Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
Circulation ; 150(1): 62-79, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38950110

RESUMEN

Despite data suggesting that apolipoprotein B (apoB) measurement outperforms low-density lipoprotein cholesterol level measurement in predicting atherosclerotic cardiovascular disease risk, apoB measurement has not become widely adopted into routine clinical practice. One barrier for use of apoB measurement is lack of consistent guidance for clinicians on how to interpret and apply apoB results in clinical context. Whereas guidelines have often provided clear low-density lipoprotein cholesterol targets or triggers to initiate treatment change, consistent targets for apoB are lacking. In this review, we synthesize existing data regarding the epidemiology of apoB by comparing guideline recommendations regarding use of apoB measurement, describing population percentiles of apoB relative to low-density lipoprotein cholesterol levels, summarizing studies of discordance between low-density lipoprotein cholesterol and apoB levels, and evaluating apoB levels in clinical trials of lipid-lowering therapy to guide potential treatment targets. We propose evidence-guided apoB thresholds for use in cholesterol management and clinical care.


Asunto(s)
Apolipoproteínas B , LDL-Colesterol , Humanos , Apolipoproteínas B/sangre , LDL-Colesterol/sangre , Guías de Práctica Clínica como Asunto , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/diagnóstico , Biomarcadores/sangre , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Apolipoproteína B-100
2.
Front Cardiovasc Med ; 11: 1381520, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952543

RESUMEN

In recent years, the role of macrophages as the primary cell type contributing to foam cell formation and atheroma plaque development has been widely acknowledged. However, it has been long recognized that diffuse intimal thickening (DIM), which precedes the formation of early fatty streaks in humans, primarily consists of lipid-loaded smooth muscle cells (SMCs) and their secreted proteoglycans. Recent studies have further supported the notion that SMCs constitute the majority of foam cells in advanced atherosclerotic plaques. Given that SMCs are a major component of the vascular wall, they serve as a significant source of microvesicles and exosomes, which have the potential to regulate the physiology of other vascular cells. Notably, more than half of the foam cells present in atherosclerotic lesions are of SMC origin. In this review, we describe several mechanisms underlying the formation of intimal foam-like cells in atherosclerotic plaques. Based on these mechanisms, we discuss novel therapeutic approaches that have been developed to regulate the generation of intimal foam-like cells. These innovative strategies hold promise for improving the management of atherosclerosis in the near future.

3.
Future Cardiol ; : 1-7, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967435

RESUMEN

Aim: In the current study, serum levels of endocan in patients attended with ST-elevation myocardial infarction, as well as the possible correlation with apolipoprotein-A1 (APO-A1) and APO-B were investigated. Materials & methods: In 80 men, endocan, cTnI, APO-A1, and APO-B levels were measured. Finally, the correlation of endocan with APO-A1, APO-B, and APO-B/ APO-A1 ratio was assessed. Results: Significant changes in APO-A1, APO-B, endocan levels, and APO-B/APO-A1 ratio were found in acute myocardial infarction cases compared with the control arm (p < 0.05). In addition, our finding showed a significant correlation between APO-B and endocan levels, but not APO-A. Conclusion: High endocan level is an independent indicator of endothelial dysfunction and ischemic cardiovascular conditions, which could be related to APO-B.


[Box: see text].

4.
Circ J ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38897974

RESUMEN

BACKGROUND: Because apolipoprotein-A2 (ApoA2), a key component of high-density lipoprotein cholesterol (HDL-C), lacks clear clinical significance, we investigated its impact on cardiovascular events in patients undergoing percutaneous coronary intervention (PCI).Methods and Results: We examined 638 patients who underwent PCI with a new-generation drug-eluting stent for acute or chronic coronary syndrome and had their apolipoprotein levels measured between 2016 and 2021. The patients were divided into 2 groups based on the median serum ApoA2 values, and the incidence of major adverse cardiovascular events (MACE) was assessed. Of the 638 patients, 563 (88%) received statin treatment, with a median serum LDL-C level of 93 mg/dL. Furthermore, 137 patients (21.5%) experienced MACE, and Kaplan-Meier analysis revealed that the higher ApoA2 group had a significantly lower incidence of MACE than the lower ApoA2 group (30.9% vs. 41.6%). However, the other apolipoproteins, including ApoA1, ApoB, ApoC2, ApoC3, and ApoE, showed no significant differences in MACE. Multivariable Cox hazard analysis indicated that ApoA2 was an independent predictor of MACEs (hazard ratio, 0.666; 95% confidence interval, 0.465-0.954). Furthermore, ApoA2 levels exhibited the strongest inverse association with high-sensitivity C-reactive protein levels (rs=-0.479). CONCLUSIONS: Among all the apolipoproteins, the serum ApoA2 level may be the strongest predictor of future cardiovascular events and prognosis in patients undergoing PCI.

5.
Front Endocrinol (Lausanne) ; 15: 1409653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883601

RESUMEN

The global prevalence of cardiovascular diseases (CVD) continues to rise steadily, making it a leading cause of mortality worldwide. Atherosclerosis (AS) serves as a primary driver of these conditions, commencing silently at an early age and culminating in adverse cardiovascular events that severely impact patients' quality of life or lead to fatality. Dyslipidemia, particularly elevated levels of low-density lipoprotein cholesterol (LDL-C), plays a pivotal role in AS pathogenesis as an independent risk factor. Research indicates that abnormal LDL-C accumulation within arterial walls acts as a crucial trigger for atherosclerotic plaque formation. As the disease progresses, plaque accumulation may rupture or dislodge, resulting in thrombus formation and complete blood supply obstruction, ultimately causing myocardial infarction, cerebral infarction, and other common adverse cardiovascular events. Despite adequate pharmacologic therapy targeting LDL-C reduction, patients with cardiometabolic abnormalities remain at high risk for disease recurrence, highlighting the importance of addressing lipid risk factors beyond LDL-C. Recent attention has focused on the causal relationship between triglycerides, triglyceride-rich lipoproteins (TRLs), and their remnants in AS risk. Genetic, epidemiologic, and clinical studies suggest a causal relationship between TRLs and their remnants and the increased risk of AS, and this dyslipidemia may be an independent risk factor for adverse cardiovascular events. Particularly in patients with obesity, metabolic syndrome, diabetes, and chronic kidney disease, disordered TRLs and its remnants levels significantly increase the risk of atherosclerosis and cardiovascular disease development. Accumulation of over-synthesized TRLs in plasma, impaired function of enzymes involved in TRLs lipolysis, and impaired hepatic clearance of cholesterol-rich TRLs remnants can lead to arterial deposition of TRLs and its remnants, promoting foam cell formation and arterial wall inflammation. Therefore, understanding the pathogenesis of TRLs-induced AS and targeting it therapeutically could slow or impede AS progression, thereby reducing cardiovascular disease morbidity and mortality, particularly coronary atherosclerotic heart disease.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteínas , Triglicéridos , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/etiología , Lipoproteínas/metabolismo , Triglicéridos/metabolismo , Triglicéridos/sangre , Aterosclerosis/metabolismo , Animales , Dislipidemias/metabolismo , Factores de Riesgo
6.
Biomedicines ; 12(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38927431

RESUMEN

The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.

7.
Atherosclerosis ; 395: 117584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823352

RESUMEN

BACKGROUND AND AIMS: Apolipoprotein C-III (apoC-III) proteoform composition shows distinct relationships with plasma lipids and cardiovascular risk. The present study tested whether apoC-III proteoforms are associated with risk of peripheral artery disease (PAD). METHODS: ApoC-III proteoforms, i.e., native (C-III0a), and glycosylated with zero (C-III0b), one (C-III1) or two (C-III2) sialic acids, were measured by mass spectrometry immunoassay on 5,734 Multi-Ethnic Study of Atherosclerosis participants who were subsequently followed for clinical PAD over 17 years. Ankle-brachial index (ABI) was also assessed at baseline and then 3 and 10 years later in 4,830 participants. RESULTS: Higher baseline C-III0b/C-III1 and lower baseline C-III2/C-III1 were associated with slower decline in ABI (follow-up adjusted for baseline) over time, independently of cardiometabolic risk factors, and plasma triglycerides and HDL cholesterol levels (estimated difference per 1 SD was 0.31 % for both, p < 0.01). The associations between C-III2/C-III1 and changes in ABI were stronger in men (-1.21 % vs. -0.27 % in women), and in Black and Chinese participants (-0.83 % and -0.86 % vs. 0.12 % in White). Higher C-III0b/C-III1 was associated with a trend for lower risk of PAD (HR = 0.84 [95%CI: 0.67-1.04]) that became stronger after excluding participants on lipid-lowering medications (0.73 [95%CI: 0.57-0.94]). Neither change in ABI nor clinical PAD was related to total apoC-III levels. CONCLUSIONS: We found associations of apoC-III proteoform composition with changes in ABI that were independent of other risk factors, including plasma lipids. Our data further support unique properties of apoC-III proteoforms in modulating vascular health that go beyond total apoC-III levels.


Asunto(s)
Índice Tobillo Braquial , Apolipoproteína C-III , Enfermedad Arterial Periférica , Humanos , Enfermedad Arterial Periférica/sangre , Enfermedad Arterial Periférica/etnología , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/fisiopatología , Masculino , Femenino , Apolipoproteína C-III/sangre , Persona de Mediana Edad , Anciano , Estados Unidos/epidemiología , Anciano de 80 o más Años , Biomarcadores/sangre , Factores de Riesgo , Aterosclerosis/sangre , Aterosclerosis/etnología , Aterosclerosis/diagnóstico , Glicosilación , Medición de Riesgo , Factores de Tiempo
8.
Indian Heart J ; 76(3): 154-158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38871221

RESUMEN

BACKGROUND: Defining lipid goals solely on low-density lipoprotein-cholesterol (LDL-C) levels in Indian population may cause misclassification due to high prevalence of hypertriglyceridemia and small dense LDL-C particles. International guidelines now recommend Apoliporotein-B (Apo-B) and non-high-density lipoprotein-cholesterol (non-HDL-C) levels as alternative targets. In this study, we used a cross-sectional representative population database to determine Apo-B and non-HDL-C cut-offs corresponding to identified LDL-C targets and compared them to international guidelines. METHODS: A community-based survey carried out in urban Delhi and adjacent rural Ballabhgarh provided lipid values for 3047 individuals. The Spearman correlation coefficient was used to evaluate the degree of relationship between Apo-B and LDL-C and non-HDL-C. Cut-off values for Apo-B and non-HDL-C were established using receiver operator curve analysis correlating with guideline-recommended LDL-C targets. RESULTS: Spearman's rank correlations between Apo-B and LDL-C (0.82) and non-HDL-C and LDL-C (0.93) were significant (p < 0.05). Proposed corresponding cut-off values for LDL-C of 55, 70,100,130 and 160 mg/dl for Apo-B and non-HDL-C in our population were 75.3, 75.5, 91.3, 107.6, 119.4 mg/dL and 92.5,96.5, 123.5, 154.5, 179.5 mg/dL respectively. However, in those with triglycerides >150 mg/dl the corresponding Apo-B and non-HDL-C values were 85.1, 92.7, 103.5, 117.5 and 135 mg/dL and 124.5, 126.5, 147.5, 167.5 and 190.5 mg/L respectively. CONCLUSION: Based on this study we provide Apo-B and non-HDL cut-offs corresponding to target LDL-C values in Indian patients with and without high triglycerides. It is noted that in individuals with triglycerides ≥ 150 mg/dl, the Apo-B levels are much higher than the values recommended by guidelines.


Asunto(s)
Apolipoproteínas B , LDL-Colesterol , Humanos , Estudios Transversales , India/epidemiología , Masculino , Femenino , Persona de Mediana Edad , LDL-Colesterol/sangre , Adulto , Apolipoproteínas B/sangre , Biomarcadores/sangre , HDL-Colesterol/sangre , Prevalencia
9.
J Lipid Res ; 65(7): 100577, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38879166

RESUMEN

Patients with schizophrenia show a disproportionally increased risk of cardiovascular disease. Hypertriglyceridemia is prevalent in this population; however, how this relates to levels of remnant cholesterol, triglyceride (TG)-rich lipoprotein (TRL) particle size and composition, TG turnover, and apolipoprotein (apo) and angiopoietin-like protein (ANGPTL) concentrations is unknown. Fasting levels of cholesterol (total [TC], LDL-C, HDL-C, non-HDL-C and remnant cholesterol) and TG were determined in 110 patients diagnosed with schizophrenia, and 46 healthy controls. TRL particle size, concentration and composition, and ß-hydroxybutyrate (TG turnover marker) were assessed by NMR. Levels of apoCII, apoCIII, apoE, ANGPTL3, ANGPTL4, and ANGPTL8 were measured by ELISA, and apoCII, apoCIII and apoE were further evaluated in HDL and non-HDL fractions. Patients with schizophrenia had significantly elevated TG, TG:apoB ratio, non-HDL-C, remnant cholesterol, non-HDL-apoCII and non-HDL-apoCIII, and HDL-apoE (all P < 0.05), lower HDL-C and apoA-I (all P < 0.001), and comparable apoB, TC, TC:apoB ratio, LDL-C, ß-hydroxybutyrate, ANGPTL3, ANGPTL4 and ANGPTL8 to healthy controls. Patients had a 12.0- and 2.5-fold increase in the concentration of large and medium TRL particles respectively, but similar cholesterol:TG ratio within each particle. Plasma TG, remnant cholesterol, and large and medium TRL particle concentrations correlated strongly with apoCII, apoCIII, and apoE in the non-HDL fraction, and with apoCIII and apoE in the HDL fraction in patients with schizophrenia. Differences in TG, HDL-C, TRL particle concentrations, apoCIII, and apoE persisted after adjustment for conventional risk factors. These results are consistent with impaired TRL lipolysis and clearance in patients with schizophrenia which may be responsive to targeting apoCIII.


Asunto(s)
Apolipoproteína C-III , Apolipoproteínas E , Colesterol , Lipoproteínas , Esquizofrenia , Triglicéridos , Humanos , Esquizofrenia/sangre , Esquizofrenia/metabolismo , Masculino , Femenino , Triglicéridos/sangre , Adulto , Colesterol/sangre , Lipoproteínas/sangre , Apolipoproteína C-III/sangre , Apolipoproteínas E/sangre , Persona de Mediana Edad , Proteína 4 Similar a la Angiopoyetina/sangre , Proteínas Similares a la Angiopoyetina/sangre , Apolipoproteína C-II/sangre , Proteína 8 Similar a la Angiopoyetina , Proteína 3 Similar a la Angiopoyetina/sangre , Estudios de Casos y Controles , Hormonas Peptídicas/sangre
10.
BMC Pregnancy Childbirth ; 24(1): 347, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711000

RESUMEN

BACKGROUND: This study investigates the causal relationship between lipid traits and GDM in an effort to better understand the aetiology of GDM. METHODS: Employing a two-sample Mendelian Randomization (MR) framework, we used Single Nucleotide Polymorphisms (SNPs) as instrumental variables to examine the impact of lipids and apolipoproteins on GDM. The research comprised univariable and multivariable MR analyses, with a prime focus on individual and combined effects of lipid-related traits. Statistical techniques included the fixed-effect inverse variance weighted (IVW) method and supplementary methods such as MR-Egger for comprehensive assessment. RESULTS: Our findings revealed the following significant associations: apoA-I and HDL cholesterol were inversely correlated with GDM risk, while triglycerides showed a positive correlation. In multivariable analysis, apoA-I consistently exhibited a strong causal link with GDM, even after adjusting for other lipids and Body Mass Index (BMI). CONCLUSION: The study demonstrates a significant causal relationship between apoA-I and GDM risk.


Asunto(s)
Apolipoproteína A-I , HDL-Colesterol , Diabetes Gestacional , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Triglicéridos , Humanos , Femenino , Embarazo , Diabetes Gestacional/genética , Diabetes Gestacional/sangre , Triglicéridos/sangre , Apolipoproteína A-I/sangre , Apolipoproteína A-I/genética , HDL-Colesterol/sangre , Apolipoproteínas/sangre , Apolipoproteínas/genética , Índice de Masa Corporal , Lípidos/sangre , Factores de Riesgo
11.
Atherosclerosis ; 394: 117545, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38688749

RESUMEN

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Lipoproteínas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Aterosclerosis/metabolismo , Lipoproteínas/metabolismo , Animales , Placa Aterosclerótica , Resistencia a la Insulina , Dislipidemias/metabolismo , Dislipidemias/sangre , Biomarcadores/sangre
12.
Nutr Res Pract ; 18(2): 194-209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584811

RESUMEN

BACKGROUND/OBJECTIVES: High levels of plasma low-density lipoprotein (LDL) cholesterol are an important determinant of atherosclerotic lesion formation. The disruption of cholesterol efflux or reverse cholesterol transport (RCT) in peripheral tissues and macrophages may promote atherogenesis. The aim of the current study was to examine whether bioactive ellagic acid, a functional food component, improved RCT functionality and high-density lipoprotein (HDL) function in diet-induced atherogenesis of apolipoproteins E (apoE) knockout (KO) mice. MATERIALS/METHODS: Wild type mice and apoE KO mice were fed a high-cholesterol Paigen diet for 10 weeks to induce hypercholesterolemia and atherosclerosis, and concomitantly received 10 mg/kg ellagic acid via gavage. RESULTS: Supplying ellagic acid enhanced induction of apoE and ATP-binding cassette (ABC) transporter G1 in oxidized LDL-exposed macrophages, facilitating cholesterol efflux associated with RCT. Oral administration of ellagic acid to apoE KO mice fed on Paigen diet improved hypercholesterolemia with reduced atherogenic index. This compound enhanced the expression of ABC transporters in peritoneal macrophages isolated from apoE KO mice fed on Paigen diet, indicating increased cholesterol efflux. Plasma levels of cholesterol ester transport protein and phospholipid transport protein involved in RCT were elevated in mice lack of apoE gene, which was substantially reduced by supplementing ellagic acid to Paigen diet-fed mice. In addition, ellagic acid attenuated hepatic lipid accumulation in apoE KO mice, evidenced by staining of hematoxylin and eosin and oil red O. Furthermore, the supplementation of 10 mg/kg ellagic acid favorably influenced the transcriptional levels of hepatic LDL receptor and scavenger receptor-B1 in Paigen diet-fed apoE KO mice. CONCLUSION: Ellagic acid may be an athero-protective dietary compound encumbering diet-induced atherogenesis though improving the RCT functionality.

13.
J Alzheimers Dis ; 98(4): 1361-1375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578887

RESUMEN

Background: Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective: To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods: Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results: Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p <  0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions: Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Apolipoproteínas/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas B , Colesterol , Contactinas
14.
Biofactors ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661230

RESUMEN

High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.

15.
Metabolites ; 14(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38668320

RESUMEN

Peripheral artery disease (PAD) compromises walking and physical activity, which results in further loss of skeletal muscle. The cross-sectional area of the thigh muscle has been shown to be correlated with systemic skeletal muscle volume. In our previous pilot study, we observed an increase in thigh muscle mass following endovascular treatment (EVT) in patients with proximal vascular lesions affecting the aortoiliac and femoropopliteal arteries. Considering the potential interactions between skeletal muscle, lipid profile, and glucose metabolism, we aimed to investigate the relationship between thigh muscle mass and apolipoproteins as well as glucose metabolism in PAD patients undergoing EVT. This study is a prespecified sub-study conducted as part of a pilot study. We prospectively enrolled 22 symptomatic patients with peripheral artery disease (PAD) and above-the-knee lesions, specifically involving the blood vessels supplying the thigh muscle. The mid-thigh muscle area was measured with computed tomography before and 6 months after undergoing EVT. Concurrently, we measured levels of apolipoproteins A1 (Apo A1) and B (Apo B), fasting blood glucose, 2 h post-load blood glucose (using a 75 g oral glucose tolerance test), and glycated hemoglobin A1c (HbA1c). Changes in thigh muscle area (delta muscle area: 2.5 ± 8.1 cm2) did not show significant correlations with changes in Apo A1, Apo B, fasting glucose, 2 h post-oral glucose tolerance test blood glucose, HbA1c, or Rutherford classification. However, among patients who experienced an increase in thigh muscle area following EVT (delta muscle area: 8.41 ± 5.93 cm2), there was a significant increase in Apo A1 (pre: 121.8 ± 15.1 mg/dL, 6 months: 136.5 ± 19.5 mg/dL, p < 0.001), while Apo B remained unchanged (pre: 76.4 ± 19.2 mg/dL, 6 months: 80.5 ± 4.9 mg/dL). Additionally, post-oral glucose tolerance test 2 h blood glucose levels showed a decrease (pre: 189.7 ± 67.5 mg/dL, 6 months: 170.6 ± 69.7 mg/dL, p = 0.075). Patients who exhibited an increase in thigh muscle area demonstrated more favorable metabolic changes compared to those with a decrease in thigh muscle area (delta muscle area: -4.67 ± 2.41 cm2). This pilot sub-study provides insights into the effects of EVT on thigh muscle, apolipoproteins, and glucose metabolism in patients with PAD and above-the-knee lesions. Further studies are warranted to validate these findings and establish their clinical significance. The trial was registered on the University Hospital Medical Information Network Clinical Trials Registry (UMIN000047534).

16.
Arterioscler Thromb Vasc Biol ; 44(5): 1042-1052, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38545782

RESUMEN

The brain is the most lipid-rich organ in the body, and the intricate interplay between lipid metabolism and pathologies associated with neurodegenerative disorders is being increasingly recognized. The brain is bathed in cerebrospinal fluid (CSF), which, like plasma, contains lipid-protein complexes called lipoproteins that are responsible for extracellular lipid transport. Multiple CSF lipoprotein populations exist, some of which are produced de novo in the central nervous system and others that appear to be generated from protein constituents that are produced in the periphery. These CSF lipoproteins are thought to play key roles in maintaining lipid homeostasis in the central nervous system, while little else is known due to their limited accessibility and their low abundance in CSF. Recent work has provided new insights into the compositional complexity of CSF lipoprotein families and their metabolism in cerebral circulation. The purpose of this review is to summarize our current state of knowledge on the composition, origin, and metabolism of CSF lipoproteins.


Asunto(s)
Lipoproteínas , Humanos , Animales , Lipoproteínas/líquido cefalorraquídeo , Encéfalo/metabolismo , Metabolismo de los Lípidos , Enfermedades Neurodegenerativas/líquido cefalorraquídeo , Enfermedades Neurodegenerativas/sangre
17.
Transfus Apher Sci ; 63(3): 103918, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555232

RESUMEN

INTRODUCTION: Therapeutic plasma exchange (TPE), with solvent/detergent (S/D)-treated plasma as replacement fluid, is an extracorporeal blood purification technique with major impact on both coagulation and lipids. Our previous in vitro study showed that S/D-plasma enhances thrombin generation by lowering intact protein S (PS) levels. AIMS: To evaluate the impact of altered lipid balance on coagulation phenotype during heparin-anticoagulated TPE with S/D-plasma, and to investigate whether the lowered intact PS levels with concomitant procoagulant phenotype, are recapitulated in vivo. METHODS: Coagulation biomarkers, thrombin generation with Calibrated Automated Thrombogram (CAT), and lipid levels were measured before and after the consecutive 1st, 3rd and 5th episodes of TPE performed to six patients with Guillain-Barré syndrome or myasthenia gravis. The effects of in vitro dilution of S/D-plasma on thrombin generation were explored with CAT to mimic TPE. RESULTS: Patients did not have coagulation disorders, except elevated FVIII. Intact PS, lipoproteins, especially LDL, Apolipoprotein CIII (ApoC3) and ApoB/ApoA1 ratio declined (p < 0.05). In contrast, VLDL and triglyceride levels stayed intact. CAT lag time shortened (p < 0.05). In vitro dilution of S/D plasma with co-transfused Ringer's lactate and 4% albumin partially reduced its procoagulant phenotype in CAT, which is mainly seen as peak thrombin, and modestly shortened lag time. CONCLUSIONS: After the five settings of TPE using S/D-plasma in vivo, which associated with heparinization and reduced coagulation factor activities, our observations of declining natural anticoagulant intact PS and apolipoproteins refer to rebalance of the hemostatic and lipid profiles.


Asunto(s)
Apolipoproteínas , Intercambio Plasmático , Proteína S , Trombina , Humanos , Intercambio Plasmático/métodos , Masculino , Trombina/metabolismo , Apolipoproteínas/sangre , Femenino , Persona de Mediana Edad , Proteína S/metabolismo , Adulto , Anciano
19.
Postgrad Med J ; 100(1186): 578-583, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38491971

RESUMEN

BACKGROUND: Endometriosis is a poorly understood disease that affects up to 196 million women worldwide and imposes high costs in terms of economic burden and quality of life of women. Traits of circulating lipids have been related to the onset and progression of endometriosis in previous observational studies but the results have remained contradictory. METHODS: We performed univariable and multivariable Mendelian randomization (MR) analyses using instrument variables to genetically predict the associations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, triglycerides, and apolipoprotein (apo) A-I and B from the UK Biobank with endometriosis (consisting of 8288 cases and 68 969 controls from the FinnGen consortium). The inverse-variance weighted (IVW) method was used as the primary estimate, whereas MR-Egger and weighted median were conducted as complements to the IVW model. RESULTS: Increased levels of triglycerides were associated with higher risk of endometriosis and endometriosis of the pelvic peritoneum in the univariable MR analyses. In multivariable MR analysis including apoB, LDL cholesterol, and triglycerides in the same model, triglycerides still retained a robust effect. Decreased levels of apoA-I and HDL cholesterol were associated with increased risk of endometriosis and endometriosis of the pelvic peritoneum in univariable MR analyses. After mutual adjustment, HDL cholesterol retained a robust effect whereas the association for apoA-I was attenuated. CONCLUSIONS: This is the first MR-based evidence to suggest that triglycerides and HDL cholesterol are the predominant traits that account for the aetiological relationship of lipoprotein lipids with risk of endometriosis, in particular endometriosis of the pelvic peritoneum. Further well-designed randomized controlled trials are needed to address these results.


Asunto(s)
Endometriosis , Análisis de la Aleatorización Mendeliana , Triglicéridos , Humanos , Femenino , Endometriosis/sangre , Endometriosis/genética , Triglicéridos/sangre , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Apolipoproteína A-I/sangre , Factores de Riesgo , Apolipoproteínas/sangre , Apolipoproteínas/genética , Lipoproteínas/sangre , Reino Unido/epidemiología , Adulto
20.
J Lipid Res ; 65(4): 100531, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490635

RESUMEN

Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 µl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.


Asunto(s)
Apolipoproteínas , Marcaje Isotópico , Proteómica , Animales , Ratones , Proteómica/métodos , Apolipoproteínas/sangre , Cinética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/sangre , Cromatografía Liquida/métodos , Ratones Endogámicos C57BL , Ratones Noqueados , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA