Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2402974121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39255001

RESUMEN

Hamilton's rule provides the cornerstone for our understanding of the evolution of all forms of social behavior, from altruism to spite, across all organisms, from viruses to humans. In contrast to the standard prediction from Hamilton's rule, recent studies have suggested that altruistic helping can be favored even if it does not benefit relatives, as long as it decreases the environmentally induced variance of their reproductive success ("altruistic bet-hedging"). However, previous predictions both rely on an approximation and focus on variance-reducing helping behaviors. We derived a version of Hamilton's rule that fully captures environmental variability. This shows that decreasing (or increasing) the variance in the absolute reproductive success of relatives does not have a consistent effect-it can either favor or disfavor the evolution of helping. We then empirically quantified the effect of helping on the variance in reproductive success across 15 species of cooperatively breeding birds. We found that a) helping did not consistently decrease the variance of reproductive success and often increased it, and b) the mean benefits of helping across environments consistently outweighed other variability components of reproductive success. Altogether, our theoretical and empirical results suggest that the effects of helping on the variability components of reproductive success have not played a consistent or strong role in favoring helping.


Asunto(s)
Altruismo , Aves , Selección Genética , Animales , Aves/fisiología , Reproducción/fisiología , Evolución Biológica , Ambiente , Conducta Animal/fisiología , Conducta Social , Conducta Cooperativa , Conducta de Ayuda
2.
Microorganisms ; 12(9)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39338604

RESUMEN

Bacterial nanomachines represent remarkable feats of evolutionary engineering, showcasing intricate molecular mechanisms that enable bacteria to perform a diverse array of functions essential to persist, thrive, and evolve within ecological and pathological niches. Injectosomes and bacterial flagella represent two categories of bacterial nanomachines that have been particularly well studied both at the molecular and functional levels. Among the diverse functionalities of these nanomachines, bistability emerges as a fascinating phenomenon, underscoring their dynamic and complex regulation as well as their contribution to shaping the bacterial community behavior during the infection process. In this review, we examine two closely related bacterial nanomachines, the type 3 secretion system, and the flagellum, to explore how the bistability of molecular-scale devices shapes the bacterial eco-pathological life cycle.

3.
Am J Bot ; : e16391, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126164

RESUMEN

PREMISE: Intraspecific variation in drought resistance traits, such as drought escape, appear to be frequent within wild, ruderal forb species. Understanding how these traits are arrayed across the landscape, particularly in association with climate, is critical to developing forbs for wildland restoration programs. Use of forbs is requisite for maintaining biological diversity and ecological services. METHODS: Using 6074 greenhouse-grown Chaenactis douglasii seedlings from 95 wild, seed-sourced populations across the western United States, we recorded bolting phenology and estimated genome size using flow cytometry. Mixed-effects regression models were used to assess whether climate of seed origin was predictive for bolting phenology and genome size. RESULTS: Variation in bolting, reflecting an annual vs. perennial lifespan in this species, was observed in 8.7% of the plants, with bolting plants disproportionately occurring in locations with warm, arid climates. Populations with increasing heat and aridity were positively correlated with observed bolting (r = 0.61, p < 0.0001). About one-third (22%) of the total (61%) lifespan variation was attributed to seed source climate and annual heat moisture index, a measure of aridity. Genome size had no significant effect on bolting. Projected climate modeling for mid-century (2041-2070) supports an increasing occurrence of annual lifespan. CONCLUSIONS: Our analyses support a drought escape, bet-hedging strategy in C. douglasii. Populations exposed to greater aridity exhibited a higher proportion of individuals with an annual lifespan. Drought escape leading to an annual lifespan can affect how seeds are propagated and deployed for climate-informed restoration.

4.
Ecol Evol ; 14(8): e70177, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39145038

RESUMEN

Dispersal of reproductive propagules determines recruitment patterns and connectivity among populations and can influence how populations respond to major disturbance events. Dispersal distributions can depend on propagule release strategies. For instance, the bull kelp, Nereocystis luetkeana, can release propagules (spores) from two heights in the water column ("bimodal release"): at the water surface, directly from the reproductive tissues (sori) on the kelp's blades, and near the seafloor after the sori abscise and sink through the water column. N. luetkeana is a foundation species that occurs from central California to Alaska and is experiencing unprecedented levels of population declines near its southern range limit. We know little of the kelp's dispersal distributions, which could influence population recovery and restoration. Here, we quantify how bimodal spore release heights affect dispersal outcomes based on a numerical model specifically designed for N. luetkeana. The model incorporates oceanographic conditions typical of the species' coastal range and kelp biological traits. With bimodal release heights, 34% of spores are predicted to settle within 10 m of the parental alga and 60% are predicted to disperse beyond 100 m. As an annual species, bimodal release heights can facilitate the local regeneration of adults within a source kelp forest while also supporting connectivity among multiple forests within broader bull kelp metapopulations. To leverage this pattern of bimodal spore dispersal in bull kelp restoration management, directing resources toward strategically located focal populations that can seed other ones could amplify the scale of recovery.

5.
Dev Cell ; 59(16): 2222-2238.e4, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094565

RESUMEN

Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.


Asunto(s)
Epigénesis Genética , Heterocromatina , Histonas , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Adaptación Fisiológica/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulación Fúngica de la Expresión Génica , Metilación
6.
J Therm Biol ; 123: 103891, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38972154

RESUMEN

Phenological models for insect pests often rely on knowledge of thermal reaction norms. These may differ in shape depending on developmental thermal conditions (e.g. constant vs. fluctuating) and other factors such as life-stages. Here, we conducted an extensive comparative study of the thermal reaction norms for development and viability in the invasive fly, Drosophila suzukii, under constant and fluctuating thermal regimes. Flies, were submitted to 15 different constant temperatures (CT) ranging from 8 to 35 °C. We compared responses under CT with patterns observed under 15 different fluctuating temperature (FT) regimes. We tested several equations for thermal performance curves and compared various models to obtain thermal limits and degree-day estimations. To validate the model's predictions, the phenology was monitored in two artificial field-like conditions and two natural conditions in outdoor cages during spring and winter. Thermal reaction norm for viability from egg to pupa was broader than that from egg to adult. FT conditions yielded a broader thermal breadth for viability than CT, with a performance extended towards the colder side, consistent with our field observations in winter. Models resulting from both CT and FT conditions made accurate predictions of degree-day as long as the temperature remained within the linear part of the developmental rate curve. Under cold artificial and natural winter conditions, a model based on FT data made more accurate predictions. Model based on CT failed to predict adult's emergence in winter. We also document the first record of development and adult emergence throughout winter in D. suzukii. Population dynamics models in D. suzukii are all based on summer phenotype and CT. Accounting for variations between seasonal phenotypes, stages, and thermal conditions (CT vs. FT) could improve the predictive power of the models.


Asunto(s)
Drosophila , Modelos Biológicos , Temperatura , Animales , Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Femenino , Masculino , Estaciones del Año , Pupa/crecimiento & desarrollo , Pupa/fisiología
7.
mBio ; 15(6): e0075824, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38771034

RESUMEN

Clonal reproduction of unicellular organisms ensures the stable inheritance of genetic information. However, this means of reproduction lacks an intrinsic basis for genetic variation, other than spontaneous mutation and horizontal gene transfer. To make up for this lack of genetic variation, many unicellular organisms undergo the process of cell differentiation to achieve phenotypic heterogeneity within isogenic populations. Cell differentiation is either an inducible or obligate program. Induced cell differentiation can occur as a response to a stimulus, such as starvation or host cell invasion, or it can be a stochastic process. In contrast, obligate cell differentiation is hardwired into the organism's life cycle. Whether induced or obligate, bacterial cell differentiation requires the activation of a signal transduction pathway that initiates a global change in gene expression and ultimately results in a morphological change. While cell differentiation is considered a hallmark in the development of multicellular organisms, many unicellular bacteria utilize this process to implement survival strategies. In this review, we describe well-characterized cell differentiation programs to highlight three main survival strategies used by bacteria capable of differentiation: (i) environmental adaptation, (ii) division of labor, and (iii) bet-hedging.


Asunto(s)
Bacterias , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Diferenciación Celular , Adaptación Fisiológica , Viabilidad Microbiana , Transducción de Señal
8.
J Insect Physiol ; 155: 104634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599545

RESUMEN

Mormon cricket eggs can remain diapausing in soil for multiple years without forming an embryo. I investigated whether embryonic development was dependent on the number of annual cycles since the egg was laid, duration of the summer period (forcing), or duration of the winter period (chilling). Male and female Mormon crickets collected in Arizona and Wyoming were paired in the lab. For each mating pair, sibling eggs were incubated 12 weeks, eggs with fully developed embryos removed, and the remaining eggs were split evenly among three treatments: a long cold period and a long warm period; a short cold period and a long warm period; and a short cold period and a short warm period, which respectively completed 2 annual cycles, 3 cycles, and 4 cycles in 60 calendar weeks. In each cycle over nine years, developed eggs and eggs that appeared inviable were counted and removed. For each mating pair, I used survival analyses to test for differences in 1) the number of annual cycles, 2) the warm period duration, and 3) the cold period duration required for the embryos to develop. For eight of 11 mating pairs, one of the three factors was not excluded as a determinant of the phenology of embryonic development. Duration of the warm period was not rejected in seven of 11 cases. Duration of the warm period required for 50 % of the eggs to develop ranged from 84 to 144 weeks. In one case from Arizona, the duration of the cold period was the only factor not rejected. Median chill time was 60 weeks, which is also more than one year. Despite this exception, I conclude that duration of the warm period is typically the factor that determines timing of embryonic development for Mormon crickets. For these two high elevation populations, median forcing or chilling exceeded one year.


Asunto(s)
Diapausa de Insecto , Gryllidae , Animales , Gryllidae/fisiología , Gryllidae/embriología , Femenino , Masculino , Arizona , Diapausa de Insecto/fisiología , Estaciones del Año , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Wyoming , Factores de Tiempo
9.
Front Plant Sci ; 15: 1358312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525145

RESUMEN

The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.

10.
Philos Trans R Soc Lond B Biol Sci ; 379(1900): 20230048, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38432313

RESUMEN

When future conditions are unpredictable, bet-hedging strategies can be advantageous. This can involve isogenic individuals producing different phenotypes, under the same environmental conditions. Ecological studies provide evidence that variability in seed germination time has been selected for as a bet-hedging strategy. We demonstrate how variability in germination time found in Arabidopsis could function as a bet-hedging strategy in the face of unpredictable lethal stresses. Despite a body of knowledge on how the degree of seed dormancy versus germination is controlled, relatively little is known about how differences between isogenic seeds in a batch are generated. We review proposed mechanisms for generating variability in germination time and the current limitations and new possibilities for testing the model predictions. We then look beyond germination to the role of variability in seedling and adult plant growth and review new technologies for quantification of noisy gene expression dynamics. We discuss evidence for phenotypic variability in plant traits beyond germination being under genetic control and propose that variability in stress response gene expression could function as a bet-hedging strategy. We discuss open questions about how noisy gene expression could lead to between-plant heterogeneity in gene expression and phenotypes. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.


Asunto(s)
Arabidopsis , Germinación , Humanos , Adulto , Semillas , Plantones , Arabidopsis/genética , Conocimiento
11.
BMC Ecol Evol ; 24(1): 21, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347459

RESUMEN

BACKGROUND: The origin of variation is of central interest in evolutionary biology. Maternal mRNAs govern early embryogenesis in many animal species, and we investigated the possibility that heterogeneity in maternal mRNA provisioning of eggs can be modulated by environmental stimuli. RESULTS: We employed two sibling species of the ascidian Ciona, called here types A and B, that are adapted to different temperature regimes and can be hybridized. Previous study showed that hybrids using type B eggs had higher susceptibility to thermal stress than hybrids using type A eggs. We conducted transcriptome analyses of multiple single eggs from crosses using eggs of the different species to compare the effects of maternal thermal stress on heterogeneity in egg provisioning, and followed the effects across generations. We found overall decreases of heterogeneity of egg maternal mRNAs associated with maternal thermal stress. When the eggs produced by the F1 AB generation were crossed with type B sperm and the progeny ('ABB' generation) reared unstressed until maturation, the overall heterogeneity of the eggs produced was greater in a clutch from an individual with a heat-stressed mother compared to one from a non-heat-stressed mother. By examining individual genes, we found no consistent overall effect of thermal stress on heterogeneity of expression in genes involved in developmental buffering. In contrast, heterogeneity of expression in signaling molecules was directly affected by thermal stress. CONCLUSIONS: Due to the absence of batch replicates and variation in the number of reads obtained, our conclusions are very limited. However, contrary to the predictions of bet-hedging, the results suggest that maternal thermal stress at the embryo stage is associated with reduced heterogeneity of maternal mRNA provision in the eggs subsequently produced by the stressed individual, but there is then a large increase in heterogeneity in eggs of the next generation, although itself unstressed. Despite its limitations, our study presents a proof of concept, identifying a model system, experimental approach and analytical techniques capable of providing a significant advance in understanding the impact of maternal environment on developmental heterogeneity.


Asunto(s)
ARN Mensajero Almacenado , Semen , Animales , Femenino , Masculino , Humanos , ARN Mensajero Almacenado/genética , Perfilación de la Expresión Génica , Madres , Evolución Biológica
12.
Am J Bot ; 111(1): e16272, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38247016

RESUMEN

PREMISE: The lateral membranous expansions of fruits, commonly referred to as wings, have long been theorized to serve only dispersal functions. Alternatively, because winged fruits typically have earlier seed germination than unwinged fruits, we hypothesized that wings could increase the contact surface with water, ultimately triggering earlier germination. METHODS: We investigated this alternative hypothesis by exploring the potential role of fruit wings on germination in the heterocarpic species Anacyclus clavatus (Desf.) Pers. (Asteraceae), which produces both winged and unwinged fruits. First, we measured the speed and degree of water absorption in winged and unwinged fruits. Second, we investigated the effects of wings on germination performance, by either reducing wing size or by preventing water absorption by sealing wings with wax. Next, we tested the influence of water availability on the germination performance of winged and unwinged fruits by reducing the water potential. RESULTS: Winged fruits absorbed more water at a faster rate than unwinged fruits. The sealing of wings delayed germination, whereas germination time was not significantly altered by wing cutting. The restriction of water availability by decreasing water potential significantly delayed seed germination of unwinged fruits, whereas winged fruits remained unaffected. CONCLUSIONS: Altogether, our results support the effect of wings on germination and cast doubt on the unique role of wings in dispersal. Whether or not wings contribute to dispersal, we propose that they also improve seed germination and seedling establishment by facilitating water absorption after the release from their mother plants.


Asunto(s)
Asteraceae , Frutas , Animales , Germinación , Semillas , Agua
13.
Am Nat ; 202(6): 767-784, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033178

RESUMEN

AbstractBet hedging consists of life history strategies that buffer against environmental variability by trading off immediate and long-term fitness. Delayed germination in annual plants is a classic example of bet hedging and is often invoked to explain low germination fractions. We examined whether bet hedging explains low and variable germination fractions among 20 populations of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation in reproductive success among years. Leveraging 15 years of demographic monitoring and 3 years of field germination experiments, we assessed the fitness consequences of seed banks and compared optimal germination fractions from a density-independent bet-hedging model to observed germination fractions. We did not find consistent evidence of bet hedging or the expected trade-off between arithmetic and geometric mean fitness, although delayed germination increased long-term fitness in 7 of 20 populations. Optimal germination fractions were two to five times higher than observed germination fractions, and among-population variation in germination fractions was not correlated with risks across the life cycle. Our comprehensive test suggests that bet hedging is not sufficient to explain the observed germination patterns. Understanding variation in germination strategies will likely require integrating bet hedging with complementary forces shaping the evolution of delayed germination.


Asunto(s)
Germinación , Rasgos de la Historia de Vida , Evolución Biológica , Plantas , Reproducción
14.
Ecol Evol ; 13(9): e10485, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37693935

RESUMEN

The evolutionary theory of life histories predicts that there is a trade-off between survival and reproduction: since adult survival in long-lived organisms is high, then breeding investment is more variable and more dependent on conditions (e.g. food availability and individual experience). Clutch features influence fitness prospects, but how a bet hedger builds its clutch in temporally varying environments is quite unknown. Using 27-year data on 2847 clutches of known-age breeders, we analyse how Audouin's gulls (Larus audouinii), a species showing a combination of conservative and adaptive bet-hedging breeding strategies, can allocate energy by laying clutches and eggs of different sizes. Results show that both food availability and age influenced clutch size and total egg volume in a clutch. Interestingly, we found an interaction between food and age on egg parameters: total volume in two-egg clutches, laid mostly by younger breeders, did not significantly change with food availability and the quadratic pattern in clutch size over the range of ages was less marked as long as food conditions became harsher. With increased food, females invested more by building larger first eggs, whereas they were more conservative on second and third eggs. Furthermore, asymmetries in egg volume within three-egg clutches increased with food availability for old females. Egg size profiles of two-egg clutches suggest that gulls should exhibit progressive reduction of the size of the third egg before shifting to a two-egg clutch size. Food availability influenced all parameters studied, whereas age affected the amount of energy allocated for producing eggs (their size and number) but not the way of allocating those energies (i.e. asymmetries within the clutch). Despite the range of factors affecting the clutch, results suggest that females can allocate the amount of resources in a clutch optimally to increase their fitness under variable environments via bet-hedging.

15.
Mov Ecol ; 11(1): 37, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37408064

RESUMEN

BACKGROUND: For many migratory species, inexperienced (naïve) individuals reach remote non-breeding areas independently using one or more inherited compass headings and, potentially, magnetic signposts to gauge where to switch between compass headings. Inherited magnetic-based migration has not yet been assessed as a population-level process, particularly across strong geomagnetic gradients or where long-term geomagnetic shifts (hereafter, secular variation) could create mismatches with magnetic headings. Therefore, it remains unclear whether inherited magnetic headings and signposts could potentially adapt to secular variation under natural selection. METHODS: To address these unknowns, we modelled migratory orientation programs using an evolutionary algorithm incorporating global geomagnetic data (1900-2023). Modelled population mixing incorporated both natal dispersal and trans-generational inheritance of magnetic headings and signposts, including intrinsic (stochastic) variability in inheritance. Using the model, we assessed robustness of trans-hemispheric migration of a migratory songbird whose Nearctic breeding grounds have undergone rapid secular variation (mean 34° clockwise drift in declination, 1900-2023), and which travels across strong geomagnetic gradients via Europe to Africa. RESULTS: Model-evolved magnetic-signposted migration was overall successful throughout the 124-year period, with 60-90% mean successful arrival across a broad range in plausible precision in compass headings and gauging signposts. Signposted migration reduced trans-Atlantic flight distances and was up to twice as successful compared with non-signposted migration. Magnetic headings shifted plastically in response to the secular variation (mean 16°-17° among orientation programs), whereas signpost latitudes were more constrained (3°-5° mean shifts). This plasticity required intrinsic variability in inheritance (model-evolved σ ≈ 2.6° standard error), preventing clockwise secular drift from causing unsustainable open-ocean flights. CONCLUSIONS: Our study supports the potential long-term viability of inherited magnetic migratory headings and signposts, and illustrates more generally how inherited migratory orientation programs can both mediate and constrain evolution of routes, in response to global environmental change.

16.
Glob Chang Biol ; 29(17): 4706-4710, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37312638

RESUMEN

Billions of dollars are spent annually on ecological restoration efforts around the world and yet successful attainment of restoration targets still falls short in many regions. Globally, ecosystem restoration is becoming increasingly challenged with changes in climate. Years with extreme climatic events that limit plant establishment, such as severe drought, heatwaves, and floods are projected to increase in frequency. A critical evaluation of current ecological restoration practices and changes to those practices are needed to attain global restoration targets. For plant restoration, many efforts globally focus on planting in a single year following disturbance. The odds of restoration efforts being conducted in a year that is inconducive to plant establishment may be calculated using climatic risk data. We propose a risk-mitigation approach to restoration wherein plantings are conducted across multiple years for projects in a bet-hedging strategy and evaluated through an adaptive management approach.


Asunto(s)
Ecosistema , Plantas , Inundaciones , Sequías
17.
J Evol Biol ; 36(6): 945-949, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37129538

RESUMEN

Variation is the raw material for evolution. Evolutionary potential is determined by the amount of genetic variation, but evolution can also alter the visibility of genetic variation to natural selection. Fluctuating environments are suggested to maintain genetic variation but they can also affect environmental variance, and thus, the visibility of genetic variation to natural selection. However, experimental studies testing these ideas are relatively scarce. In order to determine differences in evolutionary potential we quantified variance attributable to population, genotype and environment for populations of the bacterium Serratia marcescens. These populations had been experimentally evolved in constant and two fluctuating environments. We found that strains that evolved in fluctuating environments exhibited larger environmental variation suggesting that adaptation to fluctuations has decreased the visibility of genetic variation to selection.


Asunto(s)
Evolución Biológica , Ambiente , Adaptación Fisiológica/genética , Selección Genética , Genotipo
18.
Am Nat ; 201(5): E90-E109, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130228

RESUMEN

AbstractRapid environmental change is affecting many organisms; some are coping well, but many species are in decline. A key mechanism for facilitating success following environmental change is phenotypic plasticity. Organisms use cues to respond phenotypically to environmental conditions; many incorporate recent information (within-generation plasticity) and information from previous generations (transgenerational plasticity). We extend an existing evolutionary model where organisms utilize within-generational plasticity, transgenerational plasticity, and bet hedging to include changes in environmental regime. We show how when rapid evolution of plasticity is not possible, the effect of environmental change (altering the environment mean, variance, or autocorrelation or cue reliability) on population growth rate depends on the population's evolutionary history and past evolutionary responses to historical environmental conditions. We then evaluate the predictions that populations adapted to highly variable environments or with greater within-generational plasticity are more likely to successfully respond to environmental change. We identify when these predictions fail and show that environmental change is most detrimental when previously reliable cues become unreliable. When multiple cues become unreliable, environmental change can cause deleterious effects regardless of the population's evolutionary history. Overall, this work provides a general framework for understanding the role of plasticity in population responses to rapid environmental change.


Asunto(s)
Adaptación Fisiológica , Señales (Psicología) , Reproducibilidad de los Resultados , Adaptación Psicológica , Evolución Biológica , Fenotipo
19.
Evolution ; 77(8): 1791-1805, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224479

RESUMEN

The occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary analytical and evolutionary simulation models of within-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with fluctuating selection, life-history traits, and competitive asymmetries among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when "false starts" to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that lowering adult survival may, in contrast to classic bet-hedging theory, result in less spreading of germination by decreasing density-dependent competition. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.


Asunto(s)
Clima , Germinación , Plantas , Semillas , Estaciones del Año
20.
Trends Microbiol ; 31(7): 665-667, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37117073

RESUMEN

Cellular heterogeneity in clonal bacterial populations is widespread. Division of labor and bet hedging are common adaptive explanations for the function of such heterogeneity. We suggest group-level phenotypes via shareable molecules and variation in cellular vigor as two alternative evolutionary explanations for bacterial cellular heterogeneity.


Asunto(s)
Bacterias , Evolución Biológica , Fenotipo , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA