Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; : e16369, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989851

RESUMEN

PREMISE: While many studies have measured the aboveground responses of plants to mycorrhizal fungi at a single time point, little is known about how plants respond belowground or across time to mycorrhizal symbiosis. By measuring belowground responses and growth over time in many plant species, we create a more complete picture of how mycorrhizal fungi benefit their hosts. METHODS: We grew 26 prairie plant species with and without mycorrhizal fungi and measured 14 functional traits to assess above- and belowground tissue quality and quantity responses and changes in resource allocation. We used function-valued trait (FVT) modeling to characterize changes in species growth rate when colonized. RESULTS: While aboveground biomass responses were positive, the response of traits belowground were much more variable. Changes in aboveground biomass accounted for 60.8% of the variation in mycorrhizal responses, supporting the use of aboveground biomass response as the primary response trait. Responses belowground were not associated with aboveground responses and accounted for 18.3% of the variation. Growth responses over time were highly variable across species. Interestingly, none of the measured responses were phylogenetically conserved. CONCLUSIONS: Mycorrhizal fungi increase plant growth in most scenarios, but the effects of these fungi belowground and across time are more complicated. This study highlights how differences in plant allocation priorities might affect how they utilize the benefits from mycorrhizal fungi. Identifying and characterizing these differences is a key step to understanding the effects of mycorrhizal mutualisms on whole plant physiology.

2.
Glob Chang Biol ; 30(7): e17409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978455

RESUMEN

Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta-analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta-analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature-based solution to sustaining multiple soil functions in a world where drought events are intensifying.


Asunto(s)
Sequías , Micorrizas , Microbiología del Suelo , Suelo , Micorrizas/fisiología , Suelo/química , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Biomasa
3.
Heliyon ; 10(4): e26485, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38444950

RESUMEN

Arbuscular mycorrhizal (AM) fungi are supposedly competing with ammonia-oxidizing microorganisms (AO) for soil nitrogen in form of ammonium. Despite a few studies directly addressing AM fungal and AO interactions, mostly in artificial cultivation substrates, it is not yet clear whether AM fungi can effectively suppress AO in field soils containing complex indigenous microbiomes. To fill this knowledge gap, we conducted compartmentalized pot experiments using four pairs of cropland and grassland soils with varying physicochemical properties. To exclude the interference of roots, a fine nylon mesh was used to separate the rhizosphere and mesh bags, with the latter being filled with unsterile field soils. Inoculation of plants with AM fungus Rhizophagus irregularis LPA9 suppressed AO bacteria (AOB) but not archaea (AOA) in the soils, indicating how soil nitrification could be suppressed by AM fungal presence/activity. In addition, in rhizosphere filled with artificial substrate, AM inoculation did suppress both AOB and AOA, implying more complex interactions between roots, AO, and AM fungi. Besides, we also observed that indigenous AM fungi contained in the field soils eventually did colonize the roots of plants behind the root barrier, and that the extent of such colonization was higher if the soil has previously been taken from cropland than from grassland. Despite this, the effect of experimental AM fungal inoculation on suppression of indigenous AOB in the unsterile field soils did not vanish. It seems that studying processes at a finer temporal scale, using larger buffer zones between rhizosphere and mesh bags, and/or detailed characterization of indigenous AM fungal and AO communities would be needed to uncover further details of the biotic interactions between the AM fungi and indigenous soil AO.

4.
J Environ Manage ; 354: 120239, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354607

RESUMEN

Most soil ammonia (NH3) emissions originate from soil nitrogen (N) that has been in the form of exchangeable ammonium. Emitted NH3 not only induces nutrient loss but also has adverse effects on the cycling of N and accelerates global warming. There is evidence that arbuscular mycorrhizal (AM) fungi can alleviate N loss by reducing N2O emissions in N-limited ecosystems, however, some studies have also found that global changes, such as warming and N deposition, can affect the growth and development of AM fungi and alter their functionality. Up to now, the impact of AM fungi on NH3 emissions, and whether global changes reduce the AM fungi's contribution to NH3 emissions reduction, has remained unclear. In this study, we examined how warming, N addition, and AM fungi alter NH3 emissions from high pH saline soils typical of a temperate meadow through a controlled microscopic experiment. The results showed that warming significantly increased soil NH3 emissions, but N addition and combined warming plus N addition had no impact. Inoculations with AM fungi strongly reduced NH3 emissions both under warming and N addition, but AM fungi effects were more pronounced under warming than following N addition. Inoculation with AM fungi reduced soil NH4+-N content and soil pH, and increased plant N content and soil net N mineralization rate while increasing the abundance of ammonia-oxidizing bacterial (AOB) gene. Structural equation modeling (SEM) shows that the regulation of NH3 emissions by AM fungi may be related to soil NH4+-N content and soil pH. These findings highlight that AM fungi can reduce N loss in the form of NH3 by increasing N turnover and uptake under global changes; thus, AM fungi play a vital role in alleviating the aggravation of N loss caused by global changes and in mitigating environmental pollution in the future.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Nitrógeno , Suelo/química , Ecosistema , Amoníaco , Pradera , Hongos , Microbiología del Suelo
5.
New Phytol ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37529867

RESUMEN

Arbuscular mycorrhizal (AM) fungi play an important role in soil organic matter (SOM) formation and stabilization. Previous studies have emphasized organic compounds produced by AM fungi as persistent binding agents for aggregate formation and SOM storage. This concept overlooks the multiple biogeochemical processes mediated by AM fungal activities, which drive SOM generation, reprocessing, reorganization, and stabilization. Here, we propose an updated conceptual framework to facilitate a mechanistic understanding of the role of AM fungi in SOM dynamics. In this framework, four pathways for AM fungi-mediated SOM dynamics are included: 'Generating', AM fungal exudates and biomass serve as key sources of SOM chemodiversity; 'Reprocessing', hyphosphere microorganisms drive SOM decomposition and resynthesis; 'Reorganizing', AM fungi mediate soil physical changes and influence SOM transport, redistribution, transformation, and storage; and 'Stabilizing', AM fungi drive mineral weathering and organo-mineral interactions for SOM stabilization. Moreover, we discuss the AM fungal role in SOM dynamics at different scales, especially when translating results from small scales to complex larger scales. We believe that working with this conceptual framework can allow a better understanding of AM fungal role in SOM dynamics, therefore facilitating the development of mycorrhiza-based technologies toward soil health and global change mitigation.

6.
Am Nat ; 201(2): 315-329, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724460

RESUMEN

AbstractThe persistence of mutualisms is paradoxical, as there are fitness incentives for exploitation. This is particularly true for plant-microbe mutualisms like arbuscular mycorrhizae (AM), which are promiscuously horizontally transmitted. Preferential allocation by hosts to the best mutualist can stabilize horizontal mutualisms; however, preferential allocation is imperfect, with its fidelity likely depending on the spatial structure of symbionts in plant roots. In this study we tested AM mutualisms' dependence on two dimensions of spatial structure-the initial spatial association of fungi and the ease of fungal dispersal-through three complementary experiments. We found that fitness of the beneficial AM fungus increased when fungi were initially separate, while initial spatial mixing benefited the fitness of the nonbeneficial fungus. These effects were strongest when dispersal was limited and hosts could discriminate. Additionally, we found that changes in AM fungal proportional abundance induced by spatial structure in roots of a preferentially allocating host produced positive feedbacks on plant growth, showing that interactions between spatial structure and host choice can determine the direction of plant-soil feedbacks. Our results suggest that symbiont spatial structure within plant roots may act as an important modifier of plant preferential allocation and the dynamics of mycorrhizal mutualisms, with potentially cascading effects on plant-plant interactions.


Asunto(s)
Micorrizas , Simbiosis , Suelo , Retroalimentación , Raíces de Plantas , Plantas/microbiología
7.
Ecol Evol ; 13(1): e9763, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36713479

RESUMEN

Plants affect associated biotic and abiotic edaphic factors, with reciprocal feedbacks from soil characteristics affecting plants. These two-way interactions between plants and soils are collectively known as plant-soil feedbacks (PSFs). The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of PSFs, although the strength and direction of feedbacks among sympatric congeners are not well-understood. We examined plant-soil feedback responses of Asclepias syriaca, a common clonal milkweed species, with several sympatric congeners across a gradient of increasing phylogenetic distances (A. tuberosa, A. viridis, A. sullivantii, and A. verticillata, respectively). Plant-soil feedbacks were measured through productivity and colonization by arbuscular mycorrhizal (AM) fungi. Asclepias syriaca produced less biomass in soils conditioned by the most phylogenetically distant species (A. verticillata), relative to conspecific-conditioned soils. Similarly, arbuscular mycorrhizal (AM) fungal colonization of A. syriaca roots was reduced when grown in soils conditioned by A. verticillata, compared with colonization in plants grown in soil conditioned by any of the other three Asclepias species, indicating mycorrhizal associations are a potential mechanism of observed positive PSFs. This display of differences between the most phylogenetically distant, but not close or intermediate, paring(s) suggests a potential phylogenetic threshold, although other exogenous factors cannot be ruled out. Overall, these results highlight the potential role of phylogenetic distance in influencing positive PSFs through mutualists. The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of plant-soil feedbacks (PSFs), although the strength and direction of feedbacks among sympatric congeners are not well-understood. Congeneric, sympatric milkweeds typically generated positive PSFs in terms of productivity and AM fungal colonization, suggesting the low likelihood of coexistence among tested pairs, with a strength of feedback increasing as the phylogenetic distance increases.

8.
Front Microbiol ; 14: 1284648, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239731

RESUMEN

Introduction: The hyphosphere of arbuscular mycorrhizal (AM) fungi is teeming with microbial life. Yet, the influence of nutrient availability or nutrient forms on the hyphosphere microbiomes is still poorly understood. Methods: Here, we examined how the microbial community (prokaryotic, fungal, protistan) was affected by the presence of the AM fungus Rhizophagus irregularis in the rhizosphere and the root-free zone, and how different nitrogen (N) and phosphorus (P) supplements into the root-free compartment influenced the communities. Results: The presence of AM fungus greatly affected microbial communities both in the rhizosphere and the root-free zone, with prokaryotic communities being affected the most. Protists were the only group of microbes whose richness and diversity were significantly reduced by the presence of the AM fungus. Our results showed that the type of nutrients AM fungi encounter in localized patches modulate the structure of hyphosphere microbial communities. In contrast we did not observe any effects of the AM fungus on (non-mycorrhizal) fungal community composition. Compared to the non-mycorrhizal control, the root-free zone with the AM fungus (i.e., the AM fungal hyphosphere) was enriched with Alphaproteobacteria, some micropredatory and copiotroph bacterial taxa (e.g., Xanthomonadaceae and Bacteroidota), and the poorly characterized and not yet cultured Acidobacteriota subgroup GP17, especially when phytate was added. Ammonia-oxidizing Nitrosomonas and nitrite-oxidizing Nitrospira were significantly suppressed in the presence of the AM fungus in the root-free compartment, especially upon addition of inorganic N. Co-occurrence network analyses revealed that microbial communities in the root-free compartment were complex and interconnected with more keystone species when AM fungus was present, especially when the root-free compartment was amended with phytate. Conclusion: Our study showed that the form of nutrients is an important driver of prokaryotic and eukaryotic community assembly in the AM fungal hyphosphere, despite the assumed presence of a stable and specific AM fungal hyphoplane microbiome. Predictable responses of specific microbial taxa will open the possibility of using them as co-inoculants with AM fungi, e.g., to improve crop performance.

9.
Plants (Basel) ; 11(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079657

RESUMEN

There has been a surge in industries built on the production of arbuscular mycorrhizal (AM) fungal-based inoculants in the past few decades. This is not surprising, given the positive effects of AM fungi on plant growth and nutritional status. However, there is growing concern regarding the quality and efficacy of commercial inoculants. To assess the potential benefits and negative consequences of commercial AM fungal inoculants in grasslands, we conducted a controlled growth chamber study assessing the productivity and AM fungal root colonization of nine grassland plant species grown in grassland soil with or without one of six commercial AM fungal products. Our research showed no evidence of benefit; commercial inoculants never increased native plant biomass, although several inoculants decreased the growth of native species and increased the growth of invasive plant species. In addition, two commercial products contained excessive levels of phosphorus or nitrogen and consistently reduced AM fungal root colonization, indicating an unintentional de-coupling of the symbiosis. As there is little knowledge of the ecological consequences of inoculation with commercial AM fungal products, it is critical for restoration practitioners, scientists, and native plant growers to assess the presence of local AM fungal communities before investing in unnecessary, or possibly detrimental, AM fungal products.

10.
New Phytol ; 236(2): 671-683, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35751540

RESUMEN

Knowledge about the distribution and local diversity patterns of arbuscular mycorrhizal (AM) fungi are limited for extreme environments such as the Arctic, where most studies have focused on spore morphology or root colonization. We here studied the joint effects of plant species identity and elevation on AM fungal distribution and diversity. We sampled roots of 19 plant species in 18 locations in Northeast Greenland, using next generation sequencing to identify AM fungi. We studied the joint effect of plant species, elevation and selected abiotic conditions on AM fungal presence, richness and composition. We identified 29 AM fungal virtual taxa (VT), of which six represent putatively new VT. Arbuscular mycorrhizal fungal presence increased with elevation, and as vegetation cover and the active soil layer decreased. Arbuscular mycorrhizal fungal composition was shaped jointly by elevation and plant species identity. We demonstrate that the Arctic harbours a relatively species-rich and nonrandomly distributed diversity of AM fungi. Given the high diversity and general lack of knowledge exposed herein, we encourage further research into the diversity, drivers and functional role of AM fungi in the Arctic. Such insight is urgently needed for an area with some of the globally highest rates of climate change.


Asunto(s)
Micobioma , Micorrizas , Micorrizas/genética , Raíces de Plantas/microbiología , Plantas , Suelo , Microbiología del Suelo
11.
BMC Plant Biol ; 22(1): 188, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410135

RESUMEN

BACKGROUND: Arbuscular mycorrhizal (AM) fungi and roots play important roles in plant nutrient acquisition, especially in nutrient poor and heterogeneous soils. However, whether an accumulation strategy of AM fungi and root exists in such soils of karst shrubland ecosystems remains unclear. Root traits related to nutrient acquisition (root biomass, AM colonisation, root acid phosphatase activity and N2 fixation) were measured in two N2-fixing plants (i.e. Albizia odoratissima (Linn. f.) Benth. and Cajanus cajan (Linn.) Millsp.) that were grown in heterogeneous or homogeneous nutrient (ammonium) soil with and without AM fungi inoculation. RESULTS: Both of these plants had higher AM colonisation, root biomass and relative growth rate (RGR), but lower N2 fixation and root acid phosphatase activity in the rhizosphere in the heterogeneous soil environment, than that in the homogeneous soil environment. Plants grown in the AM fungi-inoculated heterogeneous soil environment had increased root biomass and root acid phosphatase activity compared with those grown in soil without inoculation. AM colonisation was negatively correlated with the N2 fixation rate of A. odoratissima, while it was not significantly correlated with the root phosphatase activity. CONCLUSIONS: Our results indicated that enhanced AM symbiosis and root biomass increased the absorptive surfaces for nutrient acquisition, highlighting the accumulation strategies of AM and root traits for plant nutrient acquisition in nutrient poor and heterogeneous soils of the karst shrubland ecosystem.


Asunto(s)
Micorrizas , Fosfatasa Ácida , Ecosistema , Hongos , Nutrientes , Raíces de Plantas , Plantas , Suelo , Microbiología del Suelo , Simbiosis
12.
Huan Jing Ke Xue ; 42(4): 2066-2079, 2021 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-33742842

RESUMEN

Sandy soils are considered as a significant transition phase to desertification. The effective recovery of sandy soils is of great significance to mitigate the desertification process. Some studies have shown that arbuscular mycorrhizal (AM) fungi and biochar improved the sandy soil, but there have been very few studies regarding the combined effects of AM fungi and biochar amendments on sandy soil improvement. Additionally, the roles of the bacterial and fungal community during the process of sandy soil improvement remain unclear. A greenhouse pot experiment with four treatments, including a control (CK, no amendment), single AM fungi-assisted amendment (RI), single biochar amendment (BC), and combined amendment (BC_RI, biochar plus AM fungi), was set up. This study investigated the effects of different amendment methods on the Nitrariasi birica mycorrhizal colonization, biomass, nutrient (N, P, K, Ca, and Mg) content, soil organic carbon, soil nutrient (TN, TP, and TK) content, and soil water-stable aggregate composition. High throughput sequencing technology was used to investigate the roles of the bacterial and fungal communities during the process of sandy soil improvement. Combined with multiple analysis methods, the improvement mechanisms of different amendment methods were explored. The aim was to provide basic data and scientific basics for reasonably and effectively improving sandy soils. The results indicated that a significant mycorrhiza colonization was observed in the inoculation (RI and BC_RI) treatments, but there was no substantial difference in the mycorrhiza colonization with the RI and BC_RI. Compared with the CK, the shoot biomass and shoot element (N, K, Ca, and Mg) contents were significantly increased in the RI, and the shoot element (N, P, K, Ca, and Mg) contents were significantly increased in the BC and BC_RI; compared with the RI and BC, the root biomass and the root element (P, K, Ca, and Mg) contents were significantly increased in the BC_RI. Compared with the CK, the soil organic carbon contents were significantly increased in the BC and BC_RI, the soil TN contents were significantly increased by 152.54%, and the soil TP and TK contents were significantly decreased by 12.5% and 18.8%, respectively. The proportion of soil aggregates with particle sizes of 0.25-0.05 mm was the highest in each treatment, and the large particle size (>0.25 mm) soil aggregate was significantly increased in the BC_RI. Compared with the CK, the Sobs and Shannon indices of the bacterial/fungal community were significantly decreased in the RI and BC_RI. There was a difference in the microbial community compositions and abundance in the various treatments. The results of the RDA and network analysis were as follows:the effects of AM fungi, biochar, and combined amendment on the soil environment and microbial community structure were significant; in the different amendment treatments, the relationship of the microbial molecular ecological network was significantly changed, and the composition of the core species varied; compared with the RI, there was a higher network connection degree and a richer core species composition in the BC and BC_RI; moreover, the essential role of Rhizophagus intraradices was weaken and the core roles of the other microorganisms (especially bacterial species) were enhanced under the combined effects of biochar and AM fungi. The SEM results demonstrated that the application of AM fungi and biochar could directly affect the bacteria/fungi community structure, and further affect the plant growth and soil properties. The differences in the microbial community structure (especially the change in the microbial interaction) were the key driving factors that led to the difference in the soil improvement effectiveness. In summary, the effects of the different amendment methods on the improvement effectiveness of sandy soils varied. The microbial community played key roles in the process of sandy soil improvement, and there were potential advantages and applications in accelerating the ecological restoration of sandy soils under the combined AM fungi and biochar amendment.


Asunto(s)
Microbiota , Micorrizas , Carbono , Carbón Orgánico , Hongos , Arena , Suelo , Microbiología del Suelo
14.
New Phytol ; 230(5): 2061-2071, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33506513

RESUMEN

Pathogenic and mutualistic fungi have contrasting effects on seedling establishment, but it remains unclear whether density-dependent survival and growth are regulated by access to different types of mycorrhizal fungal networks supported by neighbouring adult trees. Here, we conducted an extensive field survey to test how mycorrhizal and pathogenic fungal colonization of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) seedlings in a subtropical forest respond to density of neighbouring adult trees. In addition, we undertook a hyphal exclusion experiment to explicitly test the role of soil fungal networks in driving density-dependent effects on seedling growth and survival. Conspecific adult density was a strong predictor for the relative abundance of putative pathogens, which was greater in roots of AM than of ECM seedlings, while mycorrhizal fungal abundance and colonization were not consistently affected by conspecific adult density. Both ECM and AM fungal networks counteracted conspecific density-dependent mortality, but ECM fungi were more effective at weakening the negative effects of high seedling density than AM fungi. Our findings reveal a critical role of common fungal networks in mitigating negative density-dependent effects of pathogenic fungi on seedling establishment, which provides mechanistic insights into how soil fungal diversity shapes plant community structure in subtropical forests.


Asunto(s)
Micorrizas , Plantones , Bosques , Raíces de Plantas , Suelo , Microbiología del Suelo , Árboles
15.
J Biotechnol ; 323: 254-263, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32905797

RESUMEN

The study aims at investigating the efficacy of individual as well as combined application of AM fungi (Glomus macrocarpum) and ZnO nanoparticles on the uptake of lead and its toxicity in wheat (Triticum aestivum L.). The plants were grown in pots with different treatments of AM Fungi, ZnO NP, and Pb. The individual applications of AM fungi (Glomus macrocarpum) and ZnO NPs increased the growth and biochemical attributes of wheat and decreased the Pb uptake under Pb stress. The combined application of AM fungi (Glomus macrocarpum) and ZnO nanoparticles synergistically enhanced the overall growth performance of the plant and significantly reduced the uptake of Pb in wheat grown in Pb spiked soils. The combined application was effective, with 30.66 % increase in plant height, 30.62 % increase in plant fresh weight, 54.26 % increase in plant dry weight, 45.45 % increase in total chlorophyll content, 19.59 % increase in proline content, 26.65 % higher activity of SOD, 15.12 % higher activity of catalase (CAT), 17.69 % increase in H2O2 content, 17.69 % increase in lipid peroxidation content, 52.09 % and 58.19 % decrease in Pb concentration in root and shoot of wheat, respectively, grown in Pb spiked soil (100 mg kg-1 soil). The results indicate that combined application of AM fungi and ZnO nanoparticles can be a promising technique for the utilization of Pb-contaminated soils.


Asunto(s)
Antioxidantes/metabolismo , Plomo/toxicidad , Nanopartículas/química , Contaminantes del Suelo , Óxido de Zinc/química , Biomasa , Clorofila , Hongos , Peróxido de Hidrógeno , India , Tamaño de la Partícula , Raíces de Plantas/microbiología , Suelo , Superóxido Dismutasa , Triticum/microbiología
19.
New Phytol ; 225(6): 2557-2566, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31677163

RESUMEN

The mycorrhizal-associated nutrient economy hypothesis proposes a strong connection between plant and fungal traits and the dominant form of soil nutrients. If true, then shifting from an organic to an inorganic nutrient economy should benefit arbuscular mycorrhizal (AM) trees because they are more suited to acquiring inorganic forms of nutrients and have limited decomposing capabilities when compared with ectomycorrhizal (ECM) trees. An inorganic nutrient economy was experimentally promoted by applying inorganic phosphorus (P) fertiliser and/or elevating soil pH with lime in three Allegheny Plateau mixed-mesophytic forests. Trees were measured over seven growing seasons to determine how growth responded to the treatments based on mycorrhizal association. AM-associated trees showed increased growth in response to increased inorganic nutrients, but ECM tree growth was suppressed when compared with the control. We also observed that understory and mid-story trees responded to the treatments, but large overstory trees showed no significant growth response. Results support the hypothesis that AM trees respond positively to an inorganic nutrient economy. While raising pH in acidic soils can be detrimental to ECM tree growth, the exact mechanism for this response is unclear.


Asunto(s)
Micorrizas , Bosques , Nutrientes , Raíces de Plantas , Suelo , Microbiología del Suelo , Árboles
20.
Fungal Biol ; 123(10): 732-744, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31542191

RESUMEN

In vitro propagation of AM fungi using transformed root cultures (TRC) is commonly used to obtain pure AM fungal propagules for use in research and industry. Early observations indicate that such an artificial environment can alter traits and function of AM fungi over time. We hypothesized that increased in vitro cultivation may promote ruderal strategies in fungi by enhancing propagule production and reducing mutualistic quality. To examine the effect of in vitro cultivation on the trait and function of AM fungi, we inoculated plants with 11 Rhizoglomus irregulare isolates which fell along a cultivation gradient spanning 80 generations. We harvested plants at 10, 20 and 30 d post inoculation to observe differences in fungal and plant traits post infection. In vitro cultivation led to increased spore production but reduced plant shoot phosphorus. Our results indicate that in vitro propagation may indirectly select for traits that affect symbiotic quality.


Asunto(s)
Glomeromycota/fisiología , Micorrizas/fisiología , Raíces de Plantas/microbiología , Glomeromycota/crecimiento & desarrollo , Micorrizas/crecimiento & desarrollo , Fósforo/metabolismo , Raíces de Plantas/fisiología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/fisiología , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...