Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Appl Clin Med Phys ; : e14461, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092893

RESUMEN

The accuracy of artificial intelligence (AI) generated contours for intact-breast and post-mastectomy radiotherapy plans was evaluated. Geometric and dosimetric comparisons were performed between auto-contours (ACs) and manual-contours (MCs) produced by physicians for target structures. Breast and regional nodal structures were manually delineated on 66 breast cancer patients. ACs were retrospectively generated. The characteristics of the breast/post-mastectomy chestwall (CW) and regional nodal structures (axillary [AxN], supraclavicular [SC], internal mammary [IM]) were geometrically evaluated by Dice similarity coefficient (DSC), mean surface distance, and Hausdorff Distance. The structures were also evaluated dosimetrically by superimposing the MC clinically delivered plans onto the ACs to assess the impact of utilizing ACs with target dose (Vx%) evaluation. Positive geometric correlations between volume and DSC for intact-breast, AxN, and CW were observed. Little or anti correlations between volume and DSC for IM and SC were shown. For intact-breast plans, insignificant dosimetric differences between ACs and MCs were observed for AxNV95% (p = 0.17) and SCV95% (p = 0.16), while IMNV90% ACs and MCs were significantly different. The average V95% for intact-breast MCs (98.4%) and ACs (97.1%) were comparable but statistically different (p = 0.02). For post-mastectomy plans, AxNV95% (p = 0.35) and SCV95% (p = 0.08) were consistent between ACs and MCs, while IMNV90% was significantly different. Additionally, 94.1% of AC-breasts met ΔV95% variation <5% when DSC > 0.7. However, only 62.5% AC-CWs achieved the same metrics, despite AC-CWV95% (p = 0.43) being statistically insignificant. The AC intact-breast structure was dosimetrically similar to MCs. The AC AxN and SC may require manual adjustments. Careful review should be performed for AC post-mastectomy CW and IMN before treatment planning. The findings of this study may guide the clinical decision-making process for the utilization of AI-driven ACs for intact-breast and post-mastectomy plans. Before clinical implementation of this auto-segmentation software, an in-depth assessment of agreement with each local facilities MCs is needed.

2.
Cancer Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119927

RESUMEN

A precise radiotherapy plan is crucial to ensure accurate segmentation of glioblastomas (GBMs) for radiation therapy. However, the traditional manual segmentation process is labor-intensive and heavily reliant on the experience of radiation oncologists. In this retrospective study, a novel auto-segmentation method is proposed to address these problems. To assess the method's applicability across diverse scenarios, we conducted its development and evaluation using a cohort of 148 eligible patients drawn from four multicenter datasets and retrospective data collection including noncontrast CT, multisequence MRI scans, and corresponding medical records. All patients were diagnosed with histologically confirmed high-grade glioma (HGG). A deep learning-based method (PKMI-Net) for automatically segmenting gross tumor volume (GTV) and clinical target volumes (CTV1 and CTV2) of GBMs was proposed by leveraging prior knowledge from multimodal imaging. The proposed PKMI-Net demonstrated high accuracy in segmenting, respectively, GTV, CTV1, and CTV2 in an 11-patient test set, achieving Dice similarity coefficients (DSC) of 0.94, 0.95, and 0.92; 95% Hausdorff distances (HD95) of 2.07, 1.18, and 3.95 mm; average surface distances (ASD) of 0.69, 0.39, and 1.17 mm; and relative volume differences (RVD) of 5.50%, 9.68%, and 3.97%. Moreover, the vast majority of GTV, CTV1, and CTV2 produced by PKMI-Net are clinically acceptable and require no revision for clinical practice. In our multicenter evaluation, the PKMI-Net exhibited consistent and robust generalizability across the various datasets, demonstrating its effectiveness in automatically segmenting GBMs. The proposed method using prior knowledge in multimodal imaging can improve the contouring accuracy of GBMs, which holds the potential to improve the quality and efficiency of GBMs' radiotherapy.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39117164

RESUMEN

PURPOSE: Artificial intelligence (AI)-aided methods have made significant progress in the auto-delineation of normal tissues. However, these approaches struggle with the auto-contouring of radiotherapy target volume. Our goal is to model the delineation of target volume as a clinical decision-making problem, resolved by leveraging large language model-aided multimodal learning approaches. METHODS AND MATERIALS: A vision-language model, termed Medformer, has been developed, employing the hierarchical vision transformer as its backbone, and incorporating large language models to extract text-rich features. The contextually embedded linguistic features are seamlessly integrated into visual features for language-aware visual encoding through the visual language attention module. Metrics, including Dice similarity coefficient (DSC), intersection over union (IOU), and 95th percentile Hausdorff distance (HD95), were used to quantitatively evaluate the performance of our model. The evaluation was conducted on an in-house prostate cancer dataset and a public oropharyngeal carcinoma (OPC) dataset, totaling 668 subjects. RESULTS: Our Medformer achieved a DSC of 0.81 ± 0.10 versus 0.72 ± 0.10, IOU of 0.73 ± 0.12 versus 0.65 ± 0.09, and HD95 of 9.86 ± 9.77 mm versus 19.13 ± 12.96 mm for delineation of gross tumor volume (GTV) on the prostate cancer dataset. Similarly, on the OPC dataset, it achieved a DSC of 0.77 ± 0.11 versus 0.72 ± 0.09, IOU of 0.70 ± 0.09 versus 0.65 ± 0.07, and HD95 of 7.52 ± 4.8 mm versus 13.63 ± 7.13 mm, representing significant improvements (p < 0.05). For delineating the clinical target volume (CTV), Medformer achieved a DSC of 0.91 ± 0.04, IOU of 0.85 ± 0.05, and HD95 of 2.98 ± 1.60 mm, comparable to other state-of-the-art algorithms. CONCLUSIONS: Auto-delineation of the treatment target based on multimodal learning outperforms conventional approaches that rely purely on visual features. Our method could be adopted into routine practice to rapidly contour CTV/GTV.

4.
Med Phys ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167055

RESUMEN

BACKGROUND: Adaptive radiotherapy (ART) workflows have been increasingly adopted to achieve dose escalation and tissue sparing under shifting anatomic conditions, but the necessity of recontouring and the associated time burden hinders a real-time or online ART workflow. In response to this challenge, approaches to auto-segmentation involving deformable image registration, atlas-based segmentation, and deep learning-based segmentation (DLS) have been developed. Despite the particular promise shown by DLS methods, implementing these approaches in a clinical setting remains a challenge, namely due to the difficulty of curating a data set of sufficient size and quality so as to achieve generalizability in a trained model. PURPOSE: To address this challenge, we have developed an intentional deep overfit learning (IDOL) framework tailored to the auto-segmentation task. However, certain limitations were identified, particularly the insufficiency of the personalized dataset to effectively overfit the model. In this study, we introduce a personalized hyperspace learning (PHL)-IDOL segmentation framework capable of generating datasets that induce the model to overfit specific patient characteristics for medical image segmentation. METHODS: The PHL-IDOL model is trained in two stages. In the first, a conventional, general model is trained with a diverse set of patient data (n = 100 patients) consisting of CT images and clinical contours. Following this, the general model is tuned with a data set consisting of two components: (a) selection of a subset of the patient data (m < n) using the similarity metrics (mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and the universal quality image index (UQI) values); (b) adjust the CT and the clinical contours using a deformed vector generated from the reference patient and the selected patients using (a). After training, the general model, the continual model, the conventional IDOL model, and the proposed PHL-IDOL model were evaluated using the volumetric dice similarity coefficient (VDSC) and the Hausdorff distance 95% (HD95%) computed for 18 structures in 20 test patients. RESULTS: Implementing the PHL-IDOL framework resulted in improved segmentation performance for each patient. The Dice scores increased from 0.81 ± $ \pm $ 0.05 with the general model, 0.83 ± 0.04 $ \pm 0.04$ for the continual model, 0.83 ± 0.04 $ \pm 0.04$ for the conventional IDOL model to an average of 0.87 ± 0.03 $ \pm 0.03$ with the PHL-IDOL model. Similarly, the Hausdorff distance decreased from 3.06 ± 0.99 $ \pm 0.99$ with the general model, 2.84 ± 0.69 $ \pm 0.69$ for the continual model, 2.79 ± 0.79 $ \pm 0.79$ for the conventional IDOL model and 2.36 ± 0.52 $ \pm 0.52$ for the PHL-IDOL model. All the standard deviations were decreased by nearly half of the values comparing the general model and the PHL-IDOL model. CONCLUSION: The PHL-IDOL framework applied to the auto-segmentation task achieves improved performance compared to the general DLS approach, demonstrating the promise of leveraging patient-specific prior information in a task central to online ART workflows.

5.
Biomed Phys Eng Express ; 10(5)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39127060

RESUMEN

Objective.Target volumes for radiotherapy are usually contoured manually, which can be time-consuming and prone to inter- and intra-observer variability. Automatic contouring by convolutional neural networks (CNN) can be fast and consistent but may produce unrealistic contours or miss relevant structures. We evaluate approaches for increasing the quality and assessing the uncertainty of CNN-generated contours of head and neck cancers with PET/CT as input.Approach.Two patient cohorts with head and neck squamous cell carcinoma and baseline18F-fluorodeoxyglucose positron emission tomography and computed tomography images (FDG-PET/CT) were collected retrospectively from two centers. The union of manual contours of the gross primary tumor and involved nodes was used to train CNN models for generating automatic contours. The impact of image preprocessing, image augmentation, transfer learning and CNN complexity, architecture, and dimension (2D or 3D) on model performance and generalizability across centers was evaluated. A Monte Carlo dropout technique was used to quantify and visualize the uncertainty of the automatic contours.Main results. CNN models provided contours with good overlap with the manually contoured ground truth (median Dice Similarity Coefficient: 0.75-0.77), consistent with reported inter-observer variations and previous auto-contouring studies. Image augmentation and model dimension, rather than model complexity, architecture, or advanced image preprocessing, had the largest impact on model performance and cross-center generalizability. Transfer learning on a limited number of patients from a separate center increased model generalizability without decreasing model performance on the original training cohort. High model uncertainty was associated with false positive and false negative voxels as well as low Dice coefficients.Significance.High quality automatic contours can be obtained using deep learning architectures that are not overly complex. Uncertainty estimation of the predicted contours shows potential for highlighting regions of the contour requiring manual revision or flagging segmentations requiring manual inspection and intervention.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Incertidumbre , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Fluorodesoxiglucosa F18 , Redes Neurales de la Computación , Algoritmos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38957573

RESUMEN

Medical image auto-segmentation techniques are basic and critical for numerous image-based analysis applications that play an important role in developing advanced and personalized medicine. Compared with manual segmentations, auto-segmentations are expected to contribute to a more efficient clinical routine and workflow by requiring fewer human interventions or revisions to auto-segmentations. However, current auto-segmentation methods are usually developed with the help of some popular segmentation metrics that do not directly consider human correction behavior. Dice Coefficient (DC) focuses on the truly-segmented areas, while Hausdorff Distance (HD) only measures the maximal distance between the auto-segmentation boundary with the ground truth boundary. Boundary length-based metrics such as surface DC (surDC) and Added Path Length (APL) try to distinguish truly-predicted boundary pixels and wrong ones. It is uncertain if these metrics can reliably indicate the required manual mending effort for application in segmentation research. Therefore, in this paper, the potential use of the above four metrics, as well as a novel metric called Mendability Index (MI), to predict the human correction effort is studied with linear and support vector regression models. 265 3D computed tomography (CT) samples for 3 objects of interest from 3 institutions with corresponding auto-segmentations and ground truth segmentations are utilized to train and test the prediction models. The five-fold cross-validation experiments demonstrate that meaningful human effort prediction can be achieved using segmentation metrics with varying prediction errors for different objects. The improved variant of MI, called MIhd, generally shows the best prediction performance, suggesting its potential to indicate reliably the clinical value of auto-segmentations.

7.
Clin Transl Radiat Oncol ; 47: 100796, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38884004

RESUMEN

Purpose: Aim of the present study is to characterize a deep learning-based auto-segmentation software (DL) for prostate cone beam computed tomography (CBCT) images and to evaluate its applicability in clinical adaptive radiation therapy routine. Materials and methods: Ten patients, who received exclusive radiation therapy with definitive intent on the prostate gland and seminal vesicles, were selected. Femoral heads, bladder, rectum, prostate, and seminal vesicles were retrospectively contoured by four different expert radiation oncologists on patients CBCT, acquired during treatment. Consensus contours (CC) were generated starting from these data and compared with those created by DL with different algorithms, trained on CBCT (DL-CBCT) or computed tomography (DL-CT). Dice similarity coefficient (DSC), centre of mass (COM) shift and volume relative variation (VRV) were chosen as comparison metrics. Since no tolerance limit can be defined, results were also compared with the inter-operator variability (IOV), using the same metrics. Results: The best agreement between DL and CC was observed for femoral heads (DSC of 0.96 for both DL-CBCT and DL-CT). Performance worsened for low-contrast soft tissue organs: the worst results were found for seminal vesicles (DSC of 0.70 and 0.59 for DL-CBCT and DL-CT, respectively). The analysis shows that it is appropriate to use algorithms trained on the specific imaging modality. Furthermore, the statistical analysis showed that, for almost all considered structures, there is no significant difference between DL-CBCT and human operator in terms of IOV. Conclusions: The accuracy of DL-CBCT is in accordance with CC; its use in clinical practice is justified by the comparison with the inter-operator variability.

8.
Med Phys ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896829

RESUMEN

BACKGROUND: Head and neck (HN) gross tumor volume (GTV) auto-segmentation is challenging due to the morphological complexity and low image contrast of targets. Multi-modality images, including computed tomography (CT) and positron emission tomography (PET), are used in the routine clinic to assist radiation oncologists for accurate GTV delineation. However, the availability of PET imaging may not always be guaranteed. PURPOSE: To develop a deep learning segmentation framework for automated GTV delineation of HN cancers using a combination of PET/CT images, while addressing the challenge of missing PET data. METHODS: Two datasets were included for this study: Dataset I: 524 (training) and 359 (testing) oropharyngeal cancer patients from different institutions with their PET/CT pairs provided by the HECKTOR Challenge; Dataset II: 90 HN patients(testing) from a local institution with their planning CT, PET/CT pairs. To handle potentially missing PET images, a model training strategy named the "Blank Channel" method was implemented. To simulate the absence of a PET image, a blank array with the same dimensions as the CT image was generated to meet the dual-channel input requirement of the deep learning model. During the model training process, the model was randomly presented with either a real PET/CT pair or a blank/CT pair. This allowed the model to learn the relationship between the CT image and the corresponding GTV delineation based on available modalities. As a result, our model had the ability to handle flexible inputs during prediction, making it suitable for cases where PET images are missing. To evaluate the performance of our proposed model, we trained it using training patients from Dataset I and tested it with Dataset II. We compared our model (Model 1) with two other models which were trained for specific modality segmentations: Model 2 trained with only CT images, and Model 3 trained with real PET/CT pairs. The performance of the models was evaluated using quantitative metrics, including Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff Distance (HD95). In addition, we evaluated our Model 1 and Model 3 using the 359 test cases in Dataset I. RESULTS: Our proposed model(Model 1) achieved promising results for GTV auto-segmentation using PET/CT images, with the flexibility of missing PET images. Specifically, when assessed with only CT images in Dataset II, Model 1 achieved DSC of 0.56 ± 0.16, MSD of 3.4 ± 2.1 mm, and HD95 of 13.9 ± 7.6 mm. When the PET images were included, the performance of our model was improved to DSC of 0.62 ± 0.14, MSD of 2.8 ± 1.7 mm, and HD95 of 10.5 ± 6.5 mm. These results are comparable to those achieved by Model 2 and Model 3, illustrating Model 1's effectiveness in utilizing flexible input modalities. Further analysis using the test dataset from Dataset I showed that Model 1 achieved an average DSC of 0.77, surpassing the overall average DSC of 0.72 among all participants in the HECKTOR Challenge. CONCLUSIONS: We successfully refined a multi-modal segmentation tool for accurate GTV delineation for HN cancer. Our method addressed the issue of missing PET images by allowing flexible data input, thereby providing a practical solution for clinical settings where access to PET imaging may be limited.

9.
In Vivo ; 38(4): 1712-1718, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936930

RESUMEN

BACKGROUND/AIM: Intensity-modulated radiation therapy can deliver a highly conformal dose to a target while minimizing the dose to the organs at risk (OARs). Delineating the contours of OARs is time-consuming, and various automatic contouring software programs have been employed to reduce the delineation time. However, some software operations are manual, and further reduction in time is possible. This study aimed to automate running atlas-based auto-segmentation (ABAS) and software operations using a scripting function, thereby reducing work time. MATERIALS AND METHODS: Dice coefficient and Hausdorff distance were used to determine geometric accuracy. The manual delineation, automatic delineation, and modification times were measured. While modifying the contours, the degree of subjective correction was rated on a four-point scale. RESULTS: The model exhibited generally good geometric accuracy. However, some OARs, such as the chiasm, optic nerve, retina, lens, and brain require improvement. The average contour delineation time was reduced from 57 to 29 min (p<0.05). The subjective revision degree results indicated that all OARs required minor modifications; only the submandibular gland, thyroid, and esophagus were rated as modified from scratch. CONCLUSION: The ABAS model and scripted automation in head and neck cancer reduced the work time and software operations. The time can be further reduced by improving contour accuracy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Órganos en Riesgo , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Programas Informáticos , Humanos , Neoplasias de Cabeza y Cuello/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
10.
Phys Med ; 123: 103393, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852363

RESUMEN

BACKGROUND AND PURPOSE: One of the current roadblocks to the widespread use of Total Marrow Irradiation (TMI) and Total Marrow and Lymphoid Irradiation (TMLI) is the challenging difficulties in tumor target contouring workflow. This study aims to develop a hybrid neural network model that promotes accurate, automatic, and rapid segmentation of multi-class clinical target volumes. MATERIALS AND METHODS: Patients who underwent TMI and TMLI from January 2018 to May 2022 were included. Two independent oncologists manually contoured eight target volumes for patients on CT images. A novel Dual-Encoder Alignment Network (DEA-Net) was developed and trained using 46 patients from one internal institution and independently evaluated on a total of 39 internal and external patients. Performance was evaluated on accuracy metrics and delineation time. RESULTS: The DEA-Net achieved a mean dice similarity coefficient of 90.1 % ± 1.8 % for internal testing dataset (23 patients) and 91.1 % ± 2.5 % for external testing dataset (16 patients). The 95 % Hausdorff distance and average symmetric surface distance were 2.04 ± 0.62 mm and 0.57 ± 0.11 mm for internal testing dataset, and 2.17 ± 0.68 mm, and 0.57 ± 0.20 mm for external testing dataset, respectively, outperforming most of existing state-of-the-art methods. In addition, the automatic segmentation workflow reduced delineation time by 98 % compared to the conventional manual contouring process (mean 173 ± 29 s vs. 12168 ± 1690 s; P < 0.001). Ablation study validate the effectiveness of hybrid structures. CONCLUSION: The proposed deep learning framework achieved comparable or superior target volume delineation accuracy, significantly accelerating the radiotherapy planning process.


Asunto(s)
Médula Ósea , Aprendizaje Profundo , Planificación de la Radioterapia Asistida por Computador , Humanos , Médula Ósea/efectos de la radiación , Médula Ósea/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Irradiación Linfática/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X , Masculino , Femenino
11.
Comput Med Imaging Graph ; 116: 102403, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878632

RESUMEN

BACKGROUND AND OBJECTIVES: Bio-medical image segmentation models typically attempt to predict one segmentation that resembles a ground-truth structure as closely as possible. However, as medical images are not perfect representations of anatomy, obtaining this ground truth is not possible. A surrogate commonly used is to have multiple expert observers define the same structure for a dataset. When multiple observers define the same structure on the same image there can be significant differences depending on the structure, image quality/modality and the region being defined. It is often desirable to estimate this type of aleatoric uncertainty in a segmentation model to help understand the region in which the true structure is likely to be positioned. Furthermore, obtaining these datasets is resource intensive so training such models using limited data may be required. With a small dataset size, differing patient anatomy is likely not well represented causing epistemic uncertainty which should also be estimated so it can be determined for which cases the model is effective or not. METHODS: We use a 3D probabilistic U-Net to train a model from which several segmentations can be sampled to estimate the range of uncertainty seen between multiple observers. To ensure that regions where observers disagree most are emphasised in model training, we expand the Generalised Evidence Lower Bound (ELBO) with a Constrained Optimisation (GECO) loss function with an additional contour loss term to give attention to this region. Ensemble and Monte-Carlo dropout (MCDO) uncertainty quantification methods are used during inference to estimate model confidence on an unseen case. We apply our methodology to two radiotherapy clinical trial datasets, a gastric cancer trial (TOPGEAR, TROG 08.08) and a post-prostatectomy prostate cancer trial (RAVES, TROG 08.03). Each dataset contains only 10 cases each for model development to segment the clinical target volume (CTV) which was defined by multiple observers on each case. An additional 50 cases are available as a hold-out dataset for each trial which had only one observer define the CTV structure on each case. Up to 50 samples were generated using the probabilistic model for each case in the hold-out dataset. To assess performance, each manually defined structure was matched to the closest matching sampled segmentation based on commonly used metrics. RESULTS: The TOPGEAR CTV model achieved a Dice Similarity Coefficient (DSC) and Surface DSC (sDSC) of 0.7 and 0.43 respectively with the RAVES model achieving 0.75 and 0.71 respectively. Segmentation quality across cases in the hold-out datasets was variable however both the ensemble and MCDO uncertainty estimation approaches were able to accurately estimate model confidence with a p-value < 0.001 for both TOPGEAR and RAVES when comparing the DSC using the Pearson correlation coefficient. CONCLUSIONS: We demonstrated that training auto-segmentation models which can estimate aleatoric and epistemic uncertainty using limited datasets is possible. Having the model estimate prediction confidence is important to understand for which unseen cases a model is likely to be useful.


Asunto(s)
Imagenología Tridimensional , Humanos , Incertidumbre , Imagenología Tridimensional/métodos , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/diagnóstico por imagen , Masculino , Ensayos Clínicos como Asunto , Conjuntos de Datos como Asunto , Algoritmos , Tomografía Computarizada por Rayos X
12.
Dose Response ; 22(2): 15593258241263687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912333

RESUMEN

Background and Purpose: Artificial intelligence (AI) is a technique which tries to think like humans and mimic human behaviors. It has been considered as an alternative in a lot of human-dependent steps in radiotherapy (RT), since the human participation is a principal uncertainty source in RT. The aim of this work is to provide a systematic summary of the current literature on AI application for RT, and to clarify its role for RT practice in terms of clinical views. Materials and Methods: A systematic literature search of PubMed and Google Scholar was performed to identify original articles involving the AI applications in RT from the inception to 2022. Studies were included if they reported original data and explored the clinical applications of AI in RT. Results: The selected studies were categorized into three aspects of RT: organ and lesion segmentation, treatment planning and quality assurance. For each aspect, this review discussed how these AI tools could be involved in the RT protocol. Conclusions: Our study revealed that AI was a potential alternative for the human-dependent steps in the complex process of RT.

14.
Phys Med Biol ; 69(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38663411

RESUMEN

Objective. Deep-learning networks for super-resolution (SR) reconstruction enhance the spatial-resolution of 3D magnetic resonance imaging (MRI) for MR-guided radiotherapy (MRgRT). However, variations between MRI scanners and patients impact the quality of SR for real-time 3D low-resolution (LR) cine MRI. In this study, we present a personalized super-resolution (psSR) network that incorporates transfer-learning to overcome the challenges in inter-scanner SR of 3D cine MRI.Approach: Development of the proposed psSR network comprises two-stages: (1) a cohort-specific SR (csSR) network using clinical patient datasets, and (2) a psSR network using transfer-learning to target datasets. The csSR network was developed by training on breath-hold and respiratory-gated high-resolution (HR) 3D MRIs and their k-space down-sampled LR MRIs from 53 thoracoabdominal patients scanned at 1.5 T. The psSR network was developed through transfer-learning to retrain the csSR network using a single breath-hold HR MRI and a corresponding 3D cine MRI from 5 healthy volunteers scanned at 0.55 T. Image quality was evaluated using the peak-signal-noise-ratio (PSNR) and the structure-similarity-index-measure (SSIM). The clinical feasibility was assessed by liver contouring on the psSR MRI using an auto-segmentation network and quantified using the dice-similarity-coefficient (DSC).Results. Mean PSNR and SSIM values of psSR MRIs were increased by 57.2% (13.8-21.7) and 94.7% (0.38-0.74) compared to cine MRIs, with the reference 0.55 T breath-hold HR MRI. In the contour evaluation, DSC was increased by 15% (0.79-0.91). Average time consumed for transfer-learning was 90 s, psSR was 4.51 ms per volume, and auto-segmentation was 210 ms, respectively.Significance. The proposed psSR reconstruction substantially increased image and segmentation quality of cine MRI in an average of 215 ms across the scanners and patients with less than 2 min of prerequisite transfer-learning. This approach would be effective in overcoming cohort- and scanner-dependency of deep-learning for MRgRT.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Cinemagnética , Humanos , Imagen por Resonancia Cinemagnética/métodos , Imagenología Tridimensional/métodos , Radioterapia Guiada por Imagen/métodos , Aprendizaje Profundo
15.
BJR Artif Intell ; 1(1): ubae004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38476956

RESUMEN

Objectives: Auto-segmentation promises greater speed and lower inter-reader variability than manual segmentations in radiation oncology clinical practice. This study aims to implement and evaluate the accuracy of the auto-segmentation algorithm, "Masked Image modeling using the vision Transformers (SMIT)," for neck nodal metastases on longitudinal T2-weighted (T2w) MR images in oropharyngeal squamous cell carcinoma (OPSCC) patients. Methods: This prospective clinical trial study included 123 human papillomaviruses (HPV-positive [+]) related OSPCC patients who received concurrent chemoradiotherapy. T2w MR images were acquired on 3 T at pre-treatment (Tx), week 0, and intra-Tx weeks (1-3). Manual delineations of metastatic neck nodes from 123 OPSCC patients were used for the SMIT auto-segmentation, and total tumor volumes were calculated. Standard statistical analyses compared contour volumes from SMIT vs manual segmentation (Wilcoxon signed-rank test [WSRT]), and Spearman's rank correlation coefficients (ρ) were computed. Segmentation accuracy was evaluated on the test data set using the dice similarity coefficient (DSC) metric value. P-values <0.05 were considered significant. Results: No significant difference in manual and SMIT delineated tumor volume at pre-Tx (8.68 ± 7.15 vs 8.38 ± 7.01 cm3, P = 0.26 [WSRT]), and the Bland-Altman method established the limits of agreement as -1.71 to 2.31 cm3, with a mean difference of 0.30 cm3. SMIT model and manually delineated tumor volume estimates were highly correlated (ρ = 0.84-0.96, P < 0.001). The mean DSC metric values were 0.86, 0.85, 0.77, and 0.79 at the pre-Tx and intra-Tx weeks (1-3), respectively. Conclusions: The SMIT algorithm provides sufficient segmentation accuracy for oncological applications in HPV+ OPSCC. Advances in knowledge: First evaluation of auto-segmentation with SMIT using longitudinal T2w MRI in HPV+ OPSCC.

16.
J Appl Clin Med Phys ; 25(3): e14297, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38373289

RESUMEN

PURPOSE: Deep learning-based auto-segmentation algorithms can improve clinical workflow by defining accurate regions of interest while reducing manual labor. Over the past decade, convolutional neural networks (CNNs) have become prominent in medical image segmentation applications. However, CNNs have limitations in learning long-range spatial dependencies due to the locality of the convolutional layers. Transformers were introduced to address this challenge. In transformers with self-attention mechanism, even the first layer of information processing makes connections between distant image locations. Our paper presents a novel framework that bridges these two unique techniques, CNNs and transformers, to segment the gross tumor volume (GTV) accurately and efficiently in computed tomography (CT) images of non-small cell-lung cancer (NSCLC) patients. METHODS: Under this framework, input of multiple resolution images was used with multi-depth backbones to retain the benefits of high-resolution and low-resolution images in the deep learning architecture. Furthermore, a deformable transformer was utilized to learn the long-range dependency on the extracted features. To reduce computational complexity and to efficiently process multi-scale, multi-depth, high-resolution 3D images, this transformer pays attention to small key positions, which were identified by a self-attention mechanism. We evaluated the performance of the proposed framework on a NSCLC dataset which contains 563 training images and 113 test images. Our novel deep learning algorithm was benchmarked against five other similar deep learning models. RESULTS: The experimental results indicate that our proposed framework outperforms other CNN-based, transformer-based, and hybrid methods in terms of Dice score (0.92) and Hausdorff Distance (1.33). Therefore, our proposed model could potentially improve the efficiency of auto-segmentation of early-stage NSCLC during the clinical workflow. This type of framework may potentially facilitate online adaptive radiotherapy, where an efficient auto-segmentation workflow is required. CONCLUSIONS: Our deep learning framework, based on CNN and transformer, performs auto-segmentation efficiently and could potentially assist clinical radiotherapy workflow.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Tomografía Computarizada por Rayos X , Redes Neurales de la Computación , Algoritmos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos
17.
J Appl Clin Med Phys ; : e14296, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386963

RESUMEN

BACKGROUND AND PURPOSE: In radiotherapy, magnetic resonance (MR) imaging has higher contrast for soft tissues compared to computed tomography (CT) scanning and does not emit radiation. However, manual annotation of the deep learning-based automatic organ-at-risk (OAR) delineation algorithms is expensive, making the collection of large-high-quality annotated datasets a challenge. Therefore, we proposed the low-cost semi-supervised OAR segmentation method using small pelvic MR image annotations. METHODS: We trained a deep learning-based segmentation model using 116 sets of MR images from 116 patients. The bladder, femoral heads, rectum, and small intestine were selected as OAR regions. To generate the training set, we utilized a semi-supervised method and ensemble learning techniques. Additionally, we employed a post-processing algorithm to correct the self-annotation data. Both 2D and 3D auto-segmentation networks were evaluated for their performance. Furthermore, we evaluated the performance of semi-supervised method for 50 labeled data and only 10 labeled data. RESULTS: The Dice similarity coefficient (DSC) of the bladder, femoral heads, rectum and small intestine between segmentation results and reference masks is 0.954, 0.984, 0.908, 0.852 only using self-annotation and post-processing methods of 2D segmentation model. The DSC of corresponding OARs is 0.871, 0.975, 0.975, 0.783, 0.724 using 3D segmentation network, 0.896, 0.984, 0.890, 0.828 using 2D segmentation network and common supervised method. CONCLUSION: The outcomes of our study demonstrate that it is possible to train a multi-OAR segmentation model using small annotation samples and additional unlabeled data. To effectively annotate the dataset, ensemble learning and post-processing methods were employed. Additionally, when dealing with anisotropy and limited sample sizes, the 2D model outperformed the 3D model in terms of performance.

18.
J Appl Clin Med Phys ; 25(6): e14273, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263866

RESUMEN

PURPOSE: Artificial intelligence (AI) based commercial software can be used to automatically delineate organs at risk (OAR), with potential for efficiency savings in the radiotherapy treatment planning pathway, and reduction of inter- and intra-observer variability. There has been little research investigating gross failure rates and failure modes of such systems. METHOD: 50 head and neck (H&N) patient data sets with "gold standard" contours were compared to AI-generated contours to produce expected mean and standard deviation values for the Dice Similarity Coefficient (DSC), for four common H&N OARs (brainstem, mandible, left and right parotid). An AI-based commercial system was applied to 500 H&N patients. AI-generated contours were compared to manual contours, outlined by an expert human, and a gross failure was set at three standard deviations below the expected mean DSC. Failures were inspected to assess reason for failure of the AI-based system with failures relating to suboptimal manual contouring censored. True failures were classified into 4 sub-types (setup position, anatomy, image artefacts and unknown). RESULTS: There were 24 true failures of the AI-based commercial software, a gross failure rate of 1.2%. Fifteen failures were due to patient anatomy, four were due to dental image artefacts, three were due to patient position and two were unknown. True failure rates by OAR were 0.4% (brainstem), 2.2% (mandible), 1.4% (left parotid) and 0.8% (right parotid). CONCLUSION: True failures of the AI-based system were predominantly associated with a non-standard element within the CT scan. It is likely that these non-standard elements were the reason for the gross failure, and suggests that patient datasets used to train the AI model did not contain sufficient heterogeneity of data. Regardless of the reasons for failure, the true failure rate for the AI-based system in the H&N region for the OARs investigated was low (∼1%).


Asunto(s)
Algoritmos , Inteligencia Artificial , Neoplasias de Cabeza y Cuello , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Radioterapia de Intensidad Modulada/métodos , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos
19.
Radiat Oncol ; 19(1): 3, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191431

RESUMEN

OBJECTIVES: Deep learning-based auto-segmentation of head and neck cancer (HNC) tumors is expected to have better reproducibility than manual delineation. Positron emission tomography (PET) and computed tomography (CT) are commonly used in tumor segmentation. However, current methods still face challenges in handling whole-body scans where a manual selection of a bounding box may be required. Moreover, different institutions might still apply different guidelines for tumor delineation. This study aimed at exploring the auto-localization and segmentation of HNC tumors from entire PET/CT scans and investigating the transferability of trained baseline models to external real world cohorts. METHODS: We employed 2D Retina Unet to find HNC tumors from whole-body PET/CT and utilized a regular Unet to segment the union of the tumor and involved lymph nodes. In comparison, 2D/3D Retina Unets were also implemented to localize and segment the same target in an end-to-end manner. The segmentation performance was evaluated via Dice similarity coefficient (DSC) and Hausdorff distance 95th percentile (HD95). Delineated PET/CT scans from the HECKTOR challenge were used to train the baseline models by 5-fold cross-validation. Another 271 delineated PET/CTs from three different institutions (MAASTRO, CRO, BERLIN) were used for external testing. Finally, facility-specific transfer learning was applied to investigate the improvement of segmentation performance against baseline models. RESULTS: Encouraging localization results were observed, achieving a maximum omnidirectional tumor center difference lower than 6.8 cm for external testing. The three baseline models yielded similar averaged cross-validation (CV) results with a DSC in a range of 0.71-0.75, while the averaged CV HD95 was 8.6, 10.7 and 9.8 mm for the regular Unet, 2D and 3D Retina Unets, respectively. More than a 10% drop in DSC and a 40% increase in HD95 were observed if the baseline models were tested on the three external cohorts directly. After the facility-specific training, an improvement in external testing was observed for all models. The regular Unet had the best DSC (0.70) for the MAASTRO cohort, and the best HD95 (7.8 and 7.9 mm) in the MAASTRO and CRO cohorts. The 2D Retina Unet had the best DSC (0.76 and 0.67) for the CRO and BERLIN cohorts, and the best HD95 (12.4 mm) for the BERLIN cohort. CONCLUSION: The regular Unet outperformed the other two baseline models in CV and most external testing cohorts. Facility-specific transfer learning can potentially improve HNC segmentation performance for individual institutions, where the 2D Retina Unets could achieve comparable or even better results than the regular Unet.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Reproducibilidad de los Resultados , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Tomografía de Emisión de Positrones
20.
Phys Imaging Radiat Oncol ; 29: 100527, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222671

RESUMEN

Background and purpose: Autocontouring for radiotherapy has the potential to significantly save time and reduce interobserver variability. We aimed to assess the performance of a commercial autocontouring model for head and neck (H&N) patients in eight orientations relevant to particle therapy with fixed beam lines, focusing on validation and implementation for routine clinical use. Materials and methods: Autocontouring was performed on sixteen organs at risk (OARs) for 98 adult and pediatric patients with 137 H&N CT scans in eight orientations. A geometric comparison of the autocontours and manual segmentations was performed using the Hausdorff Distance 95th percentile, Dice Similarity Coefficient (DSC) and surface DSC and compared to interobserver variability where available. Additional qualitative scoring and dose-volume-histogram (DVH) parameters analyses were performed for twenty patients in two positions, consisting of scoring on a 0-3 scale based on clinical usability and comparing the mean (Dmean) and near-maximum (D2%) dose, respectively. Results: For the geometric analysis, the model performance in head-first-supine straight and hyperextended orientations was in the same range as the interobserver variability. HD95, DSC and surface DSC was heterogeneous in other orientations. No significant geometric differences were found between pediatric and adult autocontours. The qualitative scoring yielded a median score of ≥ 2 for 13/16 OARs while 7/32 DVH parameters were significantly different. Conclusions: For head-first-supine straight and hyperextended scans, we found that 13/16 OAR autocontours were suited for use in daily clinical practice and subsequently implemented. Further development is needed for other patient orientations before implementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA