Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.471
Filtrar
1.
R Soc Open Sci ; 11(7): 240409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086817

RESUMEN

Vultures provide the key ecosystem service of quickly removing carrion, so they have recently been assumed to be top scavengers. To challenge the concept of top scavenger (i.e. the most influential in the scavenging community and process), between 2012 and 2019, we recorded the consumption of 45 equine carcasses available for two different avian scavenger guilds in the Tropical Andes; each guild included the Andean Condor, the alleged top scavenger. The carcasses eaten by Andean Condors were consumed, on average, 1.75 times faster than those they did not eat. Furthermore, the greater abundance of feeding condors shortened carcass consumption time more than a greater abundance of any other species by 1.65 to 5.96 times, on average. These findings support the hypothesis that the Andean Condor significantly drives scavenging dynamics and is, therefore, an unrestricted top scavenger. Additionally, we established a gradient of tolerance of avian scavengers to domestic dog disturbance at carcasses, from highest to lowest: vultures > caracaras > condors. Our study framework holds great potential for advancing in food webs' comprehension through quantifying the relative functional role of scavenging communities' members and for guiding efforts to weigh up the ecological contributions of top scavengers and foster their conservation.

2.
Virus Res ; : 199444, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089370

RESUMEN

Avian influenza viruses (AIV) pose a continuous challenge to global health and economy. While countermeasures exist to control outbreaks in poultry, the persistent circulation of AIV in wild aquatic and shorebirds presents a significant challenge to effective disease prevention efforts. PB1-F2 is a non-structural protein expressed from a second open reading frame (+1) of the polymerase basic 1 (PB1) segment. The sequence and length of the PB1-F2 protein can vary depending on the host of origin. While avian isolates typically carry full-length PB1-F2, isolates from mammals, often express truncated forms. The selective advantage of the full-length PB1-F2 in avian isolates is not fully understood. Most research on the role of PB1-F2 in influenza virus replication has been conducted in mammalian systems, where PB1-F2 interfered with the host immune response and induced apoptosis. Here, we used Low Pathogenicity (LP) AIV H7N7 expressing full-length PB1-F2 as well as a knockout mutant. We found that the full-length PB1-F2 of LPAIV prolonged survival of infected cells by limiting apoptotic cell death. Furthermore, PB1-F2 knockout LPAIV significantly decreased MHC-I expression on fibroblasts, delayed tissue healing and increased phagocytic uptake of infected cells, whereas LPAIV expressing PB1-F2 has limited effects. These findings indicate that full-length PB1-F2 enables AIV to cause prolonged infections without severely harming the avian host. Our observations may explain maintenance of AIV in the natural bird reservoir in absence of severe clinical signs.

3.
Poult Sci ; 103(10): 104068, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39096825

RESUMEN

Avian influenza virus (AIV) subtype H9N2 has significantly threatened the poultry business in recent years by having become the predominant subtype in flocks of chickens, ducks, and pigeons. In addition, the public health aspects of H9N2 AIV pose a significant threat to humans. Early and rapid diagnosis of H9N2 AIV is therefore of great importance. In this study, a new method for the detection of H9N2 AIV based on fluorescence intensity was successfully established using CRISPR/Cas13a technology. The Cas13a protein was first expressed in a prokaryotic system and purified using nickel ion affinity chromatography, resulting in a high-purity Cas13a protein. The best RPA (recombinase polymerase amplification) primer pairs and crRNA were designed and screened, successfully constructing the detection of H9N2 AIV based on CRISPR/Cas13a technology. Optimal concentration of Cas13a and crRNA was determined to optimize the constructed assay. The sensitivity of the optimized detection system is excellent, with a minimum detection limit of 10° copies/µL and didn't react with other avian susceptible viruses, with excellent specificity. The detection method provides the basis for the field detection of the H9N2 AIV.

4.
Acta Trop ; 258: 107345, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094829

RESUMEN

The poultry red mite Dermanyssus gallinae is a hematophagous ectoparasite of layer hens. Infestations with poultry red mites pose an increasing threat to the egg production industry, causing serious problems to animal health and welfare, directly or indirectly as a vector of several infectious agents. In this study, we aimed to investigate common avian pathogens in mites. The mite samples were collected from 58 poultry farms in 7 regions accounting for more than 70 % of the national egg production in Algeria. The presence of 13 avian pathogens was detected using DNA and RNA samples from mites collected. Results revealed significant associations between PRM and potential pathogens such as Escherichia coli, Salmonella enterica, fowlpox virus, and gallid herpesvirus 1. Pathogen detection in Dermanyssus gallinae could serve as an early diagnostic or a risk analysis tool for infectious diseases in poultry farms, facilitating effective disease management strategies. Despite further research being necessary to address uncertainties, such a strategy could be used to enhance the integrated management of poultry health.

5.
Iran J Vet Res ; 25(1): 5-15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156804

RESUMEN

Background: Antimicrobial resistance in avian pathogenic Escherichia coli (APEC) represents a major concern in the avian industry worldwide and limited studies have investigated Colistin resistance among APEC in Algeria. Aims: Investigate antibiotic resistance, in particular, Colistin, and mediated-Colistin resistance (mcr) genes, as well as the virulence genes in APEC. Methods: One hundred E. coli were isolated from poultry suspected of colibacillosis. Antimicrobial susceptibility testing was done on 14 antibiotics by the disk diffusion method. Colistin minimum inhibitory concentration (MIC) was assessed by the broth microdilution method. Using multiplex PCR, mcr genes (mcr-1 to 5) and 7 virulence-related genes were investigated in Colistin-resistant isolates. Results: Results showed high resistance to Tetracycline (99%), Nalidixic acid (92%), Doxycycline (90%), Ampicillin (89%), Ofloxacin (74%), Sulfamethoxazole-Trimethoprim (72%), and Amoxicillin-Clavulanic acid (57%); in addition, 92% of isolates were multidrug resistant. The rate of resistance to Colistin was 27% (27/100) of which 96.3% (26/27) of isolates carried the mcr-1 gene. Twenty-five of the Colistin-resistant isolates (92.59%) had at least three virulence genes. The most frequently isolated virulence genes were: fim H (96.3%) followed by hlyF, iroN, and iss (77.7%, each), iutA and ompT were found in 59.25% and 55.5% of isolates, respectively. The most prevalent combination of virulence factors was hlyF-iss-iroN-iutA-ompT-fimH. Conclusion: This is the first report which highlighted Colistin resistance with the detection of mcr-1 in APEC isolates in the area of study. Colistin resistance and carriage of mcr-1 in virulent and multidrug-resistant isolates of E. coli are alarming and a surveillance program to limit the spread of these pathogens is mandatory.

6.
Vaccine X ; 19: 100531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39157684

RESUMEN

Since 2022, three human cases of a novel H3N8 avian influenza virus infection have been reported in three provinces in China. Specific vaccines are important means of preparing for the potential influenza pandemic. Thus, H3N8 viruses [A/Henan/cnic410/2022 (HN410) and A/Changsha/1000/2022(CS1000)] were isolated from the infected patients as prototype viruses to develop candidate vaccine viruses (CVVs) using the reverse genetics (RG) technology. Five reassortant viruses with different HA and NA combinations were constructed based on the two viruses to get a high-yield and safe CVV. The results showed that all viruses had similar antigenicity but different growth characteristics. Reassortant viruses carrying NA from CS1000 exhibited better growth ability and NA enzyme activity than the ones carrying HN410 NA. Furthermore, the NA gene of CS1000 had one more potential N-glycosylation site at position 46 compared with HN410. The substitution of position 46 showed that adding or removing N-glycosylation sites to different reassortant viruses had different effects on growth ability. A reassortant virus carrying HN410 HA and CS1000 NA with high growth ability was selected as a CVV, which met the requirements for a CVV. These data suggest that different surface gene combinations and the presence or absence of potential N-glycosylation sites on position 46 in the NA gene affect the growth characteristics of H3N8 CVVs.

7.
Vet Microbiol ; 298: 110218, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39159504

RESUMEN

The E (XSR) element located in the 3'UTR of the ALV-J genome has the capability to transcribe and generate viral-derived E (XSR) miRNA. However, the biological function and transcriptional regulation mechanism of this process remain unclear. In this study, the impact of E (XSR) miRNA on ALV-J replication and the regulatory effect of N6-methyladenosine (m6A) methylation on its transcription were investigated. The results demonstrated that E (XSR) miRNA could stimulate ALV-J replication and suppress apoptosis in DF-1 cells in vitro. E (XSR) miRNA's promotion of ALV-J replication was not associated with the type I interferon pathway, but achieved by suppressing the expression of the host GPC5 gene. The transcription of E (XSR) miRNA could be promoted by m6A methylation modification, where m6A modification was found at the A6880 and A7016 sites of ALV-J gRNA. This study provides a new perspective on the transcription of ALV-J E (XSR) miRNA and its regulatory function in ALV-J replication.

8.
Phage (New Rochelle) ; 5(2): 76-83, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39119208

RESUMEN

Background: Avian pathogenic Escherichia coli (APEC) causes colibacillosis and septicemia; in certain cases, mortality leads to economic losses and elicits potential foodborne zoonotic risk. The study aimed to determine the prevalence of APEC pathotypes and serotypes in poultry, followed by characterization for virulence markers and antibiotic sensitivity and analysis of lytic efficacy of bacteriophages in the eradication of APEC. Methods: We successfully isolated and characterized 34 E. coli isolates from poultry farms. The lytic efficacy of seven bacteriophages, as well as a phage cocktail, was evaluated for biological control of multiple drug resistance (MDR) APEC. Results: A total of 67.65% of isolated E. coli were APEC. A total of 94.11% of the isolates were multidrug-resistant bacteria harboring virulence genes. The lytic ability of seven bacteriophages ranged from 0.98% to 36.76%, with a cocktail of EscoΦA-06 and ΦA-07 exhibiting lysis of 48.04% isolates. Conclusion: As serological variability in APEC limits the application and development of vaccines, the findings support the employment of bacteriophages against elimination of MDR APEC in poultry settings.

9.
Ecol Evol ; 14(8): e70117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39091329

RESUMEN

The Diederik cuckoo, Chrysococcyx caprius, is a small Afrotropical bird in the family Cuculidae. It is taxonomically related to 13 other species within the genus Chrysococcyx and is migratory in sub-Saharan Africa. It has a unique breeding behaviour of being a brood parasite: Breeding pairs lay their eggs in the nests of a host species and hatchlings expel the eggs of the host species. The aim of the present study was to investigate diversity in two circadian clock genes, Clock and Adcyap1, to probe for a relationship between genetic polymorphisms and their role in circannual timing and habitat selection (phenology) in intra-African migrants. DNA extracted from blood was used for the PCR amplification and sequencing of clock genes in 30 Diederik cuckoos. Three alleles were detected for Clock with similar genotypes between individuals from the Northern and Southern breeding ranges while 10 alleles were detected for Adcyap1, having shorter alleles in the North and longer alleles in the South. Population genetic analyses, including allele frequency and zygosity analysis, showed distinctly higher frequencies for the most abundant Clock allele, containing 10 polyglutamine repeats, as well as a high degree of homozygosity. In contrast, all individuals were heterozygous for Adcyap1 and alleles from both regions showed distinct differences in abundance. Comparisons between both clock genes and phenology found several phenotypic correlations. This included evidence of a relationship between the shorter alleles and habitat selection as well as a relationship between longer alleles and timing. In both instances, evidence is provided that these effects may be sex-specific. Given that these genes drive some of the synchronicity between environments and the life cycles of birds, they provide valuable insight into the fitness of species facing global challenges including climate change, urbanisation and expanding agricultural practices.

10.
One Health ; 19: 100852, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39129789

RESUMEN

Highly pathogenic avian influenza (HPAI) is an important zoonotic disease. The study aims to identify farmer behaviour types to inform the design of behaviour change programmes for mitigating the transmission of HPAI. Therefore, the study utilised multivariate statistical analysis for gaining a better understanding of the relationships among farmers' 30 biosecurity behaviours, the risk of HPAI infection, and distinct features of commercial broiler farmers, which is different from using simple and few binary biosecurity measures. Convenience sampling was used to collect data from 303 Taiwan's farmers among which 40 farmers (13.2%) self-reported having had a HPAI outbreak in the study year while 16 farmers (5.3%) self-reported having had a HPAI outbreak in the past two years. Using categorical principal components analysis and a two-stage cluster analysis, four farmer clusters were identified with distinct features: 1)'Reserved' (4.6%) tended to choose 'No idea' for answering specific questions about HPAI; 2)'Secure' (76.3%) had a higher biosecurity status than the other farms; 3) 'Jeopardised' (16.8%) had a lower biosecurity status than the other farms; 4) 'No-response' (2.3%) tended to skip specific questions about HPAI. The biosecurity status of the 'Reserved' and 'No-response' clusters was undetermined, placing these farms at risk of HPAI infection. Compared to the 'Secure' cluster, the 'Jeopardised' cluster exhibited higher odds of self-reported HPAI in the study year (OR: 2.61, 95% CI: 1.22-5.58) and in the past two years (OR: 4.28, 95% CI: 1.39-13.19). Additionally, the 'Jeopardised' cluster showed increased odds of HPAI recurrence (OR: 4.01, 95% CI: 1.41-11.43). Our study demonstrates that inadequate biosecurity practices can elevate the occurrence or recurrence of HPAI outbreaks. The findings underscore the importance of distinguishing between these clusters to accurately assess the risk of HPAI infection across farms. Furthermore, understanding farmers' behaviours can inform the development of strategies aimed at behaviour change among farmers.

11.
Antiviral Res ; : 105980, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117284

RESUMEN

In search of novel therapeutic options to treat influenza virus (IV) infections, we previously identified a series of inhibitors that act by disrupting the interactions between the PA and PB1 subunits of the viral RNA polymerase. These compounds showed broad-spectrum antiviral activity against human influenza A and B viruses and a high barrier to the induction of drug resistance in vitro. In this short communication, we investigated the effects of combinations of the PA-PB1 interaction inhibitor 54 with oseltamivir carboxylate (OSC), zanamivir (ZA), favipiravir (FPV), and baloxavir marboxil (BXM) on the inhibition of influenza A and B virus replication in vitro. We observed a synergistic effect of the 54/OSC and 54/ZA combinations and an antagonistic effect when 54 was combined with either FPV or BXM. Moreover, we demonstrated the efficacy of 54 against avian IV strains both in cell culture and in the embryonated chicken eggs model. Finally, we observed that 54 enhances OSC protective effect against avian IV replication in the embryonated eggs model. Our findings represent an advance in the development of alternative therapeutic strategies against both human and avian IV infections.

12.
Poult Sci ; 103(11): 104149, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39154608

RESUMEN

Gyrovirus galga1 (GyVg1), formerly known as AGV2, was initially identified in chickens in southern Brazil. The prevalence of GyVg1 from 2021 to 2024 in 28 out of the 63 poultry farms located in Jiangsu, Anhui, Henan, Hunan, Shandong, and Hubei provinces in eastern and central China was detected via PCR. The complete genomes of the 28 strains were sequenced and exhibited a full length of 2,376 bp. Similarity analysis of these strains did not suggest definite correlation with evolutionary branching and geographical distribution. Compared with the reference GyVg1 strains, HN2202 shared the highest similarity of 99.71% with HLJ1511 (chicken-originated) from northeastern China in 2015 to 2016. Recombination analysis revealed that AH2102 was a potential recombinant of peafowl-originated HN2019-PF1 and chicken-originated HLJ1506-2, whereas HN2304 was a recombinant of peafowl-originated HN2019-PF1 and the Hungarian ferret strain G13. Mutation site analysis of the capsid protein revealed that highly mutated regions occurred between sites 288 to 316 and 383 to 419. These results indicate that GyVg1 may have undergone an interspecies transmission, which involved complex mutations and recombination. This study may provide a reference for subsequent investigations targeting the molecular epidemiology and viral evolution of GyVg1.

13.
Poult Sci ; 103(11): 104170, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154611

RESUMEN

Colibacillosis, a bacterial disease caused by avian pathogenic E. coli (APEC), is a prevalent condition in the poultry industry, resulting in substantial economic losses annually. Previously, we identified PTEN as a crucial candidate gene that may play a significant role in chicken's immune response to APEC infection. Bioinformatics analysis indicated that the PTEN protein was unstable, hydrophilic and nuclear localization, with multiple putative phosphorylation sites and a high degree of similarity to duck and goose PTEN. Moreover, PTEN exhibited high expression levels in various tissues such as the stomach, cecum, small intestine, spleen, thymus, harderian gland, muscle, cerebrum, cerebellum, lung, and liver in comparison to heart tissue. Overexpression of PTEN resulted in a significant promotion of the expression level of pro-apoptosis genes and inflammatory mediators, as well as the production of NO, with or without APEC infection, which led to cellular injury. Furthermore, overexpression of PTEN was found to regulate the expression levels of autophagy related genes, regardless of APEC infection. Additionally, PTEN was a target gene of gga-miR-20a-5p and regulated by gga-miR-20a-5p upon APEC infection. Taken together, these findings establish a foundation for investigating the biological function of chicken PTEN, providing a potential target for future treatments against APEC infection as well as the breeding of genetically resistant poultry.

14.
Poult Sci ; 103(11): 104182, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39154613

RESUMEN

The clinical relevance of avian metapneumovirus (aMPV) is growing in the poultry sector, especially in broiler farming, where no vaccination is administered in Italy. Given the naïve status of the birds, a serological survey was conducted in a densely populated area of Northern Italy, to evaluate aMPV circulation. Seven farms were selected and sampled in summer/fall, then sampling was repeated in the following season (winter/spring) to assess a possible seasonal effect. In each farm, fifteen birds were blood sampled towards the end of the cycle and sera were analyzed with an ELISA test. Clinical signs were reported in 5 out of 7 farms, although all farms were positive at both sampling points, except for one, which was negative at the first sampling. The seroprevalence within farm ranged from 26.6% to 100%, and antibody titres appear to increase with age. No seasonality effect was evidenced, whereas a farm effect was more distinct. aMPV circulation appears wide in Northern Italian farms, with different clinical outcomes that could be modulated by intrinsic characteristics of the farms. In absence of vaccination, serological monitoring can be a useful tool for viral entrance monitoring, although sampling timing should be evaluated in order to spot seroconversion after late infections.

15.
J Vet Med Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39155082

RESUMEN

Highly pathogenic avian influenza (HPAI) poses a significant threat to animal and public health, with outbreaks occurring globally. HPAI poses significant challenges due to its high mortality rate and public health concerns, with outbreaks spreading globally since the emergence of the H5N1 virus in 2003. In Japan, HPAI outbreaks have been particularly prevalent during autumn and winter seasons, with the 2022-2023 winter experiencing the most severe outbreak to date. However, limited research has directly examined the association between HPAI outbreaks and weather conditions in Japan. Here we show that specific weather conditions are associated with an increased risk of HPAI outbreaks on poultry farms in Japan. By analyzing databases of HPAI cases and meteorological data from 2020-2023, we found that higher average air temperatures two to three weeks prior, lower average wind speeds four weeks prior, and longer sunlight hours two and four weeks prior to outbreaks were significantly associated with increased risk of HPAI outbreaks in Japan. These results suggest that weather may influence environmental survival and transmission of the virus, as well as patterns of wild bird movement that could seed new outbreaks. These findings enhance our understanding of the factors influencing HPAI transmission dynamics and highlight the importance of integrating weather forecasts into disease surveillance and prevention strategies.

16.
Front Vet Sci ; 11: 1441021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104546

RESUMEN

Introduction: Japanese quail are of significant economic value, providing protein nutrition to humans through their reproductive activity; however, sexual dimorphism in this species remains relatively unexplored compared with other model species. Method: A total of 114 RNA sequencing datasets (18 and 96 samples for quail and chicken, respectively) were collected from existing studies to gain a comprehensive understanding of sexual dimorphism in quail. Cross-species integrated analyses were performed with transcriptome data from evolutionarily close chickens to identify sex-biased genes in the embryonic, adult brain, and gonadal tissues. Results: Our findings indicate that the expression patterns of genes involved in sex-determination mechanisms during embryonic development, as well as those of most sex-biased genes in the adult brain and gonads, are identical between quails and chickens. Similar to most birds with a ZW sex determination system, quails lacked global dosage compensation for the Z chromosome, resulting in directional outcomes that supported the hypothesis that sex is determined by the individual dosage of Z-chromosomal genes, including long non-coding RNAs located in the male hypermethylated region. Furthermore, genes, such as WNT4 and VIP, reversed their sex-biased patterns at different points in embryonic development and/or in different adult tissues, suggesting a potential hurdle in breeding and transgenic experiments involving avian sex-related traits. Discussion: The findings of this study are expected to enhance our understanding of sexual dimorphism in birds and subsequently facilitate insights into the field of breeding and transgenesis of sex-related traits that economically benefit humans.

17.
Poult Sci ; 103(10): 104142, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39106694

RESUMEN

Avian pathogenic Escherichia coli (APEC) can spread beyond the intestines and cause systemic infections, leading to various clinical manifestations, including airsacculitis, pericarditis, perihepatitis and colisepticemia. The mechanisms facilitating this extraintestinal infections are not fully understood. In this study, we investigate how the tolA gene affects APEC virulence by encoding a protein involved in maintaining outer membrane integrity. We constructed a tolA deletion mutant of APEC strain E058 and evaluated its growth and survival in various environments, including in vitro cultures and in vivo infection models in chickens. We found that the motility-defective ΔtolA mutant exhibits reduced biofilm formation ability and weakened resistance to the environmental stresses, suggesting an important role for TolA in APEC's survival. The lack of tolA gene affects the bacterial ability to resist the host's immune system, such as complement-mediated serum killing or phagocytosis, as shown by the serum killing and macrophage phagocytosis assays. Additionally, in vivo infection studies using chickens demonstrated that the ΔtolA mutant displayed attenuated virulence, evidenced by reduced mortality and lower tissue bacterial burden. Reverse transcription quantitative real-time PCR (RT-qPCR) analysis revealed that inactivation of tolA led to downregulation of virulence genes associated with serum resistance (traT) and flagellar biosynthesis (fliR). Taken together, our findings demonstrate the multifaceted role of TolA protein in promoting the survival, immune evasion, biofilm formation, and virulence of APEC E058. This suggests that targeting TolA could potentially offer new strategies for combating APEC infections.

18.
Poult Sci ; 103(10): 104135, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39106695

RESUMEN

During poultry immunization, antibiotics are typically added to inactivated oil-adjuvant avian influenza (AI) vaccines. Here, we evaluated the effects of adding ceftiofur, a third-generation cephalosporin, to an AI vaccine on vaccine stability and structure and on chick growth, immune efficacy, blood concentrations, biochemical and immunological indices, and gut microbiota. The results demonstrated that neither aqueous ceftiofur sodium nor ceftiofur hydrochloride oil emulsion formed a stable mixture with the vaccine. Adding ceftiofur formulations, particularly ceftiofur hydrochloride, at >4% significantly destabilized the vaccine's water-in-oil structures. Adding ceftiofur also increased vaccine malabsorption at the injection site; specifically, adding ceftiofur hydrochloride reduced H5N8 and H7N9 antibody titers after the first immunization (P < 0.05) and H7N9 antibody titers after the second immunization (P < 0.01). Serum drug concentrations did not differ significantly between the groups with ceftiofur sodium and hydrochloride addition. Ceftiofur addition increased postvaccination chick weight loss; compared with the vaccine alone, ceftiofur sodium-vaccine mixture increased chick weight significantly (P < 0.05). Ceftiofur addition also increased stress indices and reduced antioxidant capacity significantly (P < 0.05 or P < 0.01). Vaccination-related immune stress reduced gut microbiota diversity in chicks; ceftiofur addition reversed this change. AI vaccine immunization significantly reduced the relative abundance of Lactobacillus and Muribaculaceae but significantly increased that of Bacteroides and Eubacterium coprostanoligenes group. Ceftiofur addition restored the gut microbiota structure; in particular, ceftiofur hydrochloride addition significantly increased the abundance of the harmful gut microbes Escherichia-Shigella and Enterococcus, whereas ceftiofur sodium addition significantly reduced it. The changes in gut microbiota led to alterations in metabolic pathways related to membrane transport, amino acids, and carbohydrates. In conclusion, adding ceftiofur to the AI vaccine had positive effects on chick growth and gut microbiota modulation; however, different antibiotic concentrations and formulations may disrupt vaccine structure, possibly affecting vaccine safety and immunization efficacy. Thus, the addition of antibiotics to oil-adjuvant vaccines is associated with a risk of immunization failure and should be applied to poultry with caution.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39108147

RESUMEN

Migratory birds undertake long journeys across continents to reach breeding habitats with abundant resources. These migrations are essential for their survival and are shaped by a complex interplay of physiological adaptations, behavioral cues, and gene expression patterns. Central to migration are stopovers, critical resting points where birds replenish energy stores before continuing their journey. In this study, we integrate physiological measurements, behavioral observations, and molecular data from temporarily caged migrating Garden Warblers (Sylvia borin) to gain insights into their stopover strategies and physiological adaptations after crossing the extended ecological barrier formed by the Sahara Desert and the Mediterranean Sea. Depleted individuals, marked by low body mass and flight muscle mass, showcased remarkable plasticity in recovering and rapidly rebuilding energy stores within a short 5-day stopover. Flight muscle mass increased during this period, highlighting a dynamic trade-off between muscle rebuilding and refuelling. Notably, birds prioritizing muscle rebuilding exhibited a trade-off with the downregulation of genes related to lipid transport and metabolism and at the same time showing evidence of skeletal muscle angiogenesis. Early arrivals were more motivated to depart and exhibited higher levels of physiological stress. Our study highlights the importance of understanding the adaptive responses of birds to changing environmental conditions along their migration routes.

20.
Prev Vet Med ; 231: 106302, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39137554

RESUMEN

The prevalence of avian influenza viruses is commonly found to increase dramatically as birds are transported from farms to live bird markets. Viral transmission dynamics along marketing chains are, however, poorly understood. To address this gap, we implemented a controlled field experiment altering chicken supply to a live bird market in Chattogram, Bangladesh. Broilers and backyard chickens traded along altered (intervention) and conventional (control) marketing chains were tested for avian influenza viruses at different time points. Upon arrival at the live bird market, the odds of detecting avian influenza viruses did not differ between control and intervention groups. However, 12 h later, intervention group odds were lower, particularly for broilers, indicating that viral shedding in live bird markets resulted partly from infections occurring during transport and trade. Curtailing avian influenza virus prevalence in live bird markets requires mitigating risk in marketing chain nodes preceding chickens' delivery at live bird markets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA