RESUMEN
Viral infections cause many severe human diseases, being responsible for remarkably high mortality rates. In this sense, both the academy and the pharmaceutical industry are continuously searching for new compounds with antiviral activity, and in addition, face the challenge of developing greener and more efficient methods to synthesize these compounds. This becomes even more important with drugs possessing stereogenic centers as highly enantioselective processes are required. In this minireview, the advances achieved to improve synthetic routes efficiency and sustainability of important commercially antiviral chiral drugs are discussed, highlighting the use of organocatalytic methods.
RESUMEN
The synthesis of nitrogen-containing heterocycles, including natural alkaloids and other compounds presenting different types of biological activities have proved to be successful employing chiral sulfinyl imines derived from tert-butanesulfinamide. These imines are versatile chiral auxiliaries and have been extensively used as eletrophiles in a wide range of reactions. The electron-withdrawing sulfinyl group facilitates the nucleophilic addition of organometallic compounds to the iminic carbon with high diastereoisomeric excess and the free amines obtained after an easy removal of the tert-butanesulfinyl group can be transformed into enantioenriched nitrogen-containing heterocycles. The goal of this review is to the highlight enantioselective syntheses of heterocycles involving the use of chiral N-tert-butanesulfinyl imines as reaction intermediates, including the synthesis of several natural products. The synthesis of nitrogen-containing heterocycles in which the nitrogen atom is not provided by the chiral imine will not be considered in this review. The sections are organized according to the size of the heterocycles. The present work will comprehensively cover the most pertinent contributions to this research area from 2012 to 2020. We regret in advance that some contributions are excluded in order to maintain a concise format.
RESUMEN
This review article describes the use of some of the most popular chiral auxiliaries in the asymmetric synthesis of biologically active compounds. Chiral auxiliaries derived from naturally occurring compounds, such as amino acids, carbohydrates, and terpenes, are considered essential tools for the construction of highly complex molecules. We highlight the auxiliaries of Evans, Corey, Yamada, Enders, Oppolzer, and Kunz, which led to remarkable progress in asymmetric synthesis in the last decades and continue to bring advances until the present day.
RESUMEN
The effects of the reaction medium and substrate concentration were studied on the selectivity of Novozym 435 using the asymmetric hydrolysis of dimethyl-3-phenylglutarate as a model reaction. Results show that the use of choline chloride ChCl:urea/phosphate buffer 50% (v/v) as a reaction medium increased the selectivity of Novozym 435 by 16% (e.e = 88%) with respect to the one in 100% phosphate buffer (e.e = 76%). Best results were obtained when high substrate concentrations (well above the solubility limit, 27-fold) and ChCl:urea/phosphate buffer 50% (v/v) as reaction medium at pH 7 and 30 °C were used. Under such conditions, the R-monoester was produced with an enantiomeric purity of 99%. Novozym 435 was more stable in ChCl:urea/phosphate buffer 50% (v/v) than in phosphate buffer, retaining a 50% of its initial activity after 27 h of incubation at pH 7 and 40 °C. Results suggest that the use of deep eutectic solvents (ChCl:urea/phosphate buffer) in an heterogeneous reaction system (high substrate concentration) is a viable and promising strategy for the synthesis of chiral drugs from highly hydrophobic substrates.
Asunto(s)
Colina/química , Glutaratos/química , Lipasa/metabolismo , Solventes/química , Enzimas Inmovilizadas , Proteínas Fúngicas , Concentración de Iones de Hidrógeno , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Estereoisomerismo , Especificidad por Sustrato , TemperaturaRESUMEN
Small ring heterocycles, such as epoxides and aziridines, are present in several natural products and are also highly versatile building blocks, frequently involved in the synthesis of numerous bioactive products and pharmaceuticals. Because of the potential for increased efficiency and selectivity, along with the advantages of environmentally benign synthetic procedures, multicomponent reactions (MCRs) have been explored in the synthesis and ring opening of these heterocyclic units. In this review, the recent advances in MCRs involving the synthesis and applications of epoxides and aziridines to the preparation of other heterocycles are discussed emphasizing the stereoselectivity of the reactions.
Asunto(s)
Aziridinas/síntesis química , Compuestos Epoxi/síntesis química , Aziridinas/química , Productos Biológicos/química , Compuestos Epoxi/química , Tecnología Química Verde , Estructura Molecular , EstereoisomerismoRESUMEN
AIMS: To screen 20 micro-organisms for ω-transaminase (ω-TA) activity by the kinetic resolution of rac-1-phenylethylamine, followed by testing rac-amines of pharmaceutical interest with bulky substituents and to conduct the asymmetric synthesis of a chiral amine. METHODS AND RESULTS: Stemphylium lycopersici was selected as the best biocatalyst. By the central composite rotatable design (CCRD), it was found that, at lower pH (5·5 and 6·5), the lyophilized micro-organism biocatalysed the kinetic resolution of rac-1-phenylethylamine with 99% enantiomeric excess (e.e.) ((R)-enantiomer) with acetophenone conversions ranged from 41 to 45%. Interestingly, the lyophilized crude enzymatic extract lead to better results at pH from 7·0 to 9·0, with conversions up to 47% and about 99% e.e. We also attested that as much as higher is the pyruvate (amino acceptor) concentration, higher is the acetophenone conversion, corroborating the presence of ω-TA-type enzymes. Among different sterically hindered racemic amines tested, rac-1,2,3,4-tetrahydro-1-naphthylamine and rac-phenylbutylamine were satisfactorily kinetically resolved in up to 91% e.e. (R). The results for the asymmetric synthesis showed excellent conversion (>85%) for the S-1-phenylethylamine, indicating (S)-stereopreference. CONCLUSION: Stemphylium lycopersici showed to be an important tool for broader substrate scope transaminases and a relevant player on the development of new biocatalysts with ability in asymmetric synthesis reactions. SIGNIFICANCE AND IMPACT OF THE STUDY: Here in, we contribute to the improvement of the biocatalytic toolbox for chiral amines synthesis. Interestingly, we have found that the crude enzymatic extract of the endophytic fungus S. lycopersici could accept bulky substrates with reasonable activity, compared to the wild-type transaminase already published over literature, and with high enantioselectivity.
Asunto(s)
Aminas/química , Aminas/metabolismo , Ascomicetos/enzimología , Acetofenonas/metabolismo , Biocatálisis , Biotransformación , Cinética , Fenetilaminas/química , Fenetilaminas/metabolismo , Estereoisomerismo , Transaminasas/metabolismoRESUMEN
For the planning of an organic synthesis route, the disconnection approach guided by retrosynthetic analysis of possible intermediates and the chemical reactions involved, back to ready available starting materials, is well established. In contrast, such concepts just get developed for biocatalytic routes. In this Review we highlight functional group interconversions catalyzed by enzymes. The article is organized rather by chemical bonds formed-exemplified for C-N, C-O- and C-C-bonds-and not by enzyme classes, covering a broad range of reactions to incorporate the desired functionality in the target molecule. Furthermore, the successful use of biocatalysts, also in combination with chemical steps, is exemplified for the synthesis of various drugs and advanced pharmaceutical intermediates such as Crispine A, Sitagliptin and Atorvastatin. This Review also provides some basic guidelines to choose the most appropriate enzyme for a targeted reaction keeping in mind aspects like commercial availability, cofactor-requirement, solvent tolerance, use of isolated enzymes or whole cell recombinant microorganisms aiming to assist organic chemists in the use of enzymes for synthetic applications.
RESUMEN
Chiral acrylic esters derived from biomass were developed as models to have a better insight in the aryl-vinyl π-stacking interactions. Quantum chemical calculations, NMR studies and experimental evidences demonstrated the presence of equilibriums of at least four different conformations: π-stacked and face-to-edge, each of them in an s-cis/s-trans conformation. The results show that the stabilization produced by the π-π interaction makes the π-stacked conformation predominant in solution and this stabilization is slightly affected by the electron density of the aromatic counterpart.
RESUMEN
O presente trabalho descreve o uso de carboidratos como materiais de partida para a preparação de catalisadores quirais e também de substratos quirais. Primeiramente estudos envolvendo a aplicação de amino álcoois derivados de carboidratos na arilação assimétrica de aldeídos, usando ácidos arilborônicos como fontes de grupos arila transferíveis, revelaram que um ligante preparado a partir da D-xilose mostrou-se bastante eficiente e conduziu aos produtos em excelentes rendimentos e altos excessos enantioméricos. Posteriormente a arilação de aldeídos derivados de carboidratos é descrita. Em alguns casos diastereosseletividades maiores que 20:1 foram observadas e a metodologia foi aplicada a síntese total da 7-epi-goniofufurona e análogos
The work described herein is centered on the use of carbohydrates as starting materials for the synthesis of chiral ligands and chiral sugar-derivatives. Initially, chiral amino alcohols were studied as ligands for the asymmetric arylation of aldehydes using aryl boronic acids as the source of transferable aryl groups. We found that a chiral ligand derived from D-xylose was very efficient and the desired products were obtained in excellent yields and enantiomeric excesses. In addition, the arylation of sugar-based aldehydes was also studied. In many cases, excellent diastereoselectivities of >20:1 were achieved and the methodology was employed in the total synthesis of 7-epi-goniofufurone and analogues