RESUMEN
Arsenic compounds have been used as therapeutic alternatives for several diseases including cancer. In the following work, we obtained arsenic nanoparticles (AsNPs) produced by an anaerobic bacterium from the Salar de Ascotán, in northern Chile, and evaluated their effects on the human oral squamous carcinoma cell line OECM-1. Resazurin reduction assays were carried out on these cells using 1-100 µM of AsNPs, finding a concentration-dependent reduction in cell viability that was not observed for the non-tumoral gastric mucosa-derived cell line GES-1. To establish if these effects were associated with apoptosis induction, markers like Bcl2, Bax, and cleaved caspase 3 were analyzed via Western blot, executor caspases 3/7 via luminometry, and DNA fragmentation was analyzed by TUNEL assay, using 100 µM cisplatin as a positive control. OECM-1 cells treated with AsNPs showed an induction of both extrinsic and intrinsic apoptotic pathways, which can be explained by a significant decrease in P-Akt/Akt and P-ERK/ERK relative protein ratios, and an increase in both PTEN and p53 mRNA levels and Bit-1 relative protein levels. These results suggest a prospective mechanism of action for AsNPs that involves a potential interaction with extracellular matrix (ECM) components that reduces cell attachment and subsequently triggers anoikis, an anchorage-dependent type of apoptosis.
Asunto(s)
Anoicis , Apoptosis , Arsénico , Nanopartículas , Humanos , Anoicis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Nanopartículas/química , Arsénico/farmacología , Arsénico/toxicidad , Supervivencia Celular/efectos de los fármacos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Caspasa 3/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Anoikis is a process of programmed cell death induced by the loss of cell/matrix interactions. In previous work, we have shown that the acquisition of anoikis resistance upregulates syndecan-4 (SDC4) expression in endothelial cells. In addition, SDC4 gene silencing by microRNA interference reverses the transformed phenotype of anoikis-resistant endothelial cells. Due to this role of SDC4 in regulating the behavior of anoikis-resistant endothelial cells, we have evaluated that the functional consequences of SDC4 silencing in the extracellular matrix (ECM) remodeling in anoikis-resistant rabbit aortic endothelial cells submitted to SDC4 gene silencing (miR-Syn4-Adh-1-EC). For this, we evaluated the expression of adhesive proteins, ECM receptors, nonreceptor protein-tyrosine kinases, and ECM-degrading enzymes and their inhibitors. Altered cell behavior was monitored by adhesion, migration, and tube formation assays. We found that SDC4 silencing led to a decrease in migration and angiogenic capacity of anoikis-resistant endothelial cells; this was accompanied by an increase in adhesion to fibronectin. Furthermore, after SDC4 silencing, we observed an increase in the expression of fibronectin, collagen IV, and vitronectin, and a decrease in the expression of integrin α5ß1 and αvß3, besides that, silenced cells show an increase in Src and FAK expression. Quantitative polymerase chain reaction and Western blot analysis demonstrated that SDC4 silencing leads to altered gene and protein expression of MMP2, MMP9, and HSPE. Compared with parental cells, SDC4 silenced cells showed a decrease in nitric oxide production and eNOS expression. In conclusion, these data demonstrate that SDC4 plays an important role in ECM remodeling. In addition, our findings represent an important step toward understanding the mechanism by which SDC4 can reverse the transformed phenotype of anoikis-resistant endothelial cells.
Asunto(s)
Anoicis , Células Endoteliales , Matriz Extracelular , Silenciador del Gen , Sindecano-4 , Sindecano-4/metabolismo , Sindecano-4/genética , Animales , Matriz Extracelular/metabolismo , Células Endoteliales/metabolismo , Conejos , Adhesión Celular , Movimiento Celular , Fibronectinas/metabolismo , Células CultivadasRESUMEN
BACKGROUND: Anoikis is a cell death programmed to eliminate dysfunctional or damaged cells induced by detachment from the extracellular matrix. Utilizing an anoikis-based risk stratification is anticipated to understand melanoma's prognostic and immune landscapes comprehensively. METHODS: Differential expression genes (DEGs) were analyzed between melanoma and normal skin tissues in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression data sets. Next, least absolute shrinkage and selection operator, support vector machine-recursive feature elimination algorithm, and univariate and multivariate Cox analyses on the 308 DEGs were performed to build the prognostic signature in the TCGA-melanoma data set. Finally, the signature was validated in GSE65904 and GSE22155 data sets. NOTCH3, PIK3R2, and SOD2 were validated in our clinical samples by immunohistochemistry. RESULTS: The prognostic model for melanoma patients was developed utilizing ten hub anoikis-related genes. The overall survival (OS) of patients in the high-risk subgroup, which was classified by the optimal cutoff value, was remarkably shorter in the TCGA-melanoma, GSE65904, and GSE22155 data sets. Low-risk patients exhibited low immune cell infiltration and high expression of immunophenoscores and immune checkpoints. They also demonstrated increased sensitivity to various drugs, including dasatinib and dabrafenib. NOTCH3, PIK3R2, and SOD2 were notably associated with OS by univariate Cox analysis in the GSE65904 data set. The clinical melanoma samples showed remarkably higher protein expressions of NOTCH3 (P = 0.003) and PIK3R2 (P = 0.009) than the para-melanoma samples, while the SOD2 protein expression remained unchanged. CONCLUSIONS: In this study, we successfully established a prognostic anoikis-connected signature using machine learning. This model may aid in evaluating patient prognosis, clinical characteristics, and immune treatment modalities for melanoma.
RESUMEN
BACKGROUND: Malignant cells adopt anoikis resistance to survive anchorage-free stresses and initiate cancer metastasis. It is still unknown how varying periods of anchorage loss contribute to anoikis resistance, cell migration, and metabolic reprogramming of cancerous cells. RESULTS: Our study demonstrated that prolonging the anchorage-free lifetime of non-small-cell lung cancer NCI-H460 cells for 7 days strengthened anoikis resistance, as shown by higher half-life and capability to survive and grow without anchorage, compared to wild-type cells or those losing anchorage for 3 days. While the prolonged anchorage-free lifetime was responsible for the increased aggressive feature of survival cells to perform rapid 3-dimensional migration during the first 3 h of a transwell assay, no significant influence was observed with 2-dimensional surface migration detected at 12 and 24 h by a wound-healing method. Metabolomics analysis revealed significant alteration in the intracellular levels of six (oxalic acid, cholesterol, 1-ethylpyrrolidine, 1-(3-methylbutyl)-2,3,4,6-tetramethylbenzene, ß-alanine, and putrescine) among all 37 identified metabolites during 7 days without anchorage. Based on significance values, enrichment ratios, and impact scores of all metabolites and their associated pathways, three principal metabolic activities (non-standard amino acid metabolism, cell membrane biosynthesis, and oxidative stress response) offered potential links with anoikis resistance. CONCLUSIONS: These findings further our insights into the evolution of anoikis resistance in lung cancer cells and identify promising biomarkers for early lung cancer diagnosis.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anoicis , Neoplasias Pulmonares/patología , Línea Celular Tumoral , MetabolómicaRESUMEN
Astrocytoma is the most common and aggressive tumor of the central nervous system. Genetic and environmental factors, bacterial infection, and several other factors are known to be involved in gliomagenesis, although the complete underlying molecular mechanism is not fully understood. Tumorigenesis is a multistep process involving initiation, promotion, and progression. We present a human model of malignant astrocyte transformation established by subjecting primary astrocytes from healthy adults to four sequential cycles of forced anchorage impediment (deadhesion). After limiting dilution of the surviving cells obtained after the fourth deadhesion/readhesion cycle, three clones were randomly selected, and exhibited malignant characteristics, including increased proliferation rate and capacity for colony formation, migration, and anchorage-independent growth in soft agar. Functional assay results for these clonal cells, including response to temozolomide, were comparable to U87MG-a human glioblastoma-derived cell lineage-reinforcing malignant cell transformation. RNA-Seq analysis by next-generation sequencing of the transformed clones relative to the primary astrocytes revealed upregulation of genes involved in the PI3K/AKT and Wnt/ß-catenin signaling pathways, in addition to upregulation of genes related to epithelial-mesenchymal transition, and downregulation of genes related to aerobic respiration. These findings, at a molecular level, corroborate the change in cell behavior towards mesenchymal-like cell dedifferentiation. This linear progressive model of malignant human astrocyte transformation is unique in that neither genetic manipulation nor treatment with carcinogens are used, representing a promising tool for testing combined therapeutic strategies for glioblastoma patients, and furthering knowledge of astrocytoma transformation and progression.
Asunto(s)
Astrocitos , Glioblastoma , Astrocitos/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transición Epitelial-Mesenquimal , Glioblastoma/patología , Humanos , Fosfatidilinositol 3-Quinasas/metabolismoRESUMEN
Anoikis is a type of apoptosis that occurs in response to the loss of adhesion to the extracellular matrix (ECM). Anoikis resistance is a critical mechanism in cancer and contributes to tumor metastasis. Nitric oxide (NO) is frequently upregulated in the tumor area and is considered an important player in cancer metastasis. The aim of this study was to evaluate the effect of NO on adhesiveness, invasiveness, and migration of anoikis-resistant endothelial cells. Here, we report that anoikis-resistant endothelial cells overexpress endothelial nitric oxide synthase. The inhibition of NO release in anoikis-resistant endothelial cells was able to decrease adhesiveness to fibronectin, laminin, and collagen IV. This was accompanied by an increase in cell invasiveness and migration. Furthermore, anoikis-resistant cell lines displayed a decrease in fibronectin and collagen IV protein expression after L-NAME treatment. These alterations in adhesiveness and invasiveness were the consequence of MMP-2 up-regulation observed after NO release inhibition. The decrease in NO levels was able to down-regulate the activating transcription factor 3 (ATF3) protein expression. ATF3 represses MMP-2 gene expression by antagonizing p53-dependent trans-activation of the MMP-2 promoter. We speculate that the increased release of NO by anoikis-resistant endothelial cells acted as a response to restrict the MMP-2 action, interfering in MMP-2 gene expression via ATF3 regulation. The up-regulation of nitric oxide by anoikis-resistant endothelial cells is an important response to restrict tumorigenic behavior. Without this mechanism, invasiveness and migration potential would be even higher, as shown after L-NAME treatment.
RESUMEN
The cell's resistance to cell death by adhesion loss to extracellular matrix (anoikis), contributes to tumor progression and metastasis. Various adhesion molecules are involved in the anoikis resistance, including the syndecan-4 (SDC4), a heparan sulfate proteoglycan (HSPG) present on the cell surface. Changes in the expression of SDC4 have been observed in tumor and transformed cells, indicating its involvement in cancer. In previous works, we demonstrated that acquisition of anoikis resistance resistance by blocking adhesion to the substrate up-regulates syndecan-4 expression in endothelial cells. This study investigates the role of SDC4 in the transformed phenotype of anoikis resistant endothelial cells. Anoikis-resistant endothelial cells (Adh1-EC) were transfected with micro RNA interference (miR RNAi) targeted against syndecan-4. The effect of SDC4 silencing was analyzed by real-time PCR, western blotting and immunofluorescence. Transfection with miRNA-SDC4 resulted in a sequence-specific decrease in syndecan-4 mRNA and protein levels. Furthermore, we observed a reduction in the number of heparan and chondroitin sulfate chains in the cell extract and culture medium. The SDC4 silencing led to downregulation of proliferative and invasive capacity and angiogenic abilities of anoikis-resistant endothelial cells. Compared with the parental cells (Adh1-EC), SDC4 silenced cells (SDC4 miR-Syn-4-1-Adh1-EC e miR-Syn-4-2-Adh1-EC) exhibited an increase in adhesion to collagen and laminin and also in the apoptosis rate. Moreover, transfection with miRNA-SDC4 caused a decrease in the number of cells in the S phase of the cell cycle. This is accompanied by an increase in the heparan sulfate synthesis after 12 h of simulation with fetal calf serum (FCS). SDC4 silencing cells are more dependent of growth factors present in the FCS to synthesize heparan sulfate than parental cells. Similar data were obtained for the wild-type cell line (EC). Our results indicated that downregulation of SDC4 expression reverses the transformed phenotype of anoikis resistant endothelial cells. These and other findings suggest that syndecan-4 is suitable for pharmacological intervention, making it an attractive target for cancer therapy.
Asunto(s)
Anoicis , Células Endoteliales/metabolismo , MicroARNs/metabolismo , Interferencia de ARN , Sindecano-4/biosíntesis , Animales , MicroARNs/genética , Conejos , Sindecano-4/genéticaRESUMEN
Integrins are cell receptors that mediate adhesion to the extracellular matrix (ECM) and regulate cell migration, a crucial process in tumor invasion. The αvß3 integrin recognizes the arginine-glycine-aspartic acid (RGD) motif in ECM proteins and it can be antagonized by RGD-peptides, resulting in decreased cell migration and invasion. RGD-based drugs have shown disappointing results in clinical trials; however, the reasons for their lack of activity are still obscure. Aiming to contribute to a better understanding of the molecular consequences of integrin inhibition, we tested a recombinant RGD-disintegrin (DisBa-01) in two types of murine cell lines, breast tumor 4T1BM2 cells and L929 fibroblasts. Only tumor cells showed decreased motility and adhesion, as well as morphologic alterations upon DisBa-01 treatment (100 and 1000â¯nM). This result was attributed to the higher levels of αvß3 integrin in 4T1BM2 cells compared to L929 fibroblasts making the former more sensitive to DisBa-01 blocking. DisBa-01 induced cell cycle arrest at the S phase in 4T1BM2 cells, but it did not induce apoptosis, which was consistent with the decrease in caspase-3, 8 and 9 expression at mRNA and protein levels. DisBa-01 increases PI3K, Beclin-1 and LC3B expression in tumor cells, indicators of autophagic induction. In conclusion, αvß3 integrin blocking by DisBa-01 results in inhibition of adhesion and migration and in the activation of an autophagy program, allowing prolonged survival and avoiding immediate apoptotic death. These observations suggest new insights into the effects of RGD-based inhibitors considering their importance in drug development for human health.
Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias de la Mama/patología , Integrina alfaVbeta3/antagonistas & inhibidores , Animales , Neoplasias de la Mama/metabolismo , Adhesión Celular , Femenino , Ratones , Células Tumorales CultivadasRESUMEN
Anoikis is a form of programmed cell death induced by loss of contact from neighboring cells or from their extracellular matrix (ECM). Many tumorigenic cells are anoikis resistant, facilitating cancer progression and metastasis. Trastuzumab is a monoclonal antibody used for the treatment of breast and gastric cell cancer, but its mechanism of action is not well elucidated and its target molecules not well defined. Heparan sulfate proteoglycans (HSPGs) and glycosaminoglycans (GAGs) play important roles in tumor development and in response of cancer cells to drugs. This study investigates the effect of trastuzumab on the expression of HSPGs and sulfated glycosaminoglycans (SGAGs) in anoikis-resistant endothelial cells. After trastuzumab treatment, endothelial cells resistant to anoikis show an increase in adhesion to fibronectin followed by a decrease in invasion, proliferation, and angiogenic capacity. In addition, a significant increase in the number of cells in the S phase of the cell cycle was also observed. In relation to HSPGs and SGAGs expression, we observed a decrease in syndecan-4 and perlecan expression, as well as in the heparan sulfate biosynthesis in anoikis-resistant endothelial cells after exposure to trastuzumab. Our results suggest that trastuzumab interacts with GAGs and proteoglycans of the cell surface and ECM and through this interaction controls cellular events in anoikis-resistant endothelial cells.
Asunto(s)
Anoicis/efectos de los fármacos , Células Endoteliales/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Trastuzumab/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sulfatos de Condroitina/metabolismo , Células Endoteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Heparitina Sulfato/metabolismo , ConejosRESUMEN
Tumour progression involves the establishment of tumour metastases at distant sites. Resistance to anoikis, a form of cell death that occurs when cells lose contact with the extracellular matrix and with neighbouring cells, is essential for metastases. NO has been associated with anoikis. NO treated HeLa cells and murine melanoma cells in suspension triggered a nitric oxide (NO)-Src kinase signalling circuitry that enabled resistance to anoikis. Two NO donors, sodium nitroprusside (SNP) (500 µM) and DETANO (125 µM), protected against cell death derived from detachment of a growth permissive surface (experimental anoikis). Under conditions of NO-mediated Src activation the following were observed: (a) down-regulation of the pro-apoptotic proteins Bim and cleaved caspase-3 and the cell surface protein, E-cadherin, (b) up-regulation of caveolin-1, and (c) the dissociation of cell aggregates formed when cells are detached from a growth permissive surface. Efficiency of reattachment of tumour cells in suspension and treated with different concentrations of an NO donor, was dependent on the NO concentration. These findings indicate that NO-activated Src kinase triggers a signalling circuitry that provides resistance to anoikis, and allows for metastases.
Asunto(s)
Anoicis/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Compuestos Nitrosos/farmacología , Familia-src Quinasas/genética , Animales , Anoicis/genética , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Activación Enzimática/efectos de los fármacos , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Melanoma Experimental/enzimología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Óxido Nítrico/química , Donantes de Óxido Nítrico/química , Nitroprusiato/química , Compuestos Nitrosos/química , Transducción de Señal , Células Tumorales Cultivadas , Familia-src Quinasas/metabolismoRESUMEN
Two decades ago, Galectin-8 was described as a prostate carcinoma biomarker since it is only expressed in the neoplastic prostate, but not in the healthy tissue. To date, no biological function has been attributed to Galectin-8 that could explain this differential expression. In this study we silenced Galectin-8 in two human prostate cancer cell lines, PC3 and IGR-CaP1, and designed a pre-clinical experimental model that allows monitoring the pathology from its early steps to the long-term metastatic stages. We show for the first time that the natural and conserved expression of Gal-8 in tumour cells is responsible for the metastatic evolution of prostate cancer. In fact, Gal-8 controls the rearrangement of the cytoskeleton and E-Cadherin expression, with a major impact on anoikis and homotypic aggregation of tumour cells, both being essential processes for the survival of circulating tumour cells during metastasis. While localized prostate cancer can be cured, metastatic and advanced disease remains a significant therapeutic challenge, urging for the identification of prognostic markers of the metastatic process. Collectively, our results highlight Galectin-8 as a potential target for anti-metastatic therapy against prostate cancer.
Asunto(s)
Galectinas/genética , Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Anoicis/genética , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Galectinas/metabolismo , Silenciador del Gen , Humanos , Masculino , Metástasis de la Neoplasia , Estadificación de Neoplasias , Microambiente Tumoral/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix. Anoikis resistance is a critical mechanism in tumor metastasis. Cancer cells deregulate and adapt their metabolism to survive in the absence of adhesion, spreading metastases to distant organs. These adaptations include abnormal regulation of growth factor receptors activating prosurvival signaling pathways, such as the Ras/ERK and PI3K/Akt pathways, and extracellular matrix remodeling, leading to metastasis by an increase of invasiveness and inhibiting anoikis. This study investigates the possible involvement of ECM components and signaling pathways in the regulation of resistance to anoikis in endothelial cells (EC). Endothelial cells submitted to stressful conditions by blocking adhesion to substrate (anoikis resistance) display an up-regulation of Ras/ERK and PI3k/Akt pathways by high expression of Ras, ERK, PI3K (p110α) and Akt (Thr 308). After ERK and PI3K inhibiting, all EC-derived cell lines studied showed lower growth, a decrease in invasive potential and a higher rate of apoptosis. Furthermore, anoikis-resistant cell lines display a decrease in the expression of fibronectin, collagen IV and hyaluronic acid and an increase in the expression of laminin, perlecan, αv, ß3, α5 and ß1 integrins subunits, hyaluronidades 1, 2 and 3 and metalloproteinases 2 and 9. These results indicate that the acquisition of anoikis resistance induced remodeling of the extracellular matrix and overexpression of the PI3K/Akt and Ras/ERK pathway components. Acquisition of resistance to anoikis is a potentially crucial step in endothelial cell transformation.
Asunto(s)
Anoicis/genética , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Células Endoteliales/citología , Proteínas de la Matriz Extracelular/genética , Genes ras/genética , Sistema de Señalización de MAP Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis , Adhesión Celular , Línea Celular , Activación Enzimática/genética , Integrinas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Conejos , Transducción de Señal/genética , Regulación hacia Arriba/genéticaRESUMEN
High TIMP1 expression is associated with poor prognosis in melanoma, where it can bind to CD63 and ß1 integrin, inducing PI3-kinase pathway and cell survival. Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), generated under phosphatidylinositol-3-kinase (PI3K) activation, enables the recruitment and activation of protein kinase B (PKB/AKT) and phosphoinositide-dependent kinase 1 (PDK1) at the membrane, resulting in the phosphorylation of a host of other proteins. Using a melanoma progression model, we evaluated the impact of Timp1 and AKT silencing, as well as PI3K, PDK1, and protein kinase C (PKC) inhibitors on aggressiveness characteristics. Timp1 downregulation resulted in decreased anoikis resistance, clonogenicity, dacarbazine resistance, and in vivo tumor growth and lung colonization. In metastatic cells, pAKTThr308 is highly expressed, contributing to anoikis resistance. We showed that PDK1Ser241 and PKCßIISer660 are activated by Timp1 in different stages of melanoma progression, contributing to colony formation and anoikis resistance. Moreover, simultaneous inhibition of Timp1 and AKT in metastatic cells resulted in more effective anoikis inhibition. Our findings demonstrate that Timp1 promotes cell survival with the participation of PDK1 and PKC in melanoma. In addition, Timp1 and AKT act synergistically to confer anoikis resistance in advanced tumor stages. This study brings new insights about the mechanisms by which Timp1 promotes cell survival in melanoma, and points to novel perspectives for therapeutic approaches.
RESUMEN
In this study, the apoptosis inducing effects of baltergin as well as its influence on cell adhesion and migration on muscles cells in vitro were studied. Morphological analysis made by scanning electron and phase contrast microscopy demonstrated typical futures of programmed cell death, apoptosis. This mechanism was confirmed by fluorescence staining, molecular analysis of endonuclease activity and increased mRNA expression level of two representative genes (p53 and bax). On the other hand, baltergin exert an inhibition effect on myoblast cell adhesion and migration in vitro probably through a mechanism that involves the interaction of this enzyme with cell integrins. In conclusion, our results suggest that the absence of appropriate extracellular matrix contacts triggers anoikis. Therefore, this is the first report that demonstrated the mechanism of programmed cell death triggered by baltergin, a PIII metalloprotease isolated from Bothrops alternatus venom, in a myoblast cell line.
Asunto(s)
Anoicis/efectos de los fármacos , Bothrops/metabolismo , Venenos de Crotálidos/enzimología , Metaloproteasas/farmacología , Mioblastos/efectos de los fármacos , Animales , Adhesión Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Venenos de Crotálidos/aislamiento & purificación , Venenos de Crotálidos/farmacología , Metaloproteasas/aislamiento & purificación , Ratones , Ratones Endogámicos C3H , Microscopía Electrónica de Rastreo , Microscopía de Contraste de Fase , Mioblastos/citología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/genéticaRESUMEN
Cell adhesion plays an important role in neoplastic transformation. Thus, anchorage-independent growth and epithelial-mesenchymal transition, which are features associated to anoikis-resistance, are vital steps in cancer progression and metastatic colonization. Cell attachment loss may induce intracellular oxidative stress, which triggers DNA damage as methylation changes. HaCaT lineage cells were submitted to periods of 1, 3, 5 and 24 h of anchorage blockage with the purpose of study of oxidative stress effect on changes in the DNA methylation pattern, derived from attachment blockade. Through this study, HaCaT anchorage blockage-induced oxidative stress was reported to mediate alterations in global DNA methylation changes and into TP53 gene promoter pattern during anoikis-resistance acquisition. Furthermore, at the first experimental time-periods (1, 3 and 5 h), genome hypermethylation was found; however, genome hypomethylation was observed in later time-periods (24 h) of attachment impediment. The TP 53 methylation analyses were performed after 24 h of replated anoikis-resistance cells and same methylation pattern was observed, occurring an early (1 and 3 h) hypermethylation that was followed by late (5 and 24 h) hypomethylation. However, LINE-1, a marker of genomic instability, was perceived in time-dependent hypomethylation. The mRNA levels of the DNMTs enzymes were influenced by cell attachment blockage, but non-conclusive results were obtained in order to match DNMTs transcription to pattern methylation results. In conclusion, DNA damage was found, leaded by oxidative stress that has come up from HaCaT anchorage blockade, which rises a global genome hypomethylation tendency as consequence, which might denote genomic instability.
RESUMEN
The armadillo Chaetophractus villosus is a seasonal breeder whose seminiferous epithelium undergoes rapid regression with massive germ cell loss, leaving the tubules with only Sertoli cells and spermatogonia. Here, we addressed the question of whether this regression entails 1) the disassembly of cell junctions (immunolocalization of nectin-3, Cadm1, N-cadherin, and beta-catenin, and transmission electron microscopy [TEM]); 2) apoptosis (immunolocalization of cytochrome c and caspase 3; TUNEL assay); and 3) the involvement of Sertoli cells in germ cell phagocytosis (TEM). We showed a dramatic reduction in the extension of vimentin filaments associated with desmosomelike junctions at the interface between Sertoli and germ cells, and an increased diffusion of the immunosignals of nectin-3, Cadm1, N-cadherin, and beta-catenin. Together, these results suggest loss of Sertoli-germ cell adhesion, which in turn might determine postmeiotic cell sloughing at the beginning of epithelium regression. Then, loss of Sertoli-germ cell adhesion triggers cell death. Cytochrome c is released from mitochondria, but although postmeiotic cells were negative for late apoptotic markers, at advanced regression spermatocytes were positive for all apoptotic markers. Transmission electron microscopy analysis showed cytoplasmic engulfment of cell debris and lipid droplets within Sertoli cells, a sign of their phagocytic activity, which contributes to the elimination of the residual meiocytes still present in the latest regression phases. These findings are novel and add new players to the mechanisms of seminiferous epithelium regression occurring in seasonal breeders, and they introduce the armadillo as an interesting model for studying seasonal spermatogenesis.
Asunto(s)
Armadillos/fisiología , Adhesión Celular/fisiología , Células Germinativas/fisiología , Epitelio Seminífero/fisiología , Células de Sertoli/fisiología , Animales , Apoptosis/fisiología , Cadherinas/metabolismo , Caspasa 3/metabolismo , Moléculas de Adhesión Celular/metabolismo , Citocromos c/metabolismo , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Uniones Intercelulares/fisiología , Masculino , Meiosis/fisiología , Microscopía Electrónica de Transmisión , Nectinas , Fagocitosis/fisiología , Estaciones del Año , beta Catenina/metabolismoRESUMEN
La muerte celular programada es un evento fisiológico durante el desarrollo. En el encéfalo y la médula espinal, este proceso determina el número y la localización de los diferentes tipos celulares. En el sistema nervioso del adulto, la muerte celular programada o apoptosis está más restringida, pero puede jugar un papel determinante en enfermedades crónicas o agudas. Al contrario de otros tejidos en los cuales la apoptosis está documentada ampliamente desde el punto de vista morfológico, en el sistema nervioso central la evidencia en este sentido es escasa. A pesar de esto, existe consenso acerca de la activación de diferentes sistemas de señalización apoptótica. En el presente artículo se intenta resumir las principales vías de señalización apoptótica identificadas en el tejido nervioso. Considerando que las vías apoptóticas son múltiples, los tipos neuronales diversos y especializados y que la respuesta neuronal a la lesión y la supervivencia dependen del contexto de la célula en el tejido (preservación de la conectividad, integridad glial y matriz extracelular, flujo sanguíneo y disponibilidad de factores tróficos), lo que es relevante en el proceso apoptótico en un sector del cerebro puede no serlo en otro.
Programmed cell death occurs as a physiological process during development. In the brain and spinal cord this event determines the number and location of the different cell types. In adulthood, programmed cell death or apoptosis is more restricted but it may play a major role in different acute and chronic pathological entities. However, in contrast to other tissues where apoptosis has been widely documented from a morphological point of view, in the central nervous system complete anatomical evidence of apoptosis is scanty. In spite of this there is consensus about the activation of different signal systems associated to programmed cell death. In the present article we attempt to summarize the main apoptotic pathways so far identified in nervous tissue. Considering that apoptotic pathways are multiple, the neuronal cell types are highly diverse and specialized and that neuronal response to injury and survival depends upon tissue context, (i.e., preservation of connectivity, glial integrity and cell matrix, blood supply and trophic factors availability) what is relevant for the apoptotic process in a sector of the brain may not be important in another.
Asunto(s)
Caspasas , Isquemia , Enfermedades Neurodegenerativas , Proteínas , Heridas y LesionesRESUMEN
Both oxidative/nitrosative stress and alterations in DNA methylation are observed during carcinogenesis of different tumor types, but no clear correlation between these events has been demonstrated until now. Melanoma cell lines were previously established after submitting the nontumorigenicmelanocyte lineage, melan-a, to cycles of anchorage blockade. In this work, increased intracellular oxidative species and nitric oxide levels, as well as alterations in the DNA methylation, were observed after melan-a detachment, which were also associated with a decrease in intracellular homocysteine (Hcy), an element in the methionine (universal methyl donor) cycle. This alteration was accompanied by increase in glutathione (GSH) levels and methylated DNA content. Furthermore, a significant increase in dnmt1 and 3b expression was identified along melan-a anchorage blockade. L(G)-Nitro-L-arginine methyl esther (L-NAME), known as a nitric oxide synthase (NOS) inhibitor, and N-acetyl-L-cysteine (NAC) prevented the increase in global DNA methylation, as well as the increase in dnmt1 and 3b expression, observed during melan-a detachment. Interestingly, both L-NAME and NAC did not inhibit nitric oxide (NO) production in these cells, but abrogated superoxide anion production during anchorage blockade. In conclusion, oxidative stress observed during melanocyte anchorage blockade seems to modulate DNA methylation levels and may directly contribute to the acquisition of an anoikis-resistant phenotype through an epigenetic mechanism.