Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000515

RESUMEN

Advanced glycation end-products (AGEs) form through non-enzymatic glycation of various proteins. Optic nerve degeneration is a frequent complication of diabetes, and retinal AGE accumulation is strongly linked to the development of diabetic retinopathy. Type 2 diabetes mellitus is a major risk factor for Alzheimer's disease (AD), with patients often exhibiting optic axon degeneration in the nerve fiber layer. Notably, a gap exists in our understanding of how AGEs contribute to neuronal degeneration in the optic nerve within the context of both diabetes and AD. Our previous work demonstrated that glyceraldehyde (GA)-derived toxic advanced glycation end-products (TAGE) disrupt neurite outgrowth through TAGE-ß-tubulin aggregation and tau phosphorylation in neural cultures. In this study, we further illustrated GA-induced suppression of optic nerve axonal elongation via abnormal ß-tubulin aggregation in mouse retinas. Elucidating this optic nerve degeneration mechanism holds promise for bridging the knowledge gap regarding vision loss associated with diabetes mellitus and AD.


Asunto(s)
Axones , Productos Finales de Glicación Avanzada , Nervio Óptico , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Nervio Óptico/metabolismo , Nervio Óptico/patología , Nervio Óptico/efectos de los fármacos , Axones/metabolismo , Axones/efectos de los fármacos , Axones/patología , Ratones Endogámicos C57BL , Agregado de Proteínas/efectos de los fármacos
2.
Nano Lett ; 22(21): 8633-8640, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36301701

RESUMEN

The correct wiring of a neural network requires neuron to integrate an incredible repertoire of cues found in their extracellular environment. The astonishing efficiency of this process plays a pivotal role in the correct wiring of the brain during development and axon regeneration. Biologically inspired micro- and nanostructured substrates have been shown to regulate axonal outgrowth. In parallel, several studies investigated graphene's potential as a conductive neural interface, able to enhance cell adhesion, neurite sprouting and outgrowth. Here, we engineered a 3D single- to few-layer fuzzy graphene morphology (3DFG), 3DFG on a collapsed Si nanowire (SiNW) mesh template (NT-3DFGc), and 3DFG on a noncollapsed SiNW mesh template (NT-3DFGnc) as neural-instructive materials. The micrometric protruding features of the NWs templates dictated neuronal growth cone establishment, as well as influencing axon elongation and branching. Furthermore, neurons-to-graphene coupling was investigated with comprehensive view of integrin-mediated contact adhesion points and plasma membrane curvature processes.


Asunto(s)
Axones , Grafito , Axones/metabolismo , Grafito/metabolismo , Regeneración Nerviosa , Proyección Neuronal , Neuritas/metabolismo , Células Cultivadas
3.
Immunity ; 55(12): 2352-2368.e7, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36272417

RESUMEN

Allergic conjunctivitis is a chronic inflammatory disease that is characterized by severe itch in the conjunctiva, but how neuro-immune interactions shape the pathogenesis of severe itch remains unclear. We identified a subset of memory-type pathogenic Th2 cells that preferentially expressed Il1rl1-encoding ST2 and Calca-encoding calcitonin-gene-related peptide (CGRP) in the inflammatory conjunctiva using a single-cell analysis. The IL-33-ST2 axis in memory Th2 cells controlled the axonal elongation of the peripheral sensory C-fiber and the induction of severe itch. Pharmacological blockade and genetic deletion of CGRP signaling in vivo attenuated scratching behavior. The analysis of giant papillae from patients with severe allergic conjunctivitis revealed ectopic lymphoid structure formation with the accumulation of IL-33-producing epithelial cells and CGRP-producing pathogenic CD4+ T cells accompanied by peripheral nerve elongation. Thus, the IL-33-ST2-CGRP axis directs severe itch with neuro-reconstruction in the inflammatory conjunctiva and is a potential therapeutic target for severe itch in allergic conjunctivitis.


Asunto(s)
Conjuntivitis Alérgica , Neuropéptidos , Humanos , Interleucina-33/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Péptido Relacionado con Gen de Calcitonina , Conjuntivitis Alérgica/patología , Células Th2 , Calcitonina , Prurito/patología , Conjuntiva/patología , Neuronas
4.
Biomaterials ; 276: 121052, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34388362

RESUMEN

Rho/ROCK signaling induced after spinal cord injury (SCI) contributes to secondary damage by promoting apoptosis, inflammation, and axon growth inhibition. The specific Rho-kinase inhibitor fasudil can contribute to functional regeneration after SCI, although inherent low stability has hampered its use. To improve the therapeutic potential of fasudil, we now describe a family of rationally-designed bioresponsive polymer-fasudil conjugates based on an understanding of the conditions after SCI, such as low pH, enhanced expression of specific proteases, and a reductive environment. Fasudil conjugated to poly-l-glutamate via a self-immolative redox-sensitive linker (PGA-SS-F) displays optimal release kinetics and, consequently, treatment with PGA-SS-F significantly induces neurite elongation and axon growth in dorsal root ganglia explants, spinal cord organotypic cultures, and neural precursor cells (NPCs). The intrathecal administration of PGA-SS-F after SCI in a rat model prevents early apoptosis and induces the expression of axonal growth- and neuroplasticity-associated markers to a higher extent than the free form of fasudil. Moreover, a combination treatment comprising the acute transplantation of NPCs pre-treated with PGA-SS-F leads to enhanced cell engraftment and reduced cyst formation after SCI. In chronic SCI, combinatory treatment increases the preservation of neuronal fibers. Overall, this synergistic combinatorial strategy may represent a potentially efficient clinical approach to SCI treatment.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Animales , Polímeros , Ratas , Traumatismos de la Médula Espinal/tratamiento farmacológico , Quinasas Asociadas a rho
5.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923565

RESUMEN

Magnetosomes are membrane-enclosed iron oxide crystals biosynthesized by magnetotactic bacteria. As the biomineralization of bacterial magnetosomes can be genetically controlled, they have become promising nanomaterials for bionanotechnological applications. In the present paper, we explore a novel application of magnetosomes as nanotool for manipulating axonal outgrowth via stretch-growth (SG). SG refers to the process of stimulation of axonal outgrowth through the application of mechanical forces. Thanks to their superior magnetic properties, magnetosomes have been used to magnetize mouse hippocampal neurons in order to stretch axons under the application of magnetic fields. We found that magnetosomes are avidly internalized by cells. They adhere to the cell membrane, are quickly internalized, and slowly degrade after a few days from the internalization process. Our data show that bacterial magnetosomes are more efficient than synthetic iron oxide nanoparticles in stimulating axonal outgrowth via SG.


Asunto(s)
Axones/metabolismo , Magnetosomas/metabolismo , Proyección Neuronal , Animales , Axones/fisiología , Axones/ultraestructura , Transporte Biológico , Células Cultivadas , Femenino , Hipocampo/citología , Magnetospirillum/química , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Mecánico
6.
Front Cell Neurosci ; 12: 447, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534055

RESUMEN

Neurite outgrowth underlies the wiring of the nervous system during development and regeneration. Despite a significant body of research, the underlying cytoskeletal mechanics of growth and guidance are not fully understood, and the relative contributions of individual cytoskeletal processes to neurite growth are controversial. Here, we review the structural organization and biophysical properties of neurons to make a semi-quantitative comparison of the relative contributions of different processes to neurite growth. From this, we develop the idea that neurons are active fluids, which generate strong contractile forces in the growth cone and weaker contractile forces along the axon. As a result of subcellular gradients in forces and material properties, actin flows rapidly rearward in the growth cone periphery, and microtubules flow forward in bulk along the axon. With this framework, an integrated model of neurite outgrowth is proposed that hopefully will guide new approaches to stimulate neuronal growth.

7.
Mol Neurobiol ; 55(7): 5594-5610, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28983842

RESUMEN

Amyloid precursor protein (APP) is cleaved not only to generate the amyloid peptide (Aß), involved in neurodegenerative processes, but can also be metabolized by alpha secretase to produce and release soluble N-terminal APP (sAPPα), which has many properties including the induction of axonal elongation and neuroprotection. The mechanisms underlying the properties of sAPPα are not known. Here, we used proteomic analysis of mouse cortico-hippocampal membranes to identify the neuronal specific alpha3 (α3)-subunit of the plasma membrane enzyme Na, K-ATPase (NKA) as a new binding partner of sAPPα. We showed that sAPPα recruits very rapidly clusters of α3-NKA at neuronal surface, and its binding triggers a cascade of events promoting sAPPα-induced axonal outgrowth. The binding of sAPPα with α3-NKA was not observed for sAPPα-induced Aß1-42 oligomers neuroprotection, neither the downstream events particularly the interaction of sAPPα with APP before endocytosis, ERK signaling, and the translocation of SET from the nucleus to the plasma membrane. These data suggest that the mechanisms of the axonal growth promoting and neuroprotective properties of sAPPα appear to be specific and independent. The signals at the cell surface specific to trigger these mechanisms require further study.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Axones/metabolismo , Neuroprotección , Fragmentos de Péptidos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Membrana Celular/metabolismo , Proteínas de Unión al ADN , Endocitosis , Chaperonas de Histonas , Humanos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Modelos Biológicos , Neuritas/metabolismo , Proteínas Oncogénicas/metabolismo , Unión Proteica , Solubilidad
8.
Dev Neurobiol ; 77(9): 1101-1113, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28371371

RESUMEN

Rett syndrome is a severe neurodevelopmental disorder. It is caused by a mutation in methyl-CpG binding protein 2 (MecP2), a transcriptional regulator that recruits protein complexes involved in histone modification and chromatin remodeling. However, the role of Mecp2 in Rett syndrome remains unclear. In this study, we investigated the function of Mecp2 in neuronal development using zebrafish embryos. Mecp2 expression was detected ubiquitously in the central nervous system and muscles at 28 h postfertilization (hpf). We injected an antisense morpholino oligonucleotide (AMO) to induce Mecp2 knockdown phenotype. In mecp2 morphants (embryos with Mecp2 knockdown by AMO) at 28 and 72 hpf, we found an increase in abnormal axonal branches of caudal primary motor neurons and a decrease in motor activity. In mecp2 morphants at 24 hpf, we observed an increase in the expression of an mecp2 downstream candidate gene, brain derived neurotrophic factor (bdnf). In mecp2 morphants at 72 hpf, the presynaptic area stained by an anti-SV2 antibody was increased at the neuromuscular junction (NMJ). Interestingly, the size of SV2-positive presynaptic area at the NMJ was also increased following bdnf mRNA injection, while it was normalized in a double knockdown of mecp2 and bdnf. These results imply that Mecp2 is an important functional regulator of bdnf gene expression during neural circuit formation in zebrafish embryo. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1101-1113, 2017.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas Motoras/citología , Unión Neuromuscular/metabolismo , Proyección Neuronal/fisiología , Factores de Edad , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva , Proteína 2 de Unión a Metil-CpG/genética , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuronas Motoras/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Oligonucleótidos Antisentido/farmacología , Estimulación Física , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Tubulina (Proteína)/metabolismo , Pez Cebra
9.
Cell Mol Neurobiol ; 37(4): 665-682, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27422411

RESUMEN

Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuroblastoma/metabolismo , Neuronas/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Humanos , Proteínas de la Membrana/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuronas/citología , Neuronas/efectos de los fármacos , Tretinoina/farmacología
10.
Front Cell Neurosci ; 10: 1, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26858601
11.
Nano Lett ; 16(5): 2916-20, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-26674672

RESUMEN

Engineered 3D neuronal networks are considered a promising approach for repairing the damaged spinal cord. However, the lack of a technological platform encouraging axonal elongation over branching may jeopardize the success of such treatment. To address this issue we have decorated gold nanoparticles on the surface of electrospun nanofiber scaffolds, characterized the composite material, and investigated their effect on the differentiation, maturation, and morphogenesis of primary neurons and on an immature neuronal cell line. We have shown that the nanocomposite scaffolds have encouraged a longer outgrowth of the neurites, as judged by the total length of the branching trees and the length and total distance of neurites. Moreover, neurons grown on the nanocomposite scaffolds had less neurites originating out of the soma and lower number of branches. Taken together, these results indicate that neurons cultivated on the gold nanoparticle scaffolds prefer axonal elongation over forming complex branching trees. We envision that such cellular constructs may be useful in the future as implantable cellular devices for repairing damaged neuronal tissues, such as the spinal cord.

12.
13.
Front Behav Neurosci ; 9: 62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814944

RESUMEN

Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.

14.
Exp Neurol ; 261: 10-21, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24999027

RESUMEN

Cdk12 and Cdk13 are Cdc2-related proteins that share 92% identity in their kinase domains. Using in situ hybridization and Western blot analysis, we detected the expression of Cdk12 and Cdk13 mRNAs and their proteins in developing mouse embryos, especially during development of the nervous system. We explored the roles of Cdk12 and Cdk13 in neuronal differentiation using the P19 neuronal differentiation model. Upon knockdown of Cdk12 or Cdk13, no effect on differentiated cell numbers was detected, but a substantial decrease of numbers of neurons with long neurites was identified. Similarly, knockdown of Cdk12 or Cdk13 in primarily cultured cortical neurons shortens the averaged axonal length. A microarray analysis was used to examine changes in gene expression after knockdown or overexpression of Cdk12 and we identified Cdk5 as a molecule potentially involved in mediating the effect of Cdk12 and Cdk13. Depletion of Cdk12 or Cdk13 in P19 cells significantly reduces Cdk5 expression at both the mRNA and protein levels. Expression of Cdk5 protein in the developing mouse brain is also reduced in conditional Cdk12-knockout mice in proportion to the residual amount of Cdk12 protein present. This suggests that the reduced axonal outgrowth after knockdown of Cdk12 or Cdk13 might be due to lower Cdk5 expression. Furthermore, overexpression of Cdk5 protein in P19 cells was able to partially rescue the neurite outgrowth defect observed when Cdk12 or Cdk13 is depleted. Together, these findings suggest that Cdk12 and Cdk13 regulate axonal elongation through a common signaling pathway that modulates Cdk5 expression.


Asunto(s)
Axones/fisiología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/citología , Transducción de Señal/fisiología , Animales , Proteína Quinasa CDC2 , Carcinoma/patología , Recuento de Células , Diferenciación Celular/genética , Células Cultivadas , Corteza Cerebral , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/genética , Quinasas Ciclina-Dependientes , Embrión de Mamíferos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Transfección , Tubulina (Proteína)/metabolismo
15.
J Cell Sci ; 127(Pt 16): 3593-602, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24951117

RESUMEN

During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through 'stop-and-go' transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.


Asunto(s)
Axones/metabolismo , Dineínas Citoplasmáticas/metabolismo , Citoesqueleto/metabolismo , Animales , Pollos , Mitocondrias/metabolismo , Transporte de Proteínas
16.
J Mech Behav Biomed Mater ; 33: 24-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24063789

RESUMEN

This paper proposes the implementation of fractional anisotropy and axonal fiber orientation from diffusion tensor imaging (DTI) of 12 healthy patients into an existing human FE head model to develop a more realistic brain model with advanced constitutive laws. Further, the brain behavior was validated in terms of brain strain against experimental data published by Hardy et al. (2001, 2007) and for brain pressure against Nahum et al. (1977) experimental impacts. A reasonable agreement was observed between the simulation and experimental data. Results showed the feasibility of integrating axonal direction information into FE analysis and established the context of computation of axonal elongation in case of head trauma.


Asunto(s)
Encéfalo , Elasticidad , Análisis de Elementos Finitos , Adulto , Anisotropía , Axones/metabolismo , Encéfalo/citología , Imagen de Difusión Tensora , Humanos , Presión , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA