Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 642
Filtrar
1.
J Agric Food Chem ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088794

RESUMEN

The mechanisms of insecticide resistance are complex. Recent studies have revealed a novel mechanism involving the chemosensory system in insecticide resistance. However, the specific binding mechanism between olfactory-related genes and insecticides needs to be clarified. In this study, the binding mechanism between pyrethroid insecticide deltamethrin and RpCSP6 from Rhopalosiphum padi was investigated by using computational and multiple experimental methods. RpCSP6 was expressed in different tissues and developmental stages of R. padi and can be induced by deltamethrin. Knockdown of RpCSP6 significantly increased the susceptibility of R. padi to deltamethrin. The binding affinity of RpCSP6 to 24 commonly used insecticides was measured. Seven key residues were found to steadily interact with deltamethrin, indicating their significance in the binding affinity to the insecticide. Our research provided insights for effectively analyzing the binding mechanism of insect CSPs with insecticides, facilitating the development of new and effective insecticides that target insect CSPs.

2.
J Agric Food Chem ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051932

RESUMEN

Apriona germari (Hope) presents a significant threat as a dangerous wood-boring pest, inflicting substantial harm to forest trees. Investigating the olfactory sensory system of A. germari holds substantial theoretical promise for developing eco-friendly control strategies. To date, however, the olfactory perception mechanism in A. germari remains largely unknown. Therefore, we performed transcriptome sequencing of A. germari across four distinct body parts: antennae, foreleg tarsal segments, mouthparts (maxillary and labial palps), and abdomen terminals, pinpointing the odorant binding protein (OBP) genes and analyzing their expression. We found eight AgerOBPs (5, 19, 23, 25, 29, 59, 63, 70) highly expressed in the antennae. In our competitive binding experiments, AgerOBP23 showed strong binding abilities to the pheromone component fuscumol acetate, eight plant volatiles (farnesol, cis-3-hexenal, nerolidol, myristol acetate, cis-3-hexenyl benzoate, (-)-α-cedrene, 3-ethylacetophenone, and decane), and four insecticides (chlorpyrifos, phoxim, indoxacarb, and cypermethrin). However, AgerOBP29 and AgerOBP63 did not show prominent binding activities to these tested chemicals. Through homology modeling and molecular docking, we identified the key amino acid sites involved in the binding process of AgerOBP23 to these ligands, which shed light on the molecular interactions underlying its binding specificity. Our study suggests that AgerOBP23 may serve as a potential target for future investigations of AgerOBP ligand binding. This approach is consistent with the reverse chemical ecology principle, establishing the groundwork for future studies focusing on attractant or repellent development by exploring further the molecular interactions between OBP and various compounds.

3.
Biochem Biophys Res Commun ; 727: 150321, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954982

RESUMEN

Vascular endothelial growth factor (VEGF) is a pleiotropic growth factor that binds a broad spectrum of cell types and regulates diverse cellular processes, including angiogenesis, growth and survival. However, it is technically difficult to quantify VEGF-cell binding activity because of reversible nature of ligand-receptor interactions. Here we used T7 bacteriophage display to quantify and compare binding activity of three human VEGF-A (hVEGF) isoforms, including hVEGF111, 165 and 206. All three isoforms bound equally well to immobilized aflibercept, a decoy VEGF receptor. hVEGF111-Phage exhibited minimal binding to immobilized heparan sulfate, whereas hVEGF206-Phage and hVEGF165-Phage had the highest and intermediate binding to heparan, respectively. In vitro studies revealed that all three isoforms bound to human umbilical vein endothelial cells (HUVECs), HEK293 epithelial and SK-N-AS neuronal cells. hVEGF111-Phage has the lowest binding activity, while hVEGF206-Phage has the highest binding. hVEGF206-Phage was the most sensitive to detect VEGF-cell binding, albeit with the highest background binding to SK-N-AS cells. These results suggest that hVEGF206-Phage is the best-suited isoform to quantify VEGF-cell binding even though VEGF165 is the most biologically active. Furthermore, this study demonstrates the utility of T7 phage display as a platform for rapid and convenient ligand-cell binding quantification with pros and cons discussed.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Unión Proteica , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células HEK293 , Isoformas de Proteínas/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Bacteriófago T7/metabolismo , Bacteriófago T7/genética , Técnicas de Visualización de Superficie Celular/métodos , Heparitina Sulfato/metabolismo , Proteínas Recombinantes de Fusión
4.
Artículo en Inglés | MEDLINE | ID: mdl-39028731

RESUMEN

CONTEXT: Bioassays provide information on the functionality of thyrotropin receptor antibodies (TSH-R-Ab) and thus may offer more clinical utility than binding assays. OBJECTIVE: In this prospective, blinded, US-based study, the clinical performance of several TSH-R-Ab assays was compared. SETTING: US endocrinology clinic. SUBJECTS: One hundred sixty-two unselected, consecutive, well-documented patients with various thyroid diseases and healthy controls. INTERVENTION(S): Blinded TSH-R-Ab measurements. MAIN OUTCOME MEASURE(S): Sensitivity and specificity of 4 TSH-R-Ab assays. RESULTS: The 4 TSH-R-Ab assays were negative in all 42 patients without autoimmune thyroid disease (AITD). In 104 patients with Graves' disease (GD), irrespective of the disease duration, TSH-R-Ab positivity was present in 65 (63%), 67 (65%), and 87 (84%) for the Cobas and Immulite binding assays and stimulatory TSH-R-Ab [thyroid-stimulating immunoglobin (TSI)] bioassay, respectively (TSI vs Immulite P < .0025, TSI vs Cobas P < .0009). Fifteen newly diagnosed GD patients were all positive in the TSI bioassay, but only 11 (73%) were positive in the Cobas and Immulite binding assays. Nine GD patients with biochemical subclinical hyperthyroidism were TSI-positive but Immulite- and Cobas-negative. Two GD patients were blocking TSH-R-Ab [thyroid-blocking immunoglobin (TBI)]-positive and TSI-negative, and the Immulite and Cobas were positive in both. Additional serum samples from AITD patients that consisted of 30 TBI-positive and 10 TSI-positive samples were blindly tested in the binding assays. Only 6 of the 10 TSI-positive samples were positive in both binding assays, and 30 and 28 of the TBI-positive samples were positive in the Cobas and Immulite assays, respectively. CONCLUSION: Binding TSH-R-Ab assays are less sensitive than TSI bioassays and are not specific for stimulating antibodies. Measuring the function of TSH-R-Ab in a bioassay can provide useful information to clinicians.

5.
Pancreatology ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38960778

RESUMEN

BACKGROUND: The pathophysiology of Acute Pancreatitis (AP) may be complicated by endothelial activation. von Willebrand Factor (vWF)- ADAMTS13 axis is a marker of endothelial activation. The study aimed to investigate the axis in AP, comparing it in patients with and without persistent organ failure (OF), with and without pancreatic necrosis, and correlating it with the standard severity scores (CRP, APACHE II, BISAP, SOFA, and qSOFA) METHODS: vWF-Antigen (vWF:Ag), vWF-Collagen-Binding-Assay (vWF:CBA), and ADAMTS13 activity (ADAMTS13:act) levels were measured within 5 days of symptom onset in consecutive patients (n = 98), who were admitted with a first episode of AP (Dec 2021-May 2023). RESULTS: Of the 98 patients admitted with AP, 78(79.6 %) had no or transient OF; 20(20.4 %) had persistent OF. Age was comparable (43.73 ± 15.36 vs 38.65 ± 13.69) [mean ± SD](years), and males were predominant in both groups (70.5 % vs 80 %). Patientswith persistent OF had higher vWF:CBA(%)[323(279-486.5) vs 199.5(159.1-295.75)] and lower ADAMTS13:act(%)[35.4(23.8-56.85) vs 56.35(44.1-71.9)][median (25th - 75th percentile)](P = 0.001) than those with no or transient OF. Patients with pancreatic necrosis (n = 19) had lower ADAMTS13:act(%)[42.79 ± 18.69] than those without pancreatic necrosis (n = 18) [62.49 ± 22.64] (P < 0.01). ADAMTS13:act had a negative correlation(r = -0.2), whereas vWF:Ag and vWF:CBA had a positive correlation (r = 0.2) with the standard severity scores (P < 0.05). ADAMTS13:act could predict pancreatic necrosis [AUROC-0.737, P < 0.05] and persistent OF [AUROC-0.746, P < 0.001], while vWF:CBA could predict persistent OF [AUROC- 0.73, P < 0.001]. CONCLUSION: vWF-ADAMTS13 axis helps to predict severe disease and is associated with poor outcomes in acute pancreatitis.

6.
Pestic Biochem Physiol ; 203: 106005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084800

RESUMEN

Odorant-binding proteins (OBPs) play key roles in host plant location by insects, and can accordingly serve as important targets for the development of attractants. In this study, we detected the high expression of SlitOBP34 in male antennae of Spodoptera litura. Subsequently, the fluorescence competitive binding experiments displayed that the SlitOBP34 protein has binding affinity for different ligands. Then, protein-ligand interaction analyses found the presence of six amino acid residues may serve as key recognition sites. Further electroantennographic and biobehavioral assessments revealed that the electrophysiological responses of male antennae were evoked in response to stimulation with the six identified host volatiles, and that these volatiles attracted male moths to varying extents. Notably, low concentrations of benzaldehyde, 1-hexanol, and cis-3-hexenyl acetate were found to have significant attractant effects on male moths, thereby identifying these three host volatiles as potential candidates for the development of male attractants. These findings advance our current understanding of the olfactory-encoded mechanisms of host plants selection in S. litura and have enabled us to develop novel adult attractants for controlling the pest in the future.


Asunto(s)
Antenas de Artrópodos , Proteínas de Insectos , Receptores Odorantes , Spodoptera , Compuestos Orgánicos Volátiles , Animales , Spodoptera/efectos de los fármacos , Masculino , Receptores Odorantes/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Antenas de Artrópodos/metabolismo , Hexanoles/farmacología , Hexanoles/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Benzaldehídos
7.
J Biosci Bioeng ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39085020

RESUMEN

Inhibition of dipeptidyl peptidase IV (DPP-IV) is an effective pharmacotherapy for the management of type 2 diabetes. Recent findings have suggested that various dietary proteins can serve as precursors to peptides that inhibit DPP-IV. Although several DPP-IV inhibitory peptides derived from food materials have been reported, more effective inhibitory peptides remain to be discovered. This study aimed to identify potent DPP-IV inhibitory peptides that earlier approaches had overlooked by employing a screening method that combined peptide arrays and neutralizing antibodies. Octa-peptides covering the complete amino acid sequences of four casein proteins and two whey proteins were synthesized on arrays via a solid-phase method. These peptides were then reacted with a monoclonal antibody specifically engineered to recognize glucagon-like peptide 1 (GLP-1), a substrate of DPP-IV. The variable region of the anti-GLP-1 monoclonal antibody is utilized to mimic the substrate-binding region of DPP-IV, enabling the antibody to bind to peptides that interact with DPP-IV. Based on this feature, 26 peptides were selected as DPP-IV inhibitory peptide candidates, 11 of which showed strong DPP-IV inhibitory activity. Five of these peptides consistently contained cysteines positioned two to four residues from the N-terminus. Treatment with disulfide formation decreased the DPP-IV inhibitory activity of these cysteine-containing peptides, while the inhibitory activity of α-lactalbumin hydrolysates increased with reducing treatment. These results revealed that the thiol group is important for DPP-IV inhibitory activity. This study provides a useful screen for DPP-IV inhibitory peptides and indicates the importance of reductive cysteine residues within DPP-IV inhibitory peptides.

8.
J Agric Food Chem ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39081139

RESUMEN

In Bactrocera dorsalis, both males and females release chemical signals to attract mates. In our previous study, we identified ethyl laurate, ethyl myristate, and ethyl palmitate as potent female-derived pheromones that contribute to mate attraction. However, the mechanisms underlying the olfactory recognition remain unclear. In this study, we observed strong antennal and behavioral responses in male B. dorsalis to these female-derived pheromones, and further investigation revealed significant upregulation of OBP49a and OBP83b following exposure to these compounds. Through fluorescence competitive binding assays and RNA interference techniques, we demonstrated the crucial roles of OBP49a and OBP83b in detecting female-derived pheromones. Finally, molecular docking analysis identified key residues, including His134 in OBP83b and a lysine residue in OBP49a, which formed hydrogen bonds with female-derived pheromones, facilitating their binding. These findings not only advance our understanding of olfactory recognition of pheromones in B. dorsalis but also offer potential targets for developing olfaction-interfering techniques for pest control.

9.
AAPS J ; 26(5): 88, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085624

RESUMEN

Duplicate analysis has been a conventional practice in the industry for ligand-binding assays (LBA), particularly for plate-based platforms like Enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) assays. Recent whitepapers and guidance have opened a door to exploring the implementation of single-well (singlicate) analysis approach for LBAs. Although the bioanalytical industry has actively investigated the suitability of singlicate analysis, applications in supporting regulated LBA bioanalysis are limited. The primary reason for this limitation is the absence of appropriate strategy to facilitate the transition from duplicate to singlicate analysis. In this paper we present the first case study with our data-driven approach to implement singlicate analysis in a clinical pharmacokinetics (PK) plate based LBA assay with ISR data. The central aspect of this strategy is a head-to-head comparison with Precision and Accuracy assessment in both duplicate and singlicate formats as the initial stage of assay validation. Subsequently, statistical analysis is conducted to evaluate method variability in both precision and accuracy. The results of our study indicated that there was no impactful difference between duplicate vs singlicate, affirming the suitability of singlicate analysis for the remaining steps of PK assay validation. The validation results obtained through singlicate analysis demonstrated acceptable assay performance characteristics across all validation parameters, aligning with regulatory guidance. The validated PK assay in singlicate has been employed to support a Phase I study. The appropriateness of singlicate analyses is further supported by initial Incurred Sample Reanalysis (ISR) data in which 90.1% of ISR samples fall within the acceptable criteria.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Ligandos , Humanos , Reproducibilidad de los Resultados , Ensayo de Inmunoadsorción Enzimática/métodos , Farmacocinética
10.
ACS Chem Neurosci ; 15(10): 2080-2088, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690599

RESUMEN

Amyloid fibrils are characteristic of many neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. While different diseases may have fibrils formed of the same protein, the supramolecular morphology of these fibrils is disease-specific. Here, a method is reported to distinguish eight morphologically distinct amyloid fibrils based on differences in ligand binding properties. Eight fibrillar polymorphs of α-synuclein (αSyn) were investigated: five generated de novo using recombinant αSyn and three generated using protein misfolding cyclic amplification (PMCA) of recombinant αSyn seeded with brain homogenates from deceased patients diagnosed with Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Fluorescence binding assays were carried out for each fibril using a toolkit of six different ligands. The fibril samples were separated into five categories based on a binary classification of whether they bound specific ligands or not. Quantitative binding measurements then allowed every fibrillar polymorph to be uniquely identified, and the PMCA fibrils derived from PD, MSA, and DLB patients could be unambiguously distinguished. This approach constitutes a novel and operationally simple method to differentiate amyloid fibril morphologies and to identify disease states using PMCA fibrils obtained by seeding with patient samples.


Asunto(s)
Amiloide , Enfermedad de Parkinson , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/análisis , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/diagnóstico , Amiloide/metabolismo , Amiloide/análisis , Ligandos , Atrofia de Múltiples Sistemas/metabolismo , Atrofia de Múltiples Sistemas/diagnóstico , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/diagnóstico , Encéfalo/metabolismo
11.
Toxicol Lett ; 398: 91-104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768836

RESUMEN

Desensitization of nicotinic acetylcholine receptors (nAChRs) can be induced by overstimulation with acetylcholine (ACh) caused by an insufficient degradation of ACh after poisoning with organophosphorus compounds (OPCs). Currently, there is no generally applicable treatment for OPC poisoning that directly targets the desensitized nAChR. The bispyridinium compound MB327, an allosteric modulator of nAChR, has been shown to act as a resensitizer of nAChRs, indicating that drugs binding directly to nAChRs can have beneficial effects after OPC poisoning. However, MB327 also acts as an inhibitor of nAChRs at higher concentrations and can thus not be used for OPC poisoning treatment. Consequently, novel, more potent resensitizers are required. To successfully design novel ligands, the knowledge of the binding site is of utmost importance. Recently, we performed in silico studies to identify a new potential binding site of MB327, MB327-PAM-1, for which a more affine ligand, UNC0646, has been described. In this work, we performed ligand-based screening approaches to identify novel analogs of UNC0646 to help further understand the structure-affinity relationship of this compound class. Furthermore, we used structure-based screenings and identified compounds representing four new chemotypes binding to MB327-PAM-1. One of these compounds, cycloguanil, is the active metabolite of the antimalaria drug proguanil and shows a higher affinity towards MB327-PAM-1 than MB327. Furthermore, cycloguanil can reestablish the muscle force in soman-inhibited rat muscles. These results can act as a starting point to develop more potent resensitizers of nAChR and to close the gap in the treatment after OPC poisoning.


Asunto(s)
Receptores Nicotínicos , Animales , Ligandos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Sitios de Unión , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Ratas , Relación Estructura-Actividad , Masculino , Unión Proteica , Simulación del Acoplamiento Molecular , Soman , Antagonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/química
12.
Sci Total Environ ; 928: 172361, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614339

RESUMEN

The development of advanced biosensors for tracking chemical residues and detecting environmental pollution is of great significance. Insect chemical sensory proteins, including chemosensory proteins (CSPs), are easy to synthesize and purify and have been used to design proteins for specific biosensor applications. Chlorpyrifos is one of the most commonly used chemicals for controlling insect pests in agriculture. This organophosphate is harmful to aquatic species and has long-term negative consequences for the ecosystem. CSPs can bind and carry a variety of environmental chemicals, including insecticides. However, the mechanism by which CSPs bind to insecticides in aphids has not been clarified. In this study, we discovered that RpCSP1 from Rhopalosiphum padi has a higher affinity for chlorpyrifos, with a Ki value of 4.763 ± 0.491 µM. Multispectral analysis revealed the physicochemical binding mechanism between RpCSP1 and chlorpyrifos. Computational simulation analysis demonstrated that the main factor promoting the development of the RpCSP1-chlorpyrifos complex is polar solvation energy. Four residues (Arg33, Glu94, Gln145, Lys153) were essential in facilitating the interaction between RpCSP1 and chlorpyrifos. Our research has improved knowledge of the relationship between CSPs and organophosphorus pesticides. This knowledge contributes to the advancement of biosensor chips for tracking chemical residues and detecting environmental pollution through the use of CSPs.


Asunto(s)
Cloropirifos , Proteínas de Insectos , Insecticidas , Cloropirifos/metabolismo , Cloropirifos/análisis , Animales , Insecticidas/metabolismo , Proteínas de Insectos/metabolismo , Áfidos , Monitoreo del Ambiente/métodos , Receptores Odorantes/metabolismo , Técnicas Biosensibles , Residuos de Plaguicidas/análisis
13.
Pestic Biochem Physiol ; 200: 105842, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582604

RESUMEN

Chemical sensing systems are vital in the growth and development of insects. Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is an important natural enemy of many pests. The molecular mechanism of odorant binding proteins (OBPs) binding with common insecticides is still unknow in O. sauteri. In this study, we expressed in vitro OsauOBP8 and conducted fluorescence competition binding assay to investigate the function of OsauOBP8 to insecticides. The results showed that OsauOBP8 could bind with four common insecticides (phoxim, fenitrothion, chlorpyrifos, deltamethrin). Subsequently, we used molecular docking to predict and obtained candidate six amino acid residues (K4, K6, K13, R31, K49, K55) and then mutated. The result showed that three key residues (K4, K6, R31) play important role in OsauOBP8 bound to insecticides. Our study identified the key binding sites of OsauOBP8 to insecticides and help to better understand the molecular mechanism of OBPs to insecticides in O. sauteri.


Asunto(s)
Heterópteros , Insecticidas , Receptores Odorantes , Animales , Simulación del Acoplamiento Molecular , Receptores Odorantes/genética
14.
Endocrinology ; 165(6)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679471

RESUMEN

The glycoprotein receptors, members of the large G protein-coupled receptor family, are characterized by a large extracellular domains responsible for binding their glycoprotein hormones. Hormone-receptor interactions are traditionally analyzed by ligand-binding assays, most often using radiolabeling but also by thermal shift assays. Despite their high sensitivity, these assays require appropriate laboratory conditions and, often, purified plasma cell membranes, which do not provide information on receptor localization or activity because the assays typically focus on measuring binding only. Here, we apply bioluminescence resonance energy transfer in living cells to determine hormone-receptor interactions between a Gaussia luciferase (Gluc)-luteinizing hormone/chorionic gonadotropin receptor (LHCGR) fusion and its ligands (human chorionic gonadotropin or LH) fused to the enhanced green fluorescent protein. The Gluc-LHCGR, as well as other Gluc-G protein-coupled receptors such as the somatostatin and the C-X-C motif chemokine receptors, is expressed on the plasma membrane, where luminescence activity is equal to membrane receptor expression, and is fully functional. The chimeric enhanced green fluorescent protein-ligands are properly secreted from cells and able to bind and activate the wild-type LHCGR as well as the Gluc-LHCGR. Finally, bioluminescence resonance energy transfer was used to determine the interactions between clinically relevant mutations of the hormones and the LHCGR that show that this bioassay provides a fast and effective, safe, and cost-efficient tool to assist the molecular characterization of mutations in either the receptor or ligand and that it is compatible with downstream cellular assays to determine receptor activation/function.


Asunto(s)
Proteínas Fluorescentes Verdes , Unión Proteica , Humanos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Receptores de HL/metabolismo , Receptores de HL/genética , Luciferasas/metabolismo , Luciferasas/genética , Animales , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Gonadotropina Coriónica/metabolismo , Células HEK293 , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Transferencia de Energía , Glicoproteínas/metabolismo , Mediciones Luminiscentes/métodos
15.
Front Neurosci ; 18: 1380009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655111

RESUMEN

Introduction: Dopamine D3 receptor (D3R) ligands have been studied for the possible treatment of neurological and neuropsychiatric disorders. However, selective D3R radioligands for in vitro binding studies have been challenging to identify due to the high structural similarity between the D2R and D3R. In a prior study, we reported a new conformationally-flexible benzamide scaffold having a high affinity for D3R and excellent selectivity vs. D2R. In the current study, we characterized the in vitro binding properties of a new radioiodinated ligand, [125I]HY-3-24. Methods: In vitro binding studies were conducted in cell lines expressing D3 receptors, rat striatal homogenates, and rat and non-human primate (NHP) brain tissues to measure regional brain distribution of this radioligand. Results: HY-3-24 showed high potency at D3R (Ki = 0.67 ± 0.11 nM, IC50 = 1.5 ± 0.58 nM) compared to other D2-like dopamine receptor subtypes (D2R Ki = 86.7 ± 11.9 nM and D4R Ki > 1,000). The Kd (0.34 ± 0.22 nM) and Bmax (38.91 ± 2.39 fmol/mg) values of [125I]HY-3-24 were determined. In vitro binding studies in rat striatal homogenates using selective D2R and D3R antagonists confirmed the D3R selectivity of [125I]HY-3-24. Autoradiography results demonstrated that [125I]HY-3-24 specifically binds to D3Rs in the nucleus accumbens, islands of Calleja, and caudate putamen in rat and NHP brain sections. Conclusion: These results suggest that [125I]HY-3-24 appears to be a novel radioligand that exhibits high affinity binding at D3R, with low binding to other D2-like dopamine receptors. It is anticipated that [125I]HY-3-24 can be used as the specific D3R radioligand.

16.
Bioanalysis ; 16(11): 519-533, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38629337

RESUMEN

Ligand-binding assays (LBAs) rely on the reversible, noncovalent binding between the analyte of interest and the assay reagents, and understanding their dynamic equilibrium is key to building robust LBA methods. Although the dynamic interplay of free and bound fractions can be calculated using mathematical models, these are not routinely applied. This approach is costly in terms of both assay development time and reagents, and can result in an under-exploration of the possible parameter combinations. Therefore, we have created a user-friendly simulation tool to facilitate LBA development (the BiSim Tool). We describe the models driving the mathematical simulations and the main features of our software solution by means of case studies, illustrating the tool's value in drug development. To support drug development for all patients worldwide, the BiSim Tool is now available as an open-source code project and as a free web-based tool at https://proteinbindingsimulation.shinyapps.io/BiSim-ProteinBindingSimulation [1].


[Box: see text].


Asunto(s)
Programas Informáticos , Ligandos , Simulación por Computador , Humanos , Unión Proteica
17.
Viruses ; 16(3)2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38543772

RESUMEN

Efforts to develop vaccine and immunotherapeutic countermeasures against the COVID-19 pandemic focus on targeting the trimeric spike (S) proteins of SARS-CoV-2. Vaccines and therapeutic design strategies must impart the characteristics of virion S from historical and emerging variants onto practical constructs such as soluble, stabilized trimers. The virus spike is a heterotrimer of two subunits: S1, which includes the receptor binding domain (RBD) that binds the cell surface receptor ACE2, and S2, which mediates membrane fusion. Previous studies suggest that the antigenic, structural, and functional characteristics of virion S may differ from current soluble surrogates. For example, it was reported that certain anti-glycan, HIV-1 neutralizing monoclonal antibodies bind soluble SARS-CoV-2 S but do not neutralize SARS-CoV-2 virions. In this study, we used single-molecule fluorescence correlation spectroscopy (FCS) under physiologically relevant conditions to examine the reactivity of broadly neutralizing and non-neutralizing anti-S human monoclonal antibodies (mAbs) isolated in 2020. Binding efficiency was assessed by FCS with soluble S trimers, pseudoviruses and inactivated wild-type virions representing variants emerging from 2020 to date. Anti-glycan mAbs were tested and compared. We find that both anti-S specific and anti-glycan mAbs exhibit variable but efficient binding to a range of stabilized, soluble trimers. Across mAbs, the efficiencies of soluble S binding were positively correlated with reactivity against inactivated virions but not pseudoviruses. Binding efficiencies with pseudoviruses were generally lower than with soluble S or inactivated virions. Among neutralizing mAbs, potency did not correlate with binding efficiencies on any target. No neutralizing activity was detected with anti-glycan antibodies. Notably, the virion S released from membranes by detergent treatment gained more efficient reactivity with anti-glycan, HIV-neutralizing antibodies but lost reactivity with all anti-S mAbs. Collectively, the FCS binding data suggest that virion surfaces present appreciable amounts of both functional and nonfunctional trimers, with neutralizing anti-S favoring the former structures and non-neutralizing anti-glycan mAbs binding the latter. S released from solubilized virions represents a nonfunctional structure bound by anti-glycan mAbs, while engineered soluble trimers present a composite structure that is broadly reactive with both mAb types. The detection of disparate antigenicity and immunoreactivity profiles in engineered and virion-associated S highlight the value of single-virus analyses in designing future antiviral strategies against SARS-CoV-2.


Asunto(s)
COVID-19 , VIH-1 , Humanos , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2 , Pandemias , Anticuerpos Neutralizantes , Anticuerpos Anti-VIH/análisis , Anticuerpos Monoclonales , Virión/metabolismo , Anticuerpos Antivirales/química
18.
Methods Mol Biol ; 2754: 205-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512669

RESUMEN

Aggregated fibrillar tau protein is a pathological hallmark of several neurodegenerative diseases. Small molecules that bind to tau fibrils may be applied for their detection and quantification. This is of great importance as they can potentially be used for earlier diagnosis of disease and disease progression. Microscale thermophoresis (MST) enables the detection of biomolecular interactions in an aqueous environment in which no immobilization of either reaction partner is required. Here, an MST assay methodology is described for the detection of the interaction between a variety of small molecules and tau fibrils. The results of this study demonstrate that MST is a practical methodology to quantify interactions between small molecules and tau fibrillar aggregates.


Asunto(s)
Agregado de Proteínas , Proteínas tau , Unión Proteica
19.
Theriogenology ; 219: 116-125, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428333

RESUMEN

The elimination of ejaculates and males with low fertility despite good sperm motility and morphology is crucial to maintain high pregnancy rates after artificial insemination (AI) in farm animals. The ability of sperm to survive in the female tract is particularly crucial in pigs due to the large variation in the timing between AI and ovulation and the high number of oocytes to fertilise. The objective of this study was to characterise a new in vitro model of oviduct sperm reservoir using porcine oviduct epithelial spheroids (OES) and to assess the variability in sperm binding to OES among gilts, boars and their ejaculates. Isthmic mucosa fragments were collected from gilt oviducts at a slaughterhouse, and after 48 h of culture, the OES that had spontaneously formed were sorted according to their vesicle shape and size (150-200 µm in diameter) for characterisation and sperm binding assays. The OES contained viable, cytokeratin-positive and vimentin-negative cells, of which 36.4 ± 2.0% were multiciliated. The average proportion of multiciliated cells per OES did not change among culture replicates. After co-incubation with boar fresh semen, only sperm of normal morphology were found to bind, by their head, to cilia of OES. The density of sperm bound to the OES surface increased linearly with sperm concentration. The bound sperm density on OES was used to assess the binding capacity of fresh ejaculates collected from Pietrain boars. For a given ejaculate, the bound sperm density did not vary among pools of OES female donors. The analysis of five successive ejaculates from nine boars indicated significant differences in bound sperm densities on the OES among individual boars and their ejaculates (P < 0.01). There was no correlation between the sperm bound density and sperm parameters measured by computer-assisted sperm analysis or the initial dilution of the ejaculate. In conclusion, the OES characterised in this study offered physiological conditions to study sperm binding to the isthmic reservoir and evidenced that sperm from different ejaculates and different boars vary in their ability to bind to these oviduct spheroids despite homogeneous motility and morphology.


Asunto(s)
Semen , Motilidad Espermática , Embarazo , Porcinos , Animales , Masculino , Femenino , Semen/fisiología , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Inseminación Artificial/veterinaria , Oviductos , Sus scrofa
20.
J Agric Food Chem ; 72(11): 5682-5689, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446420

RESUMEN

The chemosensory system plays an important role in the host plants location. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a worldwide leaf-eating forest pest that feeds exclusively on salicaceous trees. There is no function study of odorant binding proteins (OBPs) in P. versicolora. In the current study, we found that PverOBP37 has a high expression in male and female antennae, heads, and legs by quantitative real-time PCR. The binding properties of PverOBP37 to 18 host plant volatiles were determined by fluorescence competition binding assays. The results showed that PverOBP37 could bind to the host plant volatile, o-cymene. Furthermore, four candidate key amino acid residues (F8, Y50, F103, and R107) of PverOBP37 to o-cymene were identified by molecular docking. The functional assay to confirm Y50, F103, and R107 mutations were key amino acid residues of PverOBP37 involved in the binding to o-cymene. Knockdown of PverOBP37 and Y-tube behavioral bioassays of mated females led to a significantly reduced attraction to o-cymene. This study not only revealed the molecular mechanism of PverOBP37 but also suggested that PverOBP37 is essential to detect host plant volatiles as cues to search for egg-laying sites in P. versicolora.


Asunto(s)
Escarabajos , Receptores Odorantes , Animales , Femenino , Cimenos , Odorantes , Simulación del Acoplamiento Molecular , Escarabajos/genética , Escarabajos/metabolismo , Aminoácidos/metabolismo , Receptores Odorantes/metabolismo , Proteínas de Insectos/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA