metabolismo , Potenciales de Acción/efectos de los fármacos , Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
N Biotechnol ; 83: 82-90, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053683

RESUMEN

Previously, some bacteria were shown to harbour enzymes capable of catalysing the oxidative cleavage of the double bond of t-anethole and related compounds. The cofactor dependence of these enzymes remained enigmatic due to a lack of biochemical information. We report on catalytic and structural details of a representative of this group of oxidative enzymes: t-anethole oxygenase from Stenotrophomonas maltophilia (TAOSm). The bacterial enzyme could be recombinantly expressed and purified, enabling a detailed biochemical study that has settled the dispute on its cofactor dependence. We have established that TAOSm contains a tightly bound b-type heme and merely depends on dioxygen for catalysis. It was found to accept t-anethole, isoeugenol and O-methyl isoeugenol as substrates, all being converted into the corresponding aromatic aldehydes without the need of any cofactor regeneration. The elucidated crystal structure of TAOSm has revealed that it contains a unique active site architecture that is conserved for this distinct class of heme-containing bacterial oxygenases. Similar to other hemoproteins, TAOSm has a histidine (His121) as proximal ligand. Yet, unique for TAOs, an arginine (Arg89) is located at the distal axial position. Site directed mutagenesis confirmed crucial roles for these heme-liganding residues and other residues that form the substrate binding pocket. In conclusion, the results reported here reveal a new class of bacterial heme-containing oxygenases that can be used for the cleavage of alkene double bonds, analogous to ozonolysis in organic chemistry.

3.
Plants (Basel) ; 13(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39065448

RESUMEN

The essential oil (EO) of Tagetes filifolia Lag. was obtained from dried plant material through Clevenger-type steam distillation and analyzed using gas chromatography-mass spectrometry (GC/MS), a gas chromatography-flame ionization detector (GC/FID) and enantioselective gas chromatography. The results showed 50 compounds (93.33%) with a predominance of oxygenated monoterpenes. The main components were trans-anethole (55.57 ± 9.83%), tridecene <1-> (8.66 ± 0.01), methyl chavicol (5.81 ± 0.85%) and Neophytadiene (3.45 ± 0.88) Enantioselective analysis revealed linalool and ionone as enantiomers. The identification of secondary metabolites from the ethyl acetate extract obtained by maceration was performed by GC-MS, NMR and by a literature comparison, determining the presence of mostly trans-anethole and a mixture of two triterpenes, fernenol and lupeol.

4.
Insects ; 15(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39057214

RESUMEN

This study attempted to evaluate the ovicidal activity of single-component formulations and combination formulations of lemongrass and star anise essential oils (EOs) and their main constituents against housefly eggs. The efficacies of the combinations were compared with those of single-component formulations and α-cypermethrin. Safety bioassays of all treatments and α-cypermethrin on non-target predators-guppy and molly-were conducted. Two combinations: 1% lemongrass EO + 1% trans-anethole and 1% star anise EO + 1% geranial, exhibited a strong ovicidal activity with an inhibition rate of 94.4 to 96.2%. They were 1.1 times as effective as α-cypermethrin. The two combinations also showed high synergistic activity compared to single-component formulations, with a high synergistic index and a high increased inhibition value of 37.4 to 57.7%. All EO treatments were benign for all non-target aquatic species with a high 50% lethal time (LT50) and safety index. In contrast, α-cypermethrin was highly toxic to them with a low LT50. The morphological abnormalities observed in housefly eggs at death were those such as the shrivelling of the eggs, aberrations and damage to the eggshells, hatching lines, aeropyles, plastron, and micropyle. The potential of these two combinations as a cypermethrin replacement is compelling.

5.
J Pharm Pharmacol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016304

RESUMEN

OBJECTIVES: This study aims to evaluate the effects of Croton grewioides essential oil (CGEO) and anethole on follicle survival, growth, and oxidative stress in cultured bovine ovarian tissues. METHODS: Ovarian tissues were cultured for 6 days in a medium supplemented with different concentrations (1, 10, 100, or 1000 µg mL-1) of CGEO or anethole and then, follicular survival and growth, collagen content, and stromal cell density in ovarian tissues cultured in vitro were evaluated by histology. The mRNA levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 1 (GPX1), peroxirredoxin 6 (PRDX6), and nuclear factor erythroid 2-related factor 2 (NRF2) were evaluated by real-time PCR. The activity of SOD, CAT, glutathione peroxidase (GPx), and thiol concentrations were investigated. KEY FINDINGS: Ovarian tissues cultured with 1 µg mL-1 CGEO or anethole had a higher percentage of healthy follicles than those cultured in a control medium (P < .05). The 1 µg mL-1 CGEO also increased the number of stromal cells, collagen fibers, and thiol levels. Anethole (1 µg mL-1) increased CAT activity and reduced that of GPx. The activity of SOD was reduced by CGEO. In contrast, 1 µg mL-1 anethole reduced mRNA for CAT, PRDX1, and NRF2 (P < .05). In addition, 1 µg mL-1 CGEO reduced mRNA for CAT, PRDX6, and GPx1 (P < .05). CONCLUSIONS: The presence of 1 µg mL-1 anethole or CGEO in a culture medium promotes follicle survival and regulates oxidative stress and the expression of mRNA and activity of antioxidant enzymes in cultured bovine ovarian tissues.

6.
Nat Prod Res ; : 1-7, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954513

RESUMEN

Daucus genus (Apiaceae) comprises economically relevant plants distributed in temperate regions. These plants are used mainly as food but are also known for their biological properties. Here, the essential oils (EOs) obtained by hydro-distillation of roots and stems of D.sahariensis Murb. growing in Algerian Sahara were studied by GC-MS analysis. Fifty-two and fifty-five compounds were identified from the roots and stems, representing 95.1% and 93.8% of the whole EOs respectively. The main constituents of the EO from roots were myristicin (29.2%), (E)-anethole (14.2%), cis-chrysanthenyl acetate (8%) and estragol (7.5%). In the EO from stems, the main constituents were α-pinene (18.6%), myrcene (16.7%), limonene (13.7%) and myristicin (8%). The antibacterial activity of EOs was evaluated by disc diffusion method and tested against Gram-positive and Gram-negative bacteria. Results showed a mild activity against Bacillus subtilis and Klebsiella pneumoniae for both EOs, which can be potentially used as antibacterial in phytotherapy.

7.
J Diabetes Metab Disord ; 23(1): 619-631, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932801

RESUMEN

Background: Metabolic syndrome (MetS) is a cluster of physiological, biochemical, clinical, and metabolic conditions that aggravate the risk of severe diseases such as cardiovascular disease, type 2 diabetes mellitus, and fatty liver. Several dietary molecules have been considered preventive compounds for MetS. Anethole, a natural phenylpropanoid, has been found to protect against MetS and its associated components. Aim: This systematic review aims to provide an overview of the preclinical evidence supporting the protective effects of dietary anethole against MetS and the associated diseases. Methods: A literature search was performed using Web of Sciences, PubMed, Scopus, and Google Scholar to identify studies reporting the protective effects of dietary anethole against MetS, without any time restrictions. Review articles, letters to editors, editorials, unpublished results, and non-English papers were excluded from the study. Results: The results showed that anethole has the potential to effectively protect against the key features of MetS via various mechanisms, including antioxidant and anti-inflammatory effects, stimulating insulin secretion from ß-cells, mediating oxidative stress, modulation of the mTOR/PPARγ axis, arterial remodeling, and improvement of vascular relaxation. Conclusion: Anethole modulates several molecular pathways that are implicated in the pathogenesis of MetS. Future in vitro and animal investigations should be conducted to explore other anti-MetS signaling pathways of anethole. Additionally, well-designed clinical studies are warranted to determine the optimal human dose, bioavailability, and pharmacokinetic characteristics of this dietary compound.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38809294

RESUMEN

PURPOSE: This study investigated the pharmacological effects of topical trans-anethole, a natural compound found in anise, star anise, and fennel essential oils, and its relationship with the transient receptor potential of ankyrin 1 (TRPA1). METHODS: The effects of topical anethole were assessed by eye wiping, nociceptive behaviour, and ear oedema in mice. Histological evaluations were performed on the ears of the animals topically treated with anethole. RESULTS: Anethole caused less eye irritation than capsaicin (a TRPV1 agonist) and allyl isothiocyanate (a TRPA1 agonist). Anethole (250 and 500 nmol/20 µL/paw) promoted neurogenic nociception in the paw (20.89 ± 3.53 s and 47.56 ± 8.46 s, respectively) compared with the vehicle (0.88 ± 0.38 s). HC030031 (56.1 nmol/20 µL/paw), a TRPA1 antagonist, abolished this nociceptive response. Anethole (4, 10, and 20 µmol/20 µL/ear) induced ear oedema (30.25 ± 4.78 µm, 78.00 ± 3.74 µm, and 127.50 ± 27.19 µm, respectively) compared with the vehicle (5.00 ± 0.5 µm). HC030031 (56.1 nmol/20 µL/ear) inhibited the oedema induced by anethole (10 µmol/20 µL/ear). Ears pre-treated with anethole or allyl isothiocyanate on the first day and re-exposed to these compounds on the third day showed a reduction in oedema (68.16 ± 6.04% and 38.81 ± 8.98.9%, respectively). Cross-desensitisation between anethole and allyl isothiocyanate was observed. Histological analysis confirmed the beneficial effects of anethol. CONCLUSION: As repeated topical applications of anethole induce the desensitisation of TRPA1, we suggest its clinical application as a topical formulation for treating skin diseases or managing pain associated with this receptor. Anethole may also have advantages over capsaicin and allyl isothiocyanate because of its low pungency and pleasant aroma.

10.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565927

RESUMEN

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Antioxidantes , Trastorno Depresivo Mayor , Humanos , Ratones , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Nitritos/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación Materna , Solución Salina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Estrés Oxidativo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Conducta Animal
11.
Environ Sci Pollut Res Int ; 31(21): 31331-31342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38630399

RESUMEN

Fatty acids and essential oils (EOs) are the primary variables that influence the quality of fennel (Foeniculum vulgare Mill.). Soil toxicity to cadmium (Cd) is the main environmental issue facing fennel, and priming methods like soil amendments and nanoparticles (NPs) are commonly utilized to deal with it. The goal of the current study was to examine the effects of biochar (BC) and selenium nanoparticles (Se NPs) on fennel plants in Cd-contaminated soils. The pot experiment was conducted with Cd stress at 0, 10, and 20 mg kg-1 soil, BC at 5% (v/v), and foliar-spraying Se NPs at 40 mg L-1 as a factorial completely randomized design (CRD) at a greenhouse condition in 2022. The findings demonstrated that Cd toxicity significantly decreased plant performance, while BC and Se NPs enhanced it. Without BC and Se NPs, Cd toxicity at 20 mg kg-1 soil decreased biological yield (39%), seed yield (37%), EO yield (32%), and monounsaturated fatty acids (14%), while increased saturated fatty acid (26%) and polyunsaturated fatty acids (40%) of fennel. The main EO profile was anethole (65.32-73.25%), followed by limonene (16.12-22.07%), fenchone (5.57-6.83%), and estragole (2.25-3.65%), which mainly were oxygenated monoterpenes. The combined application of BC and Se NPs improved the yield, EO production, and fatty acid profile of fennel plants under Cd stress, increasing the plants' resistance to Cd toxicity.


Asunto(s)
Cadmio , Carbón Orgánico , Ácidos Grasos , Foeniculum , Nanopartículas , Aceites Volátiles , Selenio , Foeniculum/química , Aceites Volátiles/química , Carbón Orgánico/química , Selenio/química , Cadmio/toxicidad , Nanopartículas/toxicidad , Contaminantes del Suelo/toxicidad , Suelo/química
12.
Insects ; 15(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535405

RESUMEN

The present study evaluated the housefly repellency of single-component formulations and combinations of lemongrass and star anise essential oils (EOs) and their main constituents. The efficacies of the combinations were compared against those of single-component formulations and DEET. Safety bioassays of all formulations and DEET on non-target species-guppy, molly, dwarf honeybee, and stingless bee-were conducted. GC-MS analysis showed that the main constituent of lemongrass EO was geranial (46.83%) and that of star anise EO was trans-anethole (92.88%). All combinations were highly synergistic compared to single-component formulations, with an increased repellent value (IR) of 34.6 to 51.2%. The greatest synergistic effect was achieved by 1.0% lemongrass EO + 1.0% trans-anethole combination, with an IR of 51.2%. The strongest, 100% repellent rate at 6 h was achieved by 1.0% geranial + 1.0% trans-anethole. They were twice as effective as DEET and caused obvious damage to housefly antennae under microscopic observation. All single-component formulations and combinations were benign to the four tested non-target species. In contrast, DEET was highly toxic to them. The synergistic repellency and biosafety of these two combinations are compellingly strong support for developing them into an effective green repellent.

13.
Heliyon ; 10(5): e26910, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463861

RESUMEN

Single and mixture formulations of lemongrass (Cymbopogon citratus (DC.) Stapf.) and star anise (Illicium verum (J. Presl.)) essential oils (EOs) and their major constituents were assayed for their adulticidal activities against housefly, Musca domestica L., and two non-target species, stingless bee (Tetragonula pegdeni Schwarz) and guppy (Poecilia reticulata Peters). The efficacies of the mixture formulations were compared against those of the single formulations and 1.0% α-cypermethrin, a common synthetic insecticide. GC-MS analysis found that the major constituent of lemongrass EO was geranial (45.23%), and that of star anise EO was trans-anethole (93.23%). Almost all mixture formulations were more effective in adulticidal activity against housefly adults than single formulations and 1.0% α-cypermethrin. A mixture of 1.0% lemongrass EO + 1.0% trans-anethole exhibited the strongest synergistic insecticidal activity with a 100% mortality rate (KT50 of 3.2 min and LT50 of 0.07 h). The relative percentage increase in mortality rate over single formulations was between 1.6 and 91.9%. In addition, it was three times more effective than 1.0% α-cypermethrin. To find the mechanism of adulticidal action, scanning electron microscopy (SEM) was done to find morphological aberrations, such as antennal and mouthpart aberrations, after the houseflies were treated with 1.0% lemongrass EO + 1.0% trans-anethole. The aberrations included deformed and abnormal shape of arista and flagellum, change in labellum pigmentation, and damage to pseudotracheae. Regarding toxicity against non-target species, all single and mixture formulations were not toxic to the two non-target species, while 1.0% α-cypermethrin was highly toxic. To conclude, a mixture of 1.0% lemongrass EO + 1.0% trans-anethole can be an excellent, natural, sustainable housefly adulticidal agent.

14.
Nat Prod Res ; : 1-5, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315576

RESUMEN

Bupleurum plantagineum Desf. (Apiaceae) is a plant endemic to North Africa, including Algeria. It is used as natural medicine, due to its anti-inflammatory, antioxidant and hepatoprotective properties. In this work, we studied the chemical composition of the essential oil (EO) obtained by hydro-distillation from B. plantagineum leaves collected from the national park of Gouraya (Bejaïa), Algeria. Thirty components were identified in the EO by Gas chromatography-Mass Spectrometry(GC-MS) (relative abundance: 96.7%). Monoterpene hydrocarbons (56.8%) were the predominant, followed by oxygenated monoterpenes (36.7%). The main components were cis-chrysanthenyl acetate (33.5%), α-pinene (18.4%), myrcene (16.5%) and (E)-anethole (4.9%). This volatile profile differs from those reported for other Bupleurum spp. and for B. plantagineum from Algeria, suggesting the identification of a new chemotype. Overall, our results represent a contribution to the characterisation of natural products from Algeria and the preservation of its natural biodiversity. The same results will also represent a starting point for further studies on B. plantagineum.

15.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38256108

RESUMEN

Anethole is a phenolic compound synthesized by many aromatic plants. Anethole is a substance that humans can safely consume and has been studied for years as a biologically active molecule to treat a variety of conditions, including nerve damage, gastritis, inflammation, and nociception. Anethole is thought to carry out its biological activities through direct interaction with ion channels. Anethole is beneficial for neurodegenerative Alzheimer's and Parkinson's diseases. Nevertheless, nothing has been investigated regarding the effects of anethole on voltage-gated Na+ channels (VGSCs), which are major players in neuronal function. We used cultured dorsal root ganglion neurons from neonatal rats as a source of natively expressed VGSCs for electrophysiological studies using the whole-cell patch-clamp technique. Our data show that anethole interacts directly with VGSCs. Anethole quickly blocks and unblocks (when removed) voltage-activated Na+ currents in this preparation in a fully reversible manner. Anethole's binding affinity to these channels increases when the inactive states of these channels are populated, similar to lidocaine's effect on the same channels. Our data show that anethole inhibits neuronal activity by blocking VGSCs in a state-dependent manner. These findings relate to the putative anesthetic activity attributable to anethole, in addition to its potential benefit in neurodegenerative diseases.


Asunto(s)
Derivados de Alilbenceno , Gastritis , Humanos , Animales , Ratas , Ganglios Espinales , Anisoles/farmacología , Iones
16.
Environ Toxicol ; 39(2): 965-978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37987213

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease affecting approximately 1% of the global population, with a higher prevalence in women than in men. Chronic inflammation and oxidative stress play pivotal roles in the pathogenesis of RA. Anethole, a prominent compound derived from fennel (Foeniculum vulgare), possesses a spectrum of therapeutic properties, including anti-arthritic, anti-inflammatory, antioxidant, and tumor-suppressive effects. However, its specific impact on RA remains underexplored. This study sought to uncover the potential therapeutic value of anethole in treating RA by employing an H2 O2 -induced inflammation model with HIG-82 synovial cells. Our results demonstrated that exposure to H2 O2 induced the inflammation and apoptosis in these cells. Remarkably, anethole treatment effectively countered these inflammatory and apoptotic processes triggered by H2 O2 . Moreover, we identified the aquaporin 1 (AQP1) and protein kinase A (PKA) pathway as critical regulators of inflammation and apoptosis. H2 O2 stimulation led to an increase in the AQP1 expression and a decrease in p-PKA-C, contributing to cartilage degradation. Conversely, anethole not only downregulated the AQP1 expression but also activated the PKA pathway, effectively suppressing cell inflammation and apoptosis. Furthermore, anethole also inhibited the enzymes responsible for cartilage degradation. In summary, our findings highlight the potential of anethole as a therapeutic agent for mitigating H2 O2 -induced inflammation and apoptosis in synovial cells, offering promising prospects for future RA treatments.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Masculino , Humanos , Femenino , Sinoviocitos/metabolismo , Acuaporina 1 , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inflamación/patología , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Proliferación Celular
17.
IBRO Neurosci Rep ; 16: 1-7, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38145174

RESUMEN

Autism spectrum disorder (ASD) is a neurodegenerative disease with increasing incidence in the world. The maternal separation (MS) stress at early life with its own neuroendocrine and neurostructural changes can provide the basis for development of ASD. Previously it has been reported neuroprotective characteristics for anethole. The PI3K/AKT/mTOR signaling pathway has pivotal role in the function of central nervous system (CNS). This study aimed to evaluate the possible effects of anethole on the autistic-like behaviors in the maternally separated (MS) mice focusing on the potential role of the PI3K/AKT/mTOR pathway. Forty male Naval Medical Research Institute (NMRI) mice were assigned to five groups (n = 8) comprising a control group (treated with normal saline) and four groups subjected to MS and treated with normal saline and or anethole at doses of 31.25, 62.5 and 125 mg/kg, respectively. All gents were administrated via intraperitoneal (i.p.) route for 14 constant days. Behavioral tests were conducted, including the three-chamber test, shuttle box and resident-intruder test. The gene expression of the PI3K, AKT and mTOR assessed in the hippocampus by qRT-PCR. Findings indicated that MS is associated with autistic-like behaviors. Anethole increased the sociability and social preference indexes in the three-chamber test, increased duration of secondary latency in the shuttle box test and decreased aggressive behaviors in the resident-intruder test. Also, anethole increased the gene expression of PI3K, AKT and mTOR in the hippocampus of MS mice. We concluded that anethole through increase in the gene expression of PI3K/ AKT/mTOR mitigated autistic-like behaviors induced by MS in mice.

18.
Appl Microbiol Biotechnol ; 107(23): 7213-7230, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37733053

RESUMEN

Plant volatile compounds have great potential for preventing and controlling fungal spoilage in post-harvest grains. Recently, we have reported the antifungal effects of trans-anethole, the main volatile constituent of the Illicium verum fruit, on Aspergillus flavus. In this study, the inhibitory mechanisms of trans-anethole against the growth of A. flavus mycelia were investigated using transcriptomic and biochemical analyses. Biochemical and transcriptomic changes in A. flavus mycelia were evaluated after exposure to 0.2 µL/mL trans-anethole. Scanning electron microscopy showed that trans-anethole treatment resulted in the surface wrinkling of A. flavus mycelia, and calcofluor white staining confirmed that trans-anethole treatment disrupted the mycelial cell wall structure. Annexin V-fluorescein isothiocyanate/propidium iodide double staining suggested that trans-anethole induced apoptosis in A. flavus mycelia. Reduced mitochondrial membrane potential and DNA damage were observed in trans-anethole-treated A. flavus mycelia using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine and 4',6-diamidino-2-phenylindole staining, respectively. 2',7'- Dichloro-dihydro-fluorescein diacetate staining and biochemical assays demonstrated that trans-anethole treatment cause the accumulation of reactive oxygen species in the A. flavus mycelia. Transcriptome results showed that 1673 genes were differentially expressed in A. flavus mycelia exposed to trans-anethole, which were mainly associated with multidrug transport, oxidative phosphorylation, citric acid cycle, ribosomes, and cyclic adenosine monophosphate signaling. We propose that trans-anethole can inhibit the growth of A. flavus mycelia by disrupting the cell wall structure, blocking the multidrug transport process, disturbing the citric acid cycle, and inducing apoptosis. This study provides new insights into the inhibitory mechanism of trans-anethole on A. flavus mycelia and will be helpful for the development of natural fungicides. KEY POINTS: • Biochemical analyses of A. flavus mycelia exposed to trans-anethole were performed • Transcriptomic changes in trans-anethole-treated A. flavus mycelia were analyzed • An inhibitory mechanism of trans-anethole on the growth of A. flavus mycelia was proposed.


Asunto(s)
Derivados de Alilbenceno , Antifúngicos , Antifúngicos/química , Aspergillus flavus , Transcriptoma , Derivados de Alilbenceno/metabolismo , Derivados de Alilbenceno/farmacología
19.
Mol Reprod Dev ; 90(12): 810-823, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37671983

RESUMEN

This study assessed the histones methylation profile (H3K4me3 and H3K9me3) in late preantral (PA) and early antral (EA) caprine follicles grown in vivo and in vitro, and the anethole effect during in vitro culture of PA follicles. Uncultured in vivo-grown follicles (PA, n = 64; EA, n = 73) were used as controls to assess the methylation profile and genes' expression related to apoptosis cascade (BAX, proapoptotic; BCL2, antiapoptotic), steroidogenesis (CYP17, CYP19A1), and demethylation (KDM1AX1, KDM1AX2, KDM3A). The isolated PA follicles (n = 174) were cultured in vitro for 6 days in α-MEM+ in either absence (control) or presence of anethole. After culture, EA follicles were evaluated for methylation, mRNA abundance, and morphometry. Follicle diameter increased after culture, regardless of treatment. The methylation profile and the mRNA abundance were similar between in vivo-grown PA and EA follicles. Anethole treatment led to higher H3K4me3 fluorescence intensity in EA follicles. The mRNA abundances of BAX, CYP17, and CYP19A1 were higher, and BCL2 and KDM3A were lower in in vitro-grown EA follicles than in vivo-grown follicles. In conclusion, in vitro follicle culture affected H3K4me3 fluorescence intensity, mRNA abundance of apoptotic genes, and steroidogenic and demethylase enzymes compared with in vivo-grown follicles.


Asunto(s)
Cabras , Lisina , Animales , Proteína X Asociada a bcl-2/metabolismo , Cabras/metabolismo , Histonas , Esteroide 17-alfa-Hidroxilasa/metabolismo , ARN Mensajero/genética , Oocitos/metabolismo
20.
Int Immunopharmacol ; 124(Pt A): 110809, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690240

RESUMEN

Hepatic ischemia reperfusion injury (IRI) is a risk factor for early graft nonfunction and graft rejection after liver transplantation (LT). The process of liver IRI involves inflammatory response, oxidative stress, apoptosis and other pathophysiological processes. So far, there is still a lack of effective drugs to ameliorate liver IRI. Trans-anethole (TA) is an aromatic compound. Many medications as well as natural foods contain TA. TA has multiple effects such as anti-inflammation, anti-oxidative stress and anti-apoptosis. However, the mechanism of TA pretreatment in liver IRI is unclear. The mice hepatic IRI model was constructed after gavage pretreatment with TA (10 mg/kg, 20 mg/kg, 40 mg/kg) for 7 consecutive days. Our study confirmed that TA pretreatment significantly improve liver function and reduce serum AST, ALT in hepatic IRI. HE staining showed that TA pretreatment alleviated liver injury. Meanwhile, TA (20 mg/kg) pretreatment attenuated hepatocyte apoptosis in hepatic IRI. In addition, TA (20 mg/kg) pretreatment reduced the inflammatory factors TNF-α, IL-6 and infiltration of CD11b positive cells in liver tissues during hepatic IRI in mice. TA pretreatment also alleviated oxidative stress in mice hepatic IRI. Our study further indicated that TA pretreatment attenuated mice hepatic IRI through inhibiting NLRP3 inflammasome activation via regulation of soluble epoxide hydrolase (sEH). This study provides a novel and effective potential drug with few side effects for easing liver IRI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA