Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38894404

RESUMEN

The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.


Asunto(s)
Algoritmos , Inteligencia Artificial , Ataxia Cerebelosa , Marcha , Enfermedades Raras , Humanos , Femenino , Masculino , Persona de Mediana Edad , Marcha/fisiología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/fisiopatología , Ataxia Cerebelosa/diagnóstico , Adulto , Análisis de la Marcha/métodos , Anciano
2.
J Neurophysiol ; 131(5): 825-831, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533950

RESUMEN

This article evaluates the ethical implications of utilizing artificial intelligence (AI) algorithms in neurological diagnostic examinations. Applications of AI technology have been utilized to aid in the determination of pharmacological dosages of gadolinium for brain lesion detection, localization of seizure foci, and the characterization of large vessel occlusion in ischemic stroke patients. Multiple subtypes of AI/machine learning (ML) algorithms are analyzed, as AI-assisted neurology utilizes supervised, unsupervised, artificial neural network (ANN), and deep neural network (DNN) learning models. As ANN and DNN analyses can be applied to data with an unknown clinical diagnosis, these algorithms are evaluated according to Bayesian statistical analyses. Bayesian neural network analyses are incorporated, as these algorithms indicate that the predictive accuracy and model performance are dependent upon accurate configurations of the model's hyperparameters and neural inputs. Thus, mathematical evaluations of AI algorithms are comprehensively explored to examine their clinical utility, as underperformance of AI/ML models may have deleterious consequences that affect patient outcomes due to misdiagnosis and false-negative test results.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Redes Neurales de la Computación , Algoritmos , Teorema de Bayes
3.
Environ Sci Pollut Res Int ; 30(59): 123527-123555, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987977

RESUMEN

Detecting and mapping landslides are crucial for effective risk management and planning. With the great progress achieved in applying optimized and hybrid methods, it is necessary to use them to increase the accuracy of landslide susceptibility maps. Therefore, this research aims to compare the accuracy of the novel evolutionary methods of landslide susceptibility mapping. To achieve this, a unique method that integrates two techniques from Machine Learning and Neural Networks with novel geomorphological indices is used to calculate the landslide susceptibility index (LSI). The study was conducted in western Azerbaijan, Iran, where landslides are frequent. Sixteen geology, environment, and geomorphology factors were evaluated, and 160 landslide events were analyzed, with a 30:70 ratio of testing to training data. Four Support Vector Machine (SVM) algorithms and Artificial Neural Network (ANN)-MLP were tested. The study outcomes reveal that utilizing the algorithms mentioned above results in over 80% of the study area being highly sensitive to large-scale movement events. Our analysis shows that the geological parameters, slope, elevation, and rainfall all play a significant role in the occurrence of landslides in this study area. These factors obtained 100%, 75.7%, 68%, and 66.3%, respectively. The predictive performance accuracy of the models, including SVM, ANN, and ROC algorithms, was evaluated using the test and train data. The AUC for ANN and each machine learning algorithm (Simple, Kernel, Kernel Gaussian, and Kernel Sigmoid) was 0.87% and 1, respectively. The Classification Matrix algorithm and Sensitivity, Accuracy, and Specificity variables were used to assess the models' efficacy for prediction purposes. Results indicate that machine learning algorithms are more effective than other methods for evaluating areas' sensitivity to landslide hazards. The Simple SVM and Kernel Sigmoid algorithms performed well, with a performance score of one, indicating high accuracy in predicting landslide-prone areas.


Asunto(s)
Inteligencia Artificial , Deslizamientos de Tierra , Irán , Algoritmos , Aprendizaje Automático , Sistemas de Información Geográfica
4.
Front Cardiovasc Med ; 10: 1050698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37383697

RESUMEN

Background: Selecting features related to postoperative infection following cardiac surgery was highly valuable for effective intervention. We used machine learning methods to identify critical perioperative infection-related variables after mitral valve surgery and construct a prediction model. Methods: Participants comprised 1223 patients who underwent cardiac valvular surgery at eight large centers in China. The ninety-one demographic and perioperative parameters were collected. Random forest (RF) and least absolute shrinkage and selection operator (LASSO) techniques were used to identify postoperative infection-related variables; the Venn diagram determined overlapping variables. The following ML methods: random forest (RF), extreme gradient boosting (XGBoost), Support Vector Machine (SVM), Gradient Boosting Decision Tree (GBDT), AdaBoost, Naive Bayesian (NB), Logistic Regression (LogicR), Neural Networks (nnet) and artificial neural network (ANN) were developed to construct the models. We constructed receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) was calculated to evaluate model performance. Results: We identified 47 and 35 variables with RF and LASSO, respectively. Twenty-one overlapping variables were finally selected for model construction: age, weight, hospital stay, total red blood cell (RBC) and total fresh frozen plasma (FFP) transfusions, New York Heart Association (NYHA) class, preoperative creatinine, left ventricular ejection fraction (LVEF), RBC count, platelet (PLT) count, prothrombin time, intraoperative autologous blood, total output, total input, aortic cross-clamp (ACC) time, postoperative white blood cell (WBC) count, aspartate aminotransferase (AST), alanine aminotransferase (ALT), PLT count, hemoglobin (Hb), and LVEF. The prediction models for infection after mitral valve surgery were established based on these variables, and they all showed excellent discrimination performance in the test set (AUC > 0.79). Conclusions: Key features selected by machine learning methods can accurately predict infection after mitral valve surgery, guiding physicians in taking appropriate preventive measures and diminishing the infection risk.

5.
Lasers Surg Med ; 54(2): 289-304, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34481417

RESUMEN

OBJECTIVES: Laser surgery requires efficient tissue classification to reduce the probability of undesirable or unwanted tissue damage. This study aimed to investigate acoustic shock waves (ASWs) as a means of classifying sciatic nerve tissue. MATERIALS AND METHODS: In this study, we classified sciatic nerve tissue against other tissue types-hard bone, soft bone, fat, muscle, and skin extracted from two proximal and distal fresh porcine femurs-using the ASWs generated by a laser during ablation. A nanosecond frequency-doubled Nd:YAG laser at 532 nm was used to create 10 craters on each tissue type's surface. We used a fiber-coupled Fabry-Pérot sensor to measure the ASWs. The spectrum's amplitude from each ASW frequency band measured was used as input for principal component analysis (PCA). PCA was combined with an artificial neural network to classify the tissue types. A confusion matrix and receiver operating characteristic (ROC) analysis was used to calculate the accuracy of the testing-data-based scores from the sciatic nerve and the area under the ROC curve (AUC) with a 95% confidence-level interval. RESULTS: Based on the confusion matrix and ROC analysis of the model's tissue classification results (leave-one-out cross-validation), nerve tissue could be classified with an average accuracy rate and AUC result of 95.78  ± 1.3% and 99.58  ± 0.6%, respectively. CONCLUSION: This study demonstrates the potential of using ASWs for remote classification of nerve and other tissue types. The technique can serve as the basis of a feedback control system to detect and preserve sciatic nerves in endoscopic laser surgery.


Asunto(s)
Terapia por Láser , Láseres de Estado Sólido , Animales , Terapia por Láser/métodos , Láseres de Estado Sólido/uso terapéutico , Análisis de Componente Principal , Nervio Ciático/cirugía , Porcinos
6.
Lasers Surg Med ; 53(3): 377-389, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32614077

RESUMEN

BACKGROUND AND OBJECTIVES: Using lasers instead of mechanical tools for bone cutting holds many advantages, including functional cuts, contactless interaction, and faster wound healing. To fully exploit the benefits of lasers over conventional mechanical tools, a real-time feedback to classify tissue is proposed. STUDY DESIGN/MATERIALS AND METHODS: In this paper, we simultaneously classified five tissue types-hard and soft bone, muscle, fat, and skin from five proximal and distal fresh porcine femurs-based on the laser-induced acoustic shock waves (ASWs) generated. For laser ablation, a nanosecond frequency-doubled Nd:YAG laser source at 532 nm and a microsecond Er:YAG laser source at 2940 nm were used to create 10 craters on the surface of each proximal and distal femur. Depending on the application, the Nd:YAG or Er:YAG can be used for bone cutting. For ASW recording, an air-coupled transducer was placed 5 cm away from the ablated spot. For tissue classification, we analyzed the measured acoustics by looking at the amplitude-frequency band of 0.11-0.27 and 0.27-0.53 MHz, which provided the least average classification error for Er:YAG and Nd:YAG, respectively. For data reduction, we used the amplitude-frequency band as an input of the principal component analysis (PCA). On the basis of PCA scores, we compared the performance of the artificial neural network (ANN), the quadratic- and Gaussian-support vector machine (SVM) to classify tissue types. A set of 14,400 data points, measured from 10 craters in four proximal and distal femurs, was used as training data, while a set of 3,600 data points from 10 craters in the remaining proximal and distal femur was considered as testing data, for each laser. RESULTS: The ANN performed best for both lasers, with an average classification error for all tissues of 5.01 ± 5.06% and 9.12 ± 3.39%, using the Nd:YAG and Er:YAG lasers, respectively. Then, the Gaussian-SVM performed better than the quadratic SVM during the cutting with both lasers. The Gaussian-SVM yielded average classification errors of 15.17 ± 13.12% and 16.85 ± 7.59%, using the Nd:YAG and Er:YAG lasers, respectively. The worst performance was achieved with the quadratic-SVM with a classification error of 50.34 ± 35.04% and 69.96 ± 25.49%, using the Nd:YAG and Er:YAG lasers. CONCLUSION: We foresee using the ANN to differentiate tissues in real-time during laser osteotomy. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.


Asunto(s)
Terapia por Láser , Láseres de Estado Sólido , Animales , Láseres de Estado Sólido/uso terapéutico , Aprendizaje Automático , Osteotomía , Porcinos , Transductores
7.
Int J Neurosci ; 131(1): 40-43, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32107947

RESUMEN

Purpose: The study aims to lay a foundational probe for the thorough application microfluidic chips in brain function research with microfluidic chips. Neuron slide culture is a common culture method in vitro, and the microfluidic chip with the artificial network pattern not only can realize neuron cells 3 D culture in vitro, but also limit the extension space of neurite outgrow.Materials and Methods: In order to analyze the differences of hippocampal cells neurite growth length between the 3 D chips and the common 2 D culture, the experiments utilized statistical analysis method analyzing the length of the hippocampus neuron neurite of 3 days, 5 days and 7 days, respectively, with the common glass slide 2 D culture method and the microfluidic chip 3 D culture in vitro.Results: The results showed that there was no significant difference in the neurite length after 3 days. However, there was a significant difference after 5 days and 7 days. It can be seen that the microfluidic chip with artificial network pattern has limitations to the growth of neurite after 5 days.Conclusions: We concluded that the growth state of hippocampal cells in the restricted 3 D space is different from that of conventional 2 D culture.It showed that the artificial network pattern design has limited the growth space of the dendrites but also affected its growth.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hipocampo/fisiología , Imagenología Tridimensional/métodos , Microfluídica/métodos , Redes Neurales de la Computación , Neuritas/fisiología , Animales , Técnicas de Cultivo de Célula/instrumentación , Hipocampo/citología , Imagenología Tridimensional/instrumentación , Microfluídica/instrumentación , Neuronas/fisiología , Ratas
8.
Sensors (Basel) ; 20(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397177

RESUMEN

Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy and entails high costs for health systems. Currently, no reliable labor proximity prediction techniques are available for clinical use. Regular checks by uterine electrohysterogram (EHG) for predicting preterm labor have been widely studied. The aim of the present study was to assess the feasibility of predicting labor with a 7- and 14-day time horizon in TPL women, who may be under tocolytic treatment, using EHG and/or obstetric data. Based on 140 EHG recordings, artificial neural networks were used to develop prediction models. Non-linear EHG parameters were found to be more reliable than linear for differentiating labor in under and over 7/14 days. Using EHG and obstetric data, the <7- and <14-day labor prediction models achieved an AUC in the test group of 87.1 ± 4.3% and 76.2 ± 5.8%, respectively. These results suggest that EHG can be reliable for predicting imminent labor in TPL women, regardless of the tocolytic therapy stage. This paves the way for the development of diagnostic tools to help obstetricians make better decisions on treatments, hospital stays and admitting TPL women, and can therefore reduce costs and improve maternal and fetal wellbeing.


Asunto(s)
Trabajo de Parto , Trabajo de Parto Prematuro , Tocólisis , Útero , Femenino , Humanos , Recién Nacido , Monitoreo Fisiológico , Trabajo de Parto Prematuro/diagnóstico , Trabajo de Parto Prematuro/tratamiento farmacológico , Embarazo , Pronóstico , Contracción Uterina
9.
Ann Pathol ; 39(2): 119-129, 2019 Apr.
Artículo en Francés | MEDLINE | ID: mdl-30773224

RESUMEN

Artificial Intelligence, in particular deep neural networks are the most used machine learning technics in the biomedical field. Artificial neural networks are inspired by the biological neurons; they are interconnected and follow mathematical models. Two phases are required: a learning and a using phase. The two main applications are classification and regression Computer tools such as GPU computational accelerators or some development tools such as MATLAB libraries are used. Their application field is vast and allows the management of big data in genomics and molecular biology as well as the automated analysis of histological slides. The Whole Slide Image scanner can acquire and store slides in the form of digital images. This scanning associated with deep learning algorithms allows automatic recognition of lesions through the automatic recognition of regions of interest previously validated by the pathologist. These computer aided diagnosis techniques are tested in particular in mammary pathology and dermatopathology. They will allow an efficient and a more comprehensive vision, and will provide diagnosis assistance in pathology by correlating several biomedical data such as clinical, radiological and molecular biology data.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Patología/métodos , Predicción , Humanos , Patología/tendencias
10.
Front Big Data ; 2: 51, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33693374

RESUMEN

Acid phosphatase produced by plants and microbes plays a fundamental role in the recycling of soil phosphorus (P). A quantification of the spatial variation in potential acid phosphatase activity (AP) on large spatial scales and its drivers can help to reduce the uncertainty in our understanding of bio-availability of soil P. We applied two machine-learning methods (Random forests and back-propagation artificial networks) to simulate the spatial patterns of AP across Europe by scaling up 126 site observations of potential AP activity from field samples measured in the laboratory, using 12 environmental drivers as predictors. The back-propagation artificial network (BPN) method explained 58% of AP variability, more than the regression tree model (49%). In addition, BPN was able to identify the gradients in AP along three transects in Europe. Partial correlation analysis revealed that soil nutrients (total nitrogen, total P, and labile organic P) and climatic controls (annual precipitation, mean annual temperature, and temperature amplitude) were the dominant factors influencing AP variations in space. Higher AP occurred in regions with higher mean annual temperature, precipitation and higher soil total nitrogen. Soil TP and Po were non-monotonically correlated with modeled AP for Europe, indicating diffident strategies of P utilization by biomes in arid and humid area. This study helps to separate the influences of each factor on AP production and to reduce the uncertainty in estimating soil P availability. The BPN model trained with European data, however, could not produce a robust global map of AP due to the lack of representative measurements of AP for tropical regions. Filling this data gap will help us to understand the physiological basis of P-use strategies in natural soils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA