RESUMEN
The transition to a low-carbon economy is one of the main challenges of our time. In this context, solar energy, along with many other technologies, has been developed to optimize performance. For example, solar trackers follow the sun's path to increase the generation capacity of photovoltaic plants. However, several factors need consideration to further optimize this process. Important variables include the distance between panels, surface reflectivity, bifacial panels, and climate variations throughout the day. Thus, this paper proposes an artificial intelligence-based algorithm for solar trackers that takes all these factors into account-mainly weather variations and the distance between solar panels. The methodology can be replicated anywhere in the world, and its effectiveness has been validated in a real solar plant with bifacial panels located in northeastern Brazil. The algorithm achieved gains of up to 7.83% on a cloudy day and obtained an average energy gain of approximately 1.2% when compared to a commercial solar tracker algorithm.
RESUMEN
Pelagic Sargassum species have been known for centuries in the Sargasso Sea of the North Atlantic Ocean. In 2011, a new area concentrating high biomass of these brown algae started developing in the Tropical Atlantic Ocean. Since then, massive and recurrent Sargassum influxes have been reported in the Caribbean and off the coast of Western Africa. These Sargassum events have a major negative impact on coastal ecosystems and nearshore marine life, and affect socio-economic sectors, including public health, coastal living, tourism, fisheries, and maritime transport. Despite recent advances in the forecasting of Sargassum events, and elucidation of the seaweed composition, many knowledge gaps remain, including morphotype abundance during Sargassum events, drift of the seaweeds in the months prior to stranding, and influence of sample processing methods on biomass biochemical composition. Using seaweeds harvested on the coasts of Jamaica in summer of 2020, we observed that S. fluitans III was the most abundant morphotype at different times and sampling locations. No clear difference in the geographical origin, or provenance, of the Sargassum mats was observed. The majority of Sargassum backtracked from both north and south of Jamaica experienced ambient temperatures of around 27 °C and salinity in the range of 34-36 psu before stranding. We also showed that cheap (sun) compared to expensive (freeze) drying techniques influence the biochemical composition of biomass. Sun-drying increased the proportion of phenolic compounds, but had a deleterious impact on fucoxanthin content and on the quantities of monosaccharides, except for mannitol. Effects on the content of fucose containing sulfated polysaccharides depended on the method used for their extraction, and limited variation was observed in ash, protein, and fatty acid content within most of the sample locations investigated. These observations are important for the storage and transport of the biomass in the context of its valorisation.