Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 531(9): 975-1006, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029483

RESUMEN

Noting that some theropod dinosaurs had large brains, large grasping hands, and likely binocular vision, paleontologist Dale Russell suggested that a branch of these dinosaurs might have evolved to a human intelligence level, had dinosaurs not become extinct. I offer reasons why the likely pallial organization in dinosaurs would have made this improbable, based on four assumptions. First, it is assumed that achieving human intelligence requires evolving an equivalent of the about 200 functionally specialized cortical areas characteristic of humans. Second, it is assumed that dinosaurs had an avian nuclear type of pallial organization, in contrast to the mammalian cortical organization. Third, it is assumed that the interactions between the different neuron types making up an information processing unit within pallium are critical to its role in analyzing information. Finally, it is assumed that increasing axonal length between the neuron sets carrying out this operation impairs its efficacy. Based on these assumptions, I present two main reasons why dinosaur pallium might have been unable to add the equivalent of 200 efficiently functioning cortical areas. First, a nuclear pattern of pallial organization would require increasing distances between the neuron groups corresponding to the separate layers of any given mammalian cortical area, as more sets of nuclei equivalent to a cortical area are interposed between the existing sets, increasing axon length and thereby impairing processing efficiency. Second, because of its nuclear organization, dinosaur pallium could not reduce axon length by folding to bring adjacent areas closer together, as occurs in cerebral cortex.


Asunto(s)
Dinosaurios , Animales , Humanos , Dinosaurios/fisiología , Evolución Biológica , Aves/fisiología , Mamíferos , Corteza Cerebral , Fósiles
2.
Transl Neurodegener ; 11(1): 52, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36474289

RESUMEN

BACKGROUND: Axons, crucial for impulse transmission and cellular trafficking, are thought to be primary targets of neurodegeneration in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Axonal degeneration occurs early, preceeding and exceeding neuronal loss, and contributes to the spread of pathology, yet is poorly described outside the nigrostriatal circuitry. The insula, a cortical brain hub, was recently discovered to be highly vulnerable to pathology and plays a role in cognitive deficits in PD and DLB. The aim of this study was to evaluate morphological features as well as burden of proteinopathy and axonal degeneration in the anterior insular sub-regions in PD, PD with dementia (PDD), and DLB. METHODS: α-Synuclein, phosphorylated (p-)tau, and amyloid-ß pathology load were evaluated in the anterior insular (agranular and dysgranular) subregions of post-mortem human brains (n = 27). Axonal loss was evaluated using modified Bielschowsky silver staining and quantified using stereology. Cytoskeletal damage was comprehensively studied using immunofluorescent multi-labelling and 3D confocal laser-scanning microscopy. RESULTS: Compared to PD and PDD, DLB showed significantly higher α-synuclein and p-tau pathology load, argyrophilic grains, and  more severe axonal loss, particularly in the anterior agranular insula. Alternatively, the dysgranular insula showed a significantly higher load of amyloid-ß pathology and its axonal density correlated with cognitive performance. p-Tau contributed most to axonal loss in the DLB group, was highest in the anterior agranular insula and significantly correlated with CDR global scores for dementia. Neurofilament and myelin showed degenerative changes including swellings, demyelination, and detachment of the axon-myelin unit. CONCLUSIONS: Our results highlight the selective vulnerability of the anterior insular sub-regions to various converging pathologies, leading to impaired axonal integrity in PD, PDD and DLB, disrupting their functional properties and potentially contributing to cognitive, emotional, and autonomic deficits.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Corteza Insular , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen
3.
Adv Healthc Mater ; 11(10): e2101817, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35118820

RESUMEN

Stem cell-based experimental platforms for neuroscience can effectively model key mechanistic aspects of human development and disease. However, conventional culture systems often overlook the engineering constraints that cells face in vivo. This is particularly relevant for neurons covering long range connections such as spinal motor neurons (MNs). Their axons extend up to 1m in length and require a complex interplay of mechanisms to maintain cellular homeostasis. However, shorter axons in conventional cultures may not faithfully capture important aspects of their longer counterparts. Here this issue is directly addressed by establishing a bioengineered platform to assemble arrays of human axons ranging from micrometers to centimeters, which allows systematic investigation of the effects of length on human axonas for the first time. This approach reveales a link between length and metabolism in human MNs in vitro, where axons above a "threshold" size induce specific molecular adaptations in cytoskeleton composition, functional properties, local translation, and mitochondrial homeostasis. The findings specifically demonstrate the existence of a length-dependent mechanism that switches homeostatic processes within human MNs. The findings have critical implications for in vitro modeling of several neurodegenerative disorders and reinforce the importance of modeling cell shape and biophysical constraints with fidelity and precision in vitro.


Asunto(s)
Células Madre Pluripotentes Inducidas , Axones/metabolismo , Homeostasis , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Fenotipo
4.
Front Cell Neurosci ; 14: 99, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477066

RESUMEN

[This corrects the article DOI: 10.3389/fncel.2020.00040.].

5.
Environ Toxicol ; 35(8): 895-905, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32329576

RESUMEN

Numerous studies have demonstrated the in vitro and in vivo neurotoxicity of nanoparticulate titanium dioxide (nano-TiO2 ), a mass-produced material for a large number of commercial and industrial applications. The mechanism of nano-TiO2 -induced inhibition of axonal development, however, is still unclear. In our study, primary cultured hippocampal neurons of 24-hour-old fetal Sprague-Dawley rats were exposed to 5, 15, or 30 µg/mL nano-TiO2 for 6, 12, and 24 hours, and the toxic effects of nano-TiO2 exposure on the axons development were detected and its molecular mechanism investigated. Nano-TiO2 accumulated in hippocampal neurons and inhibited the development of axons as nano-TiO2 concentrations increased. Increasing time in culture resulted in decreasing axon length by 32.5%, 36.6%, and 53.8% at 6 hours, by 49.4%, 53.8%, and 69.5% at 12 hours, and by 44.5%, 58.2%, and 63.6% at 24 hours, for 5, 15, and 30 µg/mL nano-TiO2 , respectively. Furthermore, nano-TiO2 downregulated expression of Netrin-1, growth-associated protein-43, and Neuropilin-1, and promoted an increase of semaphorin type 3A and Nogo-A. These studies suggest that nano-TiO2 inhibited axonal development in rat primary cultured hippocampal neurons and this phenomenon is related to changes in the expression of axon growth-related factors.


Asunto(s)
Nanopartículas/toxicidad , Neuronas/efectos de los fármacos , Titanio/toxicidad , Animales , Axones , Hipocampo/efectos de los fármacos , Neurogénesis , Neuronas/metabolismo , Proteínas Nogo/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Front Cell Neurosci ; 14: 40, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194377

RESUMEN

Analog-digital facilitations (ADFs) have been described in local excitatory brain circuits and correspond to a class of phenomena describing how subthreshold variations of the presynaptic membrane potential influence spike-evoked synaptic transmission. In many brain circuits, ADFs rely on the propagation of somatic membrane potential fluctuations to the presynaptic bouton where they modulate ion channels availability, inducing modifications of the presynaptic spike waveform, the spike-evoked Ca2+ entry, and the transmitter release. Therefore, one major requirement for ADFs to occur is the propagation of subthreshold membrane potential variations from the soma to the presynaptic bouton. To date, reported ADFs space constants are relatively short (250-500 µm) which limits their action to proximal synapses. However, ADFs have been studied either in unmyelinated axons or in juvenile animals in which myelination is incomplete. We examined here the potential gain of ADFs spatial extent caused by myelination using a realistic model of L5 pyramidal cell. Myelination of the axon was found to induce a 3-fold increase in the axonal length constant. As a result, the different forms of ADF were found to display a much longer spatial extent (up to 3,000 µm). In addition, while the internodal length displayed a mild effect, the number of myelin wraps ensheathing the internodes was found to play a critical role in the ADFs spatial extents. We conclude that axonal myelination induces an increase in ADFs spatial extent in our model, thus making ADFs plausible in long-distance connections.

7.
J Appl Toxicol ; 40(6): 855-863, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31998977

RESUMEN

Prenatal propofol exposure induced neurotoxicity in the developing brains and led to persistent learning deficits in the offspring. Our goal was to use zebrafish to explore whether the decline in learning and memory was correlated with inhibition of neuronal growth after propofol exposure. Zebrafish embryos at 6 hours postfertilization (hpf) were exposed to control or 1, 2 or 4 µg/mL propofol until 48 hpf. Spontaneous locomotor activity and swimming behavior in response to dark-to-light photoperiod stimulation were studied in zebrafish larvae at 6 days postfertilization (dpf). The adaptability to repeated stimulation was used to indicate learning and memory function of larvae. Transgenic NBT line zebrafish was used to quantitate the effect of propofol on motor neuronal growth of embryos in vivo. Six dpf transgenic zebrafish larvae went through photoperiod stimulation after their neuronal length had been analyzed during the embryonic period. Our data indicate that embryonic exposure to 1, 2 and 4 µg/mL propofol had no adverse effect on spontaneous movement in zebrafish larvae, but 2 and 4 µg/mL propofol significantly impaired the learning and memory function of larvae. Moreover, propofol significantly inhibited axonal growth of motor neurons during the embryonic stage, which was correlated with learning and memory deficiency in larvae. Our findings demonstrate that the neuronal growth was correlated with learning and memory function, indicating the relevance of zebrafish as a new model to explore the mechanisms through which propofol induces long-term learning and memory impairment.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Axones/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Locomoción/efectos de los fármacos , Propofol/toxicidad , Animales , Animales Modificados Genéticamente , Axones/patología , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Fotoperiodo , Medición de Riesgo , Natación , Pez Cebra/embriología , Pez Cebra/genética
8.
Front Cell Neurosci ; 9: 281, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26257607

RESUMEN

We have recently developed a mathematical model of axonal length sensing in which a system of delay differential equations describe a chemical signaling network. We showed that chemical oscillations emerge due to delayed negative feedback via a Hopf bifurcation, resulting in a frequency that is a monotonically decreasing function of axonal length. In this paper, we explore how frequency-encoding of axonal length can be decoded by a frequency-modulated gene network. If the protein output were thresholded, then this could provide a mechanism for axonal length control. We analyze the robustness of such a mechanism in the presence of intrinsic noise due to finite copy numbers within the gene network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...