Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
BMC Microbiol ; 24(1): 398, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385119

RESUMEN

BACKGROUND: Foodborne disease and food spoilage are the prime public health issue and food security round the globe. Significant disease outbreaks mostly linked to the existence of pathogenic bacteria that extremely challenging due to the persistence of biofilm-forming. Proteins and bacterial metabolites have been shown to have good antibacterial activity and effectively removal bacterial biofilm. Recently, bacteriophage and their encoded lytic proteins such as lysin have attracted attention as potential alternative agent to control undesirable pathogens in human body infection, increasing food safety as advance preservations and medical treatment such as phage therapy. For these reasons, the efficacy of bacteriophage and their potential in combination with bacterial metabolites from Phyllosphere and Actinomycetes bacteria (Pseudomonas fluorescens JB3B and Streptomyces thermocarboxydus 18PM crude extracts) was the aim of this present study. RESULTS: In this study, bacteriophage BC-VP (1.28 ± 0.29 × 1011 PFU/ml) and ETEC-phage-TG (8.9 ± 2.19 × 108 PFU/ml) isolated from artificial lake water from previous study showed potential activity to control Bacillus cereus (BC) and Enterotoxigenic Escherichia coli (ETEC) population. The combination of BC-VP with metabolite (P. fluorescens JB3B and S. thermocarboxydus 18PM) which were known from previous study had antibiofilm activities were able to inhibit (86.1%; 83.3%) and destruct (41%; 45.5%) biofilm formation of B. cereus respectively. Likewise, the synergy of bacteriophage ETEC-phage-TG with the same crude extract also showed promising activity against biofilm of ETEC with percentage of inhibition (81.9%; 76.4%) and percentage of destruction (54.1%; 44.4%). Application in various food, combination of BC-VP and bacterial metabolite extract (P. fluorescens JB3B; S. thermocarboxydus 18PM) were able to reduce Bacillus cereus population in mashed potato (99.6%; 99.4%) at cold temperature (4 °C) and (68.9%; 56.6%) at room temperature (28 °C), boiled pasta (99.5%; 99.4%) and (84.7%; 75.7%), also soymilk (96.9%; 96.7%) and (42.4%; 39.4%) respectively. Likewise, combination of ETEC-phage-TG and bacterial metabolite (P. fluorescens JB3B; S. thermocarboxydus 18PM) potentially reduced ETEC population after two different temperatures (4 °C and 28 °C) incubation in bean sprouts (TFTC; TFTC) and (47.5%; 49.1%), chicken meat (TFTC; TFTC) and (58.1%; 54%), also minced beef (99.5%; 99.4%) and (41.1%; 28%). GC-MS determination performed, oxalic acid, phenol, phenylethyl alcohol, N-hexadecanoic acid, and pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl was the most active compound in P. fluorescens JB3B. 2,4-Di-tert-butylphenol, phenyl acetic acid, N-Hexadecanoic acid, pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl, and Bis(2-ethylhexyl) phthalate was most active compound in the S. thermocarboxydus 18PM isolates. CONCLUSIONS: The combination of isolated bacteriophages and bacterial metabolite showed promising results to be used as biocontrol candidate to overcome biofilm formed by foodborne and food spoilage bacteria using their ability to produce antibiofilm compounds and lytic activity. In addition, this combination also potentially reduces the use or replace the drawbacks of common application such as antibiotic treatment.


Asunto(s)
Bacillus cereus , Bacteriófagos , Biopelículas , Escherichia coli Enterotoxigénica , Pseudomonas fluorescens , Streptomyces , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Bacillus cereus/efectos de los fármacos , Bacillus cereus/virología , Pseudomonas fluorescens/virología , Pseudomonas fluorescens/efectos de los fármacos , Streptomyces/virología , Streptomyces/fisiología , Escherichia coli Enterotoxigénica/efectos de los fármacos , Escherichia coli Enterotoxigénica/fisiología , Bacteriófagos/fisiología , Antibacterianos/farmacología , Microbiología de Alimentos
2.
Nutrients ; 16(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275234

RESUMEN

Previous studies have indicated a critical role of intestinal bacteria in the pathogenesis of ulcerative colitis (UC). B. salyersiae is a commensal species from the human gut microbiota. However, what effect it has on UC development has not been investigated. In the present study, we explored this issue and demonstrated for the first time that oral administration of B. salyersiae CSP6, a bacterium previously isolated from the fecal sample of a healthy individual, protected against dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. In particular, B. salyersiae CSP6 improved mucosal damage and attenuated gut dysbiosis in the colon of DSS-fed mice. Specifically, B. salyersiae CSP6 decreased the population of pathogenic Escherichia-Shigella spp. and increased the abundance of probiotic Dubosiella spp. and Bifidobacterium pseudolongum. Additionally, by reshaping the colonic microbiota, B. salyersiae CSP6 remarkably increased the fecal concentrations of equol, 8-deoxylactucin, and tiglic acid, three beneficial metabolites that have been well documented to exert strong anti-inflammatory effects. Altogether, our study provides novel evidence that B. salyersiae is a candidate probiotic species with potential anti-colitis properties in the human colon, which has applications for the development of next-generation probiotics.


Asunto(s)
Bacteroides , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Heces , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Probióticos , Animales , Probióticos/farmacología , Humanos , Colon/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Bacteroides/aislamiento & purificación , Heces/microbiología , Masculino , Colitis/microbiología , Colitis/inducido químicamente , Disbiosis/microbiología , Colitis Ulcerosa/microbiología
3.
Bull Exp Biol Med ; 177(4): 488-492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39264565

RESUMEN

We studied the influence of metabolites of permafrost microorganisms obtained at different temperature incubation conditions on activity of differentiation of regulatory (Treg) and effector T lymphocytes. It was found that the effect of metabolites is largely regulated by their type that depends on the temperature of production ("cold" at 5°C, "medium temperature" at 22°C, and "warm" at 37°C). The studied metabolites influenced the differentiation of Tregs (CD4+CD25hiCD127-) and the expression of markers of early (CD69), middle (CD25), and late (HLA DR) activation of CD4+ and CD8+ T lymphocytes. In the case of "cold" metabolites, the increase in Treg levels was associated with a decrease in the intensity of CD4+ T lymphocyte differentiation, and under the influence of "warm" metabolites - with a decrease in the activity of CD8+ T lymphocyte differentiation. Under the influence of "medium-temperature" metabolites, Tregs had approximately the same effect on the intensity of CD4+ and CD8+ T lymphocyte differentiation.


Asunto(s)
Bacillus , Linfocitos T CD8-positivos , Diferenciación Celular , Hielos Perennes , Hielos Perennes/microbiología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Bacillus/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/inmunología , Activación de Linfocitos , Humanos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Temperatura
4.
Methods Protoc ; 7(5)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39311375

RESUMEN

This protocol describes a robust method for the extraction of intra and extracellular metabolites of gut bacterial mono and co-cultures. In recent years, the co-culture techniques employed in the field of microbiology have demonstrated significant importance in regard to understanding cell-cell interactions, cross-feeding, and the metabolic interactions between different bacteria, fungi, and microbial consortia which enable the mimicking of complex co-habitant conditions. This protocol highlights a robust reproducible physiologically relevant culture and extraction protocol for the co-culture of gut bacterium. The novel extraction steps are conducted without using quenching and cell disruption through bead-cell methods, freeze-thaw cycles, and sonication, which tend to affect the physical and biochemical properties of intracellular metabolites and secretome. The extraction procedure of inoculated bacterial co-cultures and monocultures use fast vacuum filtration and centrifugation. The extraction methodology is fast, effective, and robust, requiring 4 h to complete.

5.
Cell Chem Biol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332411

RESUMEN

Biosynthesis of sodorifen with a unique C16-bicyclo[3.2.1]octene framework requires an S-adenosyl methionine-dependent methyltransferase SodC and terpene cyclase SodD. While bioinformatic analyses reveal a wide distribution of the sodCD genes organization in bacteria, their functional diversity remains largely unknown. Herein, two sodorifen-type gene clusters, pcch and pcau, from Pseudomonas sp. are heterologously expressed in Escherichia coli, leading to the discovery of two C16 terpenoids. Enzymatic synthesis of these compounds is achieved using the two (SodCD-like) pathway-specific enzymes. Enzyme assays using different combinations of methyltransferases and terpene synthases across the pcch, pcau, and sod pathways reveal a unifying biosynthetic mechanism: all three SodC-like enzymes methylate farnesyl pyrophosphate (FPP) with subsequent cyclization to a common intermediate, pre-sodorifen pyrophosphate. Structural diversification of this joint precursor solely occurs by the subsequently acting individual terpene synthases. Our findings expand basic biosynthetic understanding and structural diversity of unusual C16-terpenoids.

6.
Gut Microbes ; 16(1): 2393270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39284033

RESUMEN

Short-chain fatty acids (SCFAs) - acetate, propionate, and butyrate - are important bacterial fermentation metabolites regulating many important aspects of human physiology. Decreases in the concentrations of any or multiple SCFAs are associated with various detrimental effects to the host. Previous research has broadly focused on gut microbiome produced SCFAs as a group, with minimal distinction between acetate, propionate, and butyrate independently, each with significantly different host effects. In this review, we comprehensively delineate the roles of these SCFAs with emphasis on receptor affinity, signaling pathway involvement, and net host physiologic effects. Butyrate is highlighted due to its unique role in gastrointestinal-associated functions, especially maintaining gut barrier integrity. Butyrate functions by promoting epithelial tight junctions, serving as fuel for colonocyte ATP production, and modulating the immune system. Interaction with the immune system occurs locally in the gastrointestinal tract and systemically in the brain. Investigation into research conducted on butyrate production pathways and specific bacterial players involved highlights a unique risk associated with use of gram-positive targeted antibiotics. We review and discuss evidence showing the relationship between the butyrate-producing gram-positive genus, Roseburia, and susceptibility to commonly prescribed, widely used gram-positive antibiotics. Considering gut microbiome implications when choosing antibiotic therapy may benefit health outcomes in patients.


Asunto(s)
Butiratos , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Ácidos Grasos Volátiles/metabolismo , Animales , Butiratos/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Antibacterianos
7.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201610

RESUMEN

The global burden of liver cancer is increasing. Timely diagnosis is important for optimising the limited available treatment options. Understanding the metabolic consequences of hepatocellular carcinoma (HCC) may lead to more effective treatment options. We aimed to document metabolite differences between HCC and matched surrounding tissues of varying aetiology, obtained at the time of liver resection, and to interpret metabolite changes with clinical findings. High-resolution magic angle spinning nuclear magnetic resonance (HRMAS-NMR) spectroscopy analyses of N = 10 paired HCC and surrounding non-tumour liver tissue samples were undertaken. There were marked HRMAS-NMR differences in lipid levels in HCC tissue compared to matched surrounding tissue and more subtle changes in low-molecular-weight metabolites, particularly when adjusting for patient-specific variability. Differences in lipid-CH3, lipid-CH2, formate, and acetate levels were of particular interest. The obvious differences in lipid content highlight the intricate interplay between metabolic adaptations and cancer cell survival in the complex microenvironment of liver cancer. Differences in formate and acetate might relate to bacterial metabolites. Therefore, documentation of metabolites in HCC tissue according to histology findings in patients is of interest for personalised medicine approaches and for tailoring targeted treatment strategies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hígado , Espectroscopía de Resonancia Magnética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Masculino , Espectroscopía de Resonancia Magnética/métodos , Femenino , Persona de Mediana Edad , Hígado/metabolismo , Hígado/patología , Anciano , Metabolismo de los Lípidos , Lípidos/análisis , Adulto , Metaboloma
8.
Biomolecules ; 14(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39062502

RESUMEN

Current microbiological methods for pneumonia diagnosis require invasive specimen collection and time-consuming analytical procedures. There is a need for less invasive and faster methods to detect lower respiratory tract infections. The analysis of volatile metabolites excreted by pathogenic microorganisms provides the basis for developing such a method. Given the synergistic role of Candida albicans in increasing the virulence of pathogenic bacteria causing pneumonia and the cross-kingdom metabolic interactions between microorganisms, we compare the emission of volatiles from Candida albicans yeasts and the bacteria Staphylococcus aureus using single and mixed co-cultures and apply that knowledge to human in vivo investigations. Gas chromatography-mass spectrometry (GC-MS) analysis resulted in the identification of sixty-eight volatiles that were found to have significantly different levels in cultures compared to reference medium samples. Certain volatiles were found in co-cultures that mainly originated from C. albicans metabolism (e.g., isobutyl acetate), whereas other volatiles primarily came from S. aureus (e.g., ethyl 2-methylbutyrate). Isopentyl valerate reflects synergic interactions of both microbes, as its level in co-cultures was found to be approximately three times higher than the sum of its amounts in monocultures. Hydrophilic-lipophilic-balanced (HLB) coated meshes for thin-film microextraction (TFME) were used to preconcentrate volatiles directly from bronchoalveolar lavage (BAL) specimens collected from patients suffering from ventilation-associated pneumonia (VAP), which was caused explicitly by C. albicans and S. aureus. GC-MS analyses confirmed the existence of in vitro-elucidated microbial VOCs in human specimens. Significant differences in BAL-extracted amounts respective to the pathogen-causing pneumonia were found. The model in vitro experiments provided evidence that cross-kingdom interactions between pathogenic microorganisms affect the synthesis of volatile compounds. The TFME meshes coated with HLB particles proved to be suitable for extracting VOCs from human material, enabling the translation of in vitro experiments on the microbial volatilome to the in vivo situation involving infected patients. This indicates the direction that should be taken for further clinical studies on VAP diagnosis based on volatile analysis.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Candida albicans , Cromatografía de Gases y Espectrometría de Masas , Staphylococcus aureus , Compuestos Orgánicos Volátiles , Candida albicans/metabolismo , Staphylococcus aureus/metabolismo , Humanos , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Líquido del Lavado Bronquioalveolar/microbiología , Líquido del Lavado Bronquioalveolar/química , Técnicas de Cocultivo , Neumonía/microbiología , Neumonía/metabolismo
9.
Cell Metab ; 36(8): 1823-1838.e6, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39079531

RESUMEN

Time-restricted feeding (TRF) is a potent dietary intervention for improving metabolic diseases, including metabolic dysfunction-associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH). However, the mechanism of this efficacy has remained elusive. Here, we show that TRF improves MASLD, which is associated with a significant enrichment of Ruminococcus torques (R. torques). Mechanistically, R. torques suppresses the intestinal HIF-2α-ceramide pathway via the production of 2-hydroxy-4-methylpentanoic acid (HMP). We identify rtMor as a 4-methyl-2-oxopentanoate reductase that synthesizes HMP in R. torques. Finally, we show that either the colonization of R. torques or oral HMP supplementation can ameliorate inflammation and fibrosis in a MASH mouse model. These findings identify R. torques and HMP as potential TRF mimetics for the treatment of metabolic disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ceramidas , Ratones Endogámicos C57BL , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ratones , Ceramidas/metabolismo , Masculino , Hígado Graso/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Metabólicas/metabolismo
10.
Physiol Rep ; 12(12): e16114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38886098

RESUMEN

Although the liver is the largest metabolic organ in the body, it is not alone in functionality and is assisted by "an organ inside an organ," the gut microbiota. This review attempts to shed light on the partnership between the liver and the gut microbiota in the metabolism of macronutrients (i.e., proteins, carbohydrates, and lipids). All nutrients absorbed by the small intestines are delivered to the liver for further metabolism. Undigested food that enters the colon is metabolized further by the gut microbiota that produces secondary metabolites, which are absorbed into portal circulation and reach the liver. These microbiota-derived metabolites and co-metabolites include ammonia, hydrogen sulfide, short-chain fatty acids, secondary bile acids, and trimethylamine N-oxide. Further, the liver produces several compounds, such as bile acids that can alter the gut microbial composition, which can in turn influence liver health. This review focuses on the metabolism of these microbiota metabolites and their influence on host physiology. Furthermore, the review briefly delineates the effect of the portosystemic shunt on the gut microbiota-liver axis, and current understanding of the treatments to target the gut microbiota-liver axis.


Asunto(s)
Microbioma Gastrointestinal , Hígado , Microbioma Gastrointestinal/fisiología , Humanos , Hígado/metabolismo , Animales , Nutrientes/metabolismo , Ácidos y Sales Biliares/metabolismo
11.
JGH Open ; 8(5): e13083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38779131

RESUMEN

The luminal environment is rich in macronutrients coming from our diet and resident microbial populations including their metabolites. Together, they have the capacity to modulate unique cell surface receptors, known as G-protein coupled receptors (GPCRs). Along the entire length of the gut epithelium, enteroendocrine cells express GPCRs to interact with luminal contents, such as GPR93 and the calcium sensing receptor to sense proteins, FFA2 and GPR84 to sense fatty acids, and SGLT1 and T1R to sense carbohydrates. Nutrient-receptor interaction causes the release of hormonal stores such as glucagon-like peptide 1, peptide YY, and cholecystokinin, which further regulate gut function. Existing data show the role of luminal components and microbial fermentation products on gut function. However, there is a lack of understanding in the mechanistic interactions between diet-derived luminal components and microbial products and nutrient-sensing receptors and downstream gastrointestinal modulation. This review summarizes current knowledge on various luminal components and describes in detail the range of nutrients and metabolites and their interaction with nutrient receptors in the gut epithelium and the emerging impact on immune cells.

12.
Front Physiol ; 15: 1340166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681141

RESUMEN

Background: Flavin monooxygenases (FMOs) are enzymes responsible for the oxidation of a broad spectrum of exogenous and endogenous amines. There is increasing evidence that trimethylamine (TMA), a compound produced by gut bacteria and also recognized as an industrial pollutant, contributes to cardiovascular diseases. FMOs convert TMA into trimethylamine oxide (TMAO), which is an emerging marker of cardiovascular risk. This study hypothesized that blood pressure phenotypes in rats might be associated with variations in the expression of FMOs. Methods: The expression of FMO1, FMO3, and FMO5 was evaluated in the kidneys, liver, lungs, small intestine, and large intestine of normotensive male Wistar-Kyoto rats (WKY) and two distinct hypertensive rat models: spontaneously hypertensive rats (SHRs) and WKY rats with angiotensin II-induced hypertension (WKY-ANG). Plasma concentrations of TMA and TMAO were measured at baseline and after intravenous administration of TMA using liquid chromatography-mass spectrometry (LC-MS). Results: We found that the expression of FMOs in WKY, SHR, and WKY-ANG rats was in the descending order of FMO3 > FMO1 >> FMO5. The highest expression of FMOs was observed in the liver. Notably, SHRs exhibited a significantly elevated expression of FMO3 in the liver compared to WKY and WKY-ANG rats. Additionally, the plasma TMAO/TMA ratio was significantly higher in SHRs than in WKY rats. Conclusion: SHRs demonstrate enhanced expression of FMO3 and a higher plasma TMAO/TMA ratio. The variability in the expression of FMOs and the metabolism of amines might contribute to the hypertensive phenotype observed in SHRs.

13.
Front Endocrinol (Lausanne) ; 15: 1362711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586454

RESUMEN

Objective: Fiber-free diet impairs intestinal and colonic health in mice, in parallel with a reduction in glucagon like peptide-1 (GLP-1) levels. Endogenous GLP-1 is important for intestinal growth and maintenance of the intestinal integrity. We aimed to investigate whether fiber-free diet reduces luminal content of metabolites which, upon supplementation, could increase GLP-1 secretion and restore the adverse effects of fiber-free diet. Methods: Untargeted metabolomics (LC-MS) was performed on colonic content of mice fed a fiber-free diet, identifying a metabolite of particular interest: indole-3-carboxyaldehyde (I3A). We exposed cultured GLUTag cells to I3A, and measured cumulative GLP-1 secretion. Isolated colon perfusions were performed in male C57BL/6JRj mice and Wistar rats. I3A was administered luminally or vascularly, and GLP-1 was measured in portal vein effluent. Finally, female C57BL/6JRJ mice were fed chow or fiber-free diet, with I3A or vehicle by oral gavage. After 10 days, plasma GLP-1 (ELISA) and intestinal permeability (FITC-dextran) were measured, animals were sacrificed and organs removed for histology. Results: Mice fed a fiber-free diet had significantly lower I3A in their colonic content compared to a control diet (7883 ± 3375 AU, p=0.04). GLP-1 secretion from GLUTag cells was unchanged after five minutes of exposure to I3A. However, GLP-1 levels increased after 120 minutes of exposure to 1 mM (60% increase, p=0.016) and 5 mM (89% increase, p=0.0025) I3A. In contrast, 48 h exposure to 1 mM decreased GLP-1 secretion (51% decrease, p<0.001) and viability. In isolated perfused mouse and rat colon, I3A applied into the luminal or vascular side did not affect GLP-1 secretion. Mice fed a fiber-free diet tended to weigh less compared to chow fed mice; and the small intestine and colon were significantly smaller. No differences were seen in crypt depth, villus length, mucosal area, and intestinal permeability. Supplementing I3A did not affect body weight, morphology or plasma GLP-1 levels. Conclusions: Fiber-free diet lowered colonic content of I3A in mice. I3A stimulates GLP-1 secretion in vitro, but not in animal studies. Moreover, it has no evident beneficial effect on intestinal health when administered in vivo.


Asunto(s)
Péptido 1 Similar al Glucagón , Intestino Delgado , Ratas , Ratones , Animales , Masculino , Femenino , Ratas Wistar , Ratones Endogámicos C57BL , Intestino Delgado/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Dieta
14.
Clin Transl Radiat Oncol ; 46: 100758, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38500667

RESUMEN

Background: Most clinical studies failed to elicit a strong antitumor immune response and subsequent systemic tumor regression after radiation therapy (RT), even in combination with the immune checkpoint inhibitors (ICI) anti-CTLA4 or anti-PD1. Mechanistically, type I interferon (IFN-I) activation is essential for the development of such abscopal effects (AE); however, mechanisms driving or limiting IFN-I activation are ill defined. Groundbreaking discoveries have shown that antibiotics (ABx) can affect oncological outcomes and that microbiota-derived metabolites can modulate systemic antitumor immunity. Recent studies have demonstrated that the bacterial metabolites desaminotyrosine (DAT) and indole-3-carboxaldehyde (ICA) can enhance IFN-I activation in models of inflammatory diseases. Materials and Methods: The subcutaneous bilateral MC38 tumor model is a widely used experimental tool to study the AE in mice. We applied it to explore the influence of broad-spectrum ABx, DAT and ICA on the AE after radioimmunotherapy (RIT). We performed 1x8 Gy of the primary tumor ± anti-CTLA4 or anti-PD1, and ± daily oral application of ABx or metabolites. Result: Combinatory ABx had neither a significant effect on tumor growth of the irradiated tumor nor on tumor progression of the abscopal tumor after RIT with anti-CTLA4. Furthermore, DAT and ICA did not significantly impact on the AE after RIT with anti-CTLA4 or anti-PD1. Surprisingly, ICA even appears to reduce outcomes after RIT with anti-CTLA4. Conclusion: We did not find a significant impact of combinatory ABx on the AE. Experimental application of the IFN-I-inducing metabolites DAT or ICA did not boost the AE after combined RIT. Additional studies are important to further investigate whether the intestinal microbiota or specific microbiota-derived metabolites modulate the AE.

15.
Curr Rheumatol Rep ; 26(4): 124-132, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38300467

RESUMEN

PURPOSE OF REVIEW: Host-microbiome interactions have been implicated in the pathophysiology of rheumatoid arthritis (RA), but the data linking specific microbes to RA is largely associative. Here, we review recent studies that have interrogated specific mechanistic links between microbes and host in the setting of RA. RECENT FINDINGS: Several candidate bacterial species and antigens that may trigger the conversion of an anti-bacterial to an autoimmune response have been recently identified. Additional studies have identified microbial metabolic pathways that are altered in RA. Some of these microbial species and metabolic pathways have been validated in mouse models to induce RA-like immune responses, providing initial evidence of specific mechanisms by which the microbiota contributes to the development of RA. Several microbial species, antigens, and metabolites have been identified as potential contributors to RA pathophysiology. Further interrogation and validation of these pathways may identify novel biomarkers of or therapeutic avenues for RA.


Asunto(s)
Artritis Reumatoide , Microbiota , Animales , Ratones , Humanos , Artritis Reumatoide/tratamiento farmacológico , Modelos Animales de Enfermedad , Biomarcadores
16.
Heliyon ; 10(4): e25186, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38384514

RESUMEN

The relationship between gut microbiota and its metabolites with cardiovascular disease (CVD) has been proven. In this review, we aim to conclude the potential mechanism of gut microbiota and its metabolites on inducing the formation of vulnerable atherosclerotic plaque, and to discuss the effect of intestinal metabolites, including trimethylamine-N-oxide (TMAO), lipopolysaccharide (LPS), phenylacetylglutamine (PAG), short-chain fatty acids (SCFAs) on plaque stability. Finally, we include the impact of gut microbiota and its metabolites on plaque stability, to propose a new therapeutic direction for coronary heart disease. Gut microbiota regulation intervenes the progress of arteriosclerosis, especially on coronary atherosclerosis, by avoiding or reducing the formation of vulnerable plaque, to lower the morbidity rate of myocardial infarction.

17.
Brain Res Bull ; 207: 110883, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244807

RESUMEN

The link between drug-induced dysbiosis and its influence on brain diseases through gut-residing bacteria and their metabolites, named the microbiota-gut-brain axis (MGBA), remains largely unexplored. This review investigates the effects of commonly prescribed drugs (metformin, statins, proton-pump-inhibitors, NSAIDs, and anti-depressants) on the gut microbiota, comparing the findings with altered bacterial populations in major brain diseases (depression, multiple sclerosis, Parkinson's and Alzheimer's). The report aims to explore whether drugs can influence the development and progression of brain diseases via the MGBA. Central findings indicate that all explored drugs induce dysbiosis. These dysbiosis patterns were associated with brain disorders. The influence on brain diseases varied across different bacterial taxa, possibly mediated by direct effects or through bacterial metabolites. Each drug induced both positive and negative changes in the abundance of bacteria, indicating a counterbalancing effect. Moreover, the above-mentioned drugs exhibited similar effects, suggesting that they may counteract or enhance each other's effects on brain diseases when taken together by comorbid patients. In conclusion, the interplay of bacterial species and their abundances may have a greater impact on brain diseases than individual drugs or bacterial strains. Future research is needed to better understand drug-induced dysbiosis and the implications for brain disease pathogenesis, with the potential to develop more effective therapeutic options for patients with brain-related diseases.


Asunto(s)
Encefalopatías , Microbioma Gastrointestinal , Mitoguazona/análogos & derivados , Humanos , Eje Cerebro-Intestino , Disbiosis/inducido químicamente , Disbiosis/tratamiento farmacológico , Disbiosis/metabolismo , Encefalopatías/patología , Encéfalo/metabolismo
18.
Front Chem ; 11: 1287599, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116103

RESUMEN

Background: Bacterial metabolites play a crucial role in human health and have proven effective in treating various diseases. In this study, the 16S rRNA method and streaking were employed to isolate and molecularly identify a bacterial strain, with the goal of characterizing bioactive volatile metabolites extracted using nonpolar and polar solvents. Methods: Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to identify 29 compounds in the bacterial metabolites, including key compounds associated with Bacillus spp. The main compounds identified included 2-propanone, 4,4-ethylenedioxy-1-pentylamine, 1,2-benzenedicarboxylic acid, 1,1-butoxy-1-isobutoxy-butane, and 3,3-ethoxycarbonyl-5-hydroxytetrahydropyran-2-one. Results: The literature indicates the diverse biological and pharmacological applications of these compounds. Different concentrations of the metabolites from Bacillus species were tested for biological activities, revealing significant inhibitory effects on anti-diabetic activity (84.66%), anti-inflammatory activity (99%), antioxidant activity (99.8%), and anti-hemolytic activity (90%). Disc diffusion method testing also demonstrated a noteworthy inhibitory effect against tested strains. Conclusion: In silico screening revealed that 1,2-benzenedicarboxylic acid exhibited anticancer activity and promising drug-designing properties against epithelial glioblastoma cancer genes. The study highlights the potential of Bacillus spp. as a valuable target for drug research, emphasizing the significance of bacterial metabolites in the production of biological antibacterial agents.

19.
Biomolecules ; 13(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38136564

RESUMEN

Adipokines are essential mediators produced by adipose tissue and exert multiple biological functions. In particular, adiponectin, leptin, resistin, IL-6, MCP-1 and PAI-1 play specific roles in the crosstalk between adipose tissue and other organs involved in metabolic, immune and vascular health. During obesity, adipokine imbalance occurs and leads to a low-grade pro-inflammatory status, promoting insulin resistance-related diabetes and its vascular complications. A causal link between obesity and gut microbiota dysbiosis has been demonstrated. The deregulation of gut bacteria communities characterizing this dysbiosis influences the synthesis of bacterial substances including lipopolysaccharides and specific metabolites, generated via the degradation of dietary components, such as short-chain fatty acids, trimethylamine metabolized into trimethylamine-oxide in the liver and indole derivatives. Emerging evidence suggests that these bacterial metabolites modulate signaling pathways involved in adipokine production and action. This review summarizes the current knowledge about the molecular links between gut bacteria-derived metabolites and adipokine imbalance in obesity, and emphasizes their roles in key pathological mechanisms related to oxidative stress, inflammation, insulin resistance and vascular disorder. Given this interaction between adipokines and bacterial metabolites, the review highlights their relevance (i) as complementary clinical biomarkers to better explore the metabolic, inflammatory and vascular complications during obesity and gut microbiota dysbiosis, and (ii) as targets for new antioxidant, anti-inflammatory and prebiotic triple action strategies.


Asunto(s)
Microbioma Gastrointestinal , Resistencia a la Insulina , Humanos , Adipoquinas/metabolismo , Disbiosis/microbiología , Obesidad/metabolismo , Bacterias/metabolismo
20.
J Mol Med (Berl) ; 101(12): 1513-1526, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37819377

RESUMEN

Inflammatory bowel disease (IBD) is a prototypic complex disease in the gastrointestinal tract that has been increasing in incidence and prevalence in recent decades. Although the precise pathophysiology of IBD remains to be elucidated, a large body of evidence suggests the critical roles of mitochondria and intestinal microbiota in the pathogenesis of IBD. In addition to their contributions to the disease, both mitochondria and gut microbes may interact with each other and modulate disease-causing cell activities. Therefore, we hypothesize that dissecting this unique interaction may help to identify novel pathways involved in IBD, which will further contribute to discovering new therapeutic approaches to the disease. As poorly treated IBD significantly affects the quality of life of patients and is associated with risks and complications, successful treatment is crucial. In this review, we stratify previously reported experimental and clinical observations of the role of mitochondria and intestinal microbiota in IBD. Additionally, we review the intercommunication between mitochondria, and the intestinal microbiome in patients with IBD is reviewed along with the potential mediators for these interactions. We specifically focus on their roles in cellular metabolism in intestinal epithelial cells and immune cells. To this end, we propose a potential therapeutic intervention strategy for IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Microbiota , Humanos , Calidad de Vida , Enfermedades Inflamatorias del Intestino/metabolismo , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA