Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.078
Filtrar
1.
J Environ Sci (China) ; 147: 282-293, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003047

RESUMEN

There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , China , Medición de Riesgo , Hidrocarburos Policíclicos Aromáticos/análisis , Humanos , Suelo/química , Interacciones Hidrofóbicas e Hidrofílicas , Retardadores de Llama/análisis , Hidrocarburos Clorados/análisis
2.
Environ Res ; : 119804, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151557

RESUMEN

Toy production has been increasing over the last few decades to meet the growing demands for toys across the globe, which has inevitably worsened the problem of toy waste. Given the lack of modern waste disposal facilities, rural villagers in developing countries often discard and incinerate toy waste in backyards or riverbanks, which may release the pollutants from toys (e.g., heavy metals), contaminate the surrounding areas, and eventually threaten the health of residents. As such, this study assessed the impact of improper toy waste handling on the nearby aquaculture site by measuring the contamination level of heavy metals (As, Cd, Cu, Pb, and Zn) in the sediment and seafood (crabs, shrimps, and fish). The health risk of heavy metals via seafood consumption was assessed in different groups of people (males, females, teenagers, and seniors). Results showed that the sediment and seafood at the aquaculture site were generally not contaminated with heavy metals (i.e., contamination factor and bioaccumulation factor < 1). However, consuming the seafood cultured at this site, especially for crabs, could pose health risks to humans due to As and Cd (hazard quotient > 1), irrespective of their age and gender. This risk could not be lowered by cooking, except As by boiling. Overall, we revealed that improper toy waste handling did not cause severe heavy metal pollution in the surrounding environment. However, the consumption of contaminated seafood could still threaten human health. To safeguard public health, we propose that toy waste be appropriately treated by the authorities concerned. At the same time, consuming seafood with long culture periods (e.g., crabs) should be reduced to minimize the dietary intake of heavy metals and their associated health risk.

3.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123596

RESUMEN

Fisetin has shown numerous health benefits, whereas its food application is constrained by water insolubility, poor stability, and low bioaccessibility. This work investigated the potential of hyaluronic acid (HA)-coated nanoliposomes for the encapsulation and delivery of fisetin. It was observed that HA can adsorb onto the liposomal membrane through hydrogen bonding and maintain the spherical shape of nanoliposomes. Fluorescence analysis suggested that the HA coating restricted the motion and freedom of phospholipid molecules in the headgroup region and reduced the interior micropolarity of the nanoliposomes but did not affect the fluidity of the hydrophobic core. These effects were more pronounced for the HA with a low molecular weight (35 kDa) and moderate concentration (0.4%). The HA coating improved the storage and thermal stability of the nanoliposomes, as well as the digestive stability and bioaccessibility of the encapsulated fisetin. These findings could guide the development of HA-coated nanoliposomes for the controlled delivery of hydrophobic bioactives such as fisetin in functional foods.

4.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123597

RESUMEN

Vegetables and legume soups contain various essential and bioactive constituents such as vitamin C, carotenoids, and phenolics. Antioxidant activity characteristics related to those compounds are well known to contribute profusely to human health. The cooking technique affects the bioavailability of nutrients and bioactive compounds, making it crucial to explore optimal alternatives to maximize them. The objective of this study was to explore the influence of different cooking techniques (boiling, pressure cooking, sous-vide, and cook-vide) on the physicochemical properties and bioactive characteristics of a ready-to-eat vegetable lentil soup. For this, the bioaccessibility of those compounds was assessed through an in vitro simulated gastrointestinal methodology. The firmness of vegetables was established to define treatments' cooking times, allowing subsequent comparison of the nutritional and functional properties of the soups. The color of vegetables was also evaluated as a quality parameter, which contributed to providing a global vision of the process impact. The results revealed that in vitro digestion (IVD) caused a decrease in all bioactive compound determinations for all cooking treatments of up to 72% for total phenols, 92% for lycopene, 98% for carotenoids, and 100% for vitamin C. Additionally, the antioxidant activity of the soups after thermal treatment improved up to 46% measured by the DPPH method. This study emphasizes the importance of considering the digestion process in the selection of the most adequate cooking technique. After IVD, traditional cooking (boiling) reached the maximum total carotenoid and lycopene contents; cook-vide and pressure-cooking techniques provided the highest total phenol content, showing these three techniques to have the maximum antioxidant capacity.

5.
Foods ; 13(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39123624

RESUMEN

Foliar zinc (Zn) application can affect the accumulation and bioaccessibility of cadmium (Cd) and Zn in crops. However, the mechanisms by which foliar Zn application influences Cd and Zn bioaccessibility remain elusive. This study examined the effects of spraying ZnSO4 and ZnNa2EDTA on bioaccessibility and chemical forms of Cd and Zn in pakchoi (Brassica chinensis L.) shoots and evaluated human health risks via pakchoi consumption. Spraying ZnSO4 reduced the concentrations of ethanol-extractable (Fethanol) and deionized water-extractable (Fd-H2O) Cd, as well as the corresponding bioaccessible Cd concentrations (20.3-66.4%) and attendant health risks of Cd, whereas spraying high-dose ZnNa2EDTA significantly increased the concentrations of both Cd forms and bioaccessible Cd. Spraying ZnSO4 and high-dose ZnNa2EDTA significantly increased the concentrations of Zn in Fethanol and Fd-H2O and the corresponding bioaccessible Zn concentrations (0.8-8.3-fold). Fethanol and Fd-H2O were the primary sources of bioaccessible Cd and Zn, contributing more than 59% of the bioaccessible Cd and Zn. These results indicate that foliar Zn application can affect Cd and Zn bioaccessibility in pakchoi mainly by modulating Cd and Zn in Fethanol and Fd-H2O. These findings provide scientific support for the development of more efficient measures to produce safe and high-quality leafy vegetables from Cd-polluted soils.

6.
Food Chem ; 461: 140794, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39146680

RESUMEN

This study aimed to prepare soy protein isolate-xanthan gum complexes (SPI-XG) at pH 7.0 and as emulsifiers to prepare Pickering emulsions for delivering quercetin (Que). The results showed that SPI-XG exhibited a gel network structure in which protein particles were embedded. Fourier transform infrared spectroscopy (FTIR) and molecular docking elucidated that SPI-XG formed through hydrogen bonding, hydrophobic, and electrostatic interactions. Three-phase contact angle (θo/w) of SPI-XG approached 90° with biphasic wettability. SPI-XG adsorbed at the oil-water interface to form an interfacial layer with a gel network structure, which prevented droplet aggregation. Following in vitro simulated digestion, Que displayed higher bioaccessibility in SPI-XG stabilized Pickering emulsions (SPI-XG PEs) than SPI stabilized Pickering emulsions. In conclusion, SPI-XG PEs were a promising system for Que delivery.

7.
Food Res Int ; 192: 114797, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147492

RESUMEN

Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.


Asunto(s)
Antioxidantes , Manipulación de Alimentos , Frutas , Calor , Verduras , Antioxidantes/análisis , Frutas/química , Verduras/química , Manipulación de Alimentos/métodos , Pasteurización , Polifenoles/análisis , Vapor , Humanos , Esterilización/métodos , Microondas
8.
Food Res Int ; 192: 114743, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147549

RESUMEN

Oil-in-water emulsions (EM) have been extensively used for the encapsulation of lipophilic bioactive compounds and posterior incorporation into food matrices to obtain functional foods. Conversely, novel excipient oil-in-water emulsions (EXC) present identical composition and structure as EM, albeit are not bioactive by themselves since no bioactive compound is encapsulated. Instead, EXC aims at improving the bioavailability of foods' natural bioactive compounds upon co-ingestion with nutrient-rich foods. In this work, EM and EXC were produced and their stability and functionality as delivery systems for α-tocopherol compared. Emulsions were formulated with corn oil and lecithin, and their composition was optimized using experimental designs. Formulations produced with 3 % lecithin and 5 % oil attained smallest particles sizes with the lowest polydispersity index of all tested formulations and remained stable up to 60 days. Encapsulation of α-tocopherol did not have a significative impact on the structural properties of the particles produced with the same composition. α-tocopherol stability during in vitro digestion was superior in EM regardless the processing methodology (EM stability < 50 %, EXC stability < 29 %), indicating that EM offered greater protection against the digestive environment. α-tocopherol's bioaccessibility was significantly increased when encapsulated or when digested with added excipient emulsions (82-92 % and 87-90 % for EM and EXC, respectively). In conclusion, EM were more efficient vehicles for the selected bioactive compound, however, the good results obtained with EXC imply that excipient emulsions have a great potential for applications on foods to improve their natural bioactive compounds' bioavailability without the need of further processing.


Asunto(s)
Disponibilidad Biológica , Digestión , Emulsiones , Excipientes , Tamaño de la Partícula , alfa-Tocoferol , Emulsiones/química , alfa-Tocoferol/química , Excipientes/química , Lecitinas/química , Aceite de Maíz/química , Sistemas de Liberación de Medicamentos
9.
Food Chem ; 460(Pt 3): 140744, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116769

RESUMEN

Plant-based foods are natural sources of phytochemicals, which exhibit free radical scavenging capacity. However, the bioaccessibility of phytochemicals in foods are limited due to their poor stability and solubility within food matrix. Moreover, chemical degradation induced by processing further diminish the levels of these bioactive compounds. This review explores the impacts of thermal and non-thermal processing on fruits and vegetables, emphasizing the application of emerging technologies to enhance food quality. Innovative non-thermal technologies, which align with sustainable and environmentally friendly principles of green development, are particularly promising. Supercritical CO2 and cold plasma can be applied in extraction of phytochemicals, and these extracts also can be used as natural preservatives in food products, as well as improve the texture and sensory properties of food products, offering significant potential to advance the field of food science and technology while adhering to eco-friendly practices.

10.
Environ Pollut ; 360: 124686, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111526

RESUMEN

Exploration of the association between heavy metal bioaccessibility (BAc) and soil properties is essential for rationalization of risk assessment and remediation of contaminated soil; however, the high complexity of soil systems often yield conflicting outcomes. To avoid erroneous conclusions, individual comparisons of soil properties is essential. Herein, we determined the changes in the BAc of Pb and Cu with the variation in soil pH and SOC content using Unified Bioaccessibility Research Group of Europe method, and validated these findings with in vivo mouse bioassays. Results indicated that the BAc of Pb and Cu in gastric and intestinal phases decreased by 1.76%-3.92% and 0.90%-3.27%, and by 0.41%-6.01% and 0.67%-1.59%, respectively, with every unit increase in soil pH. Furthermore, with every 1% increase in the absolute content of SOC, the BAc of Pb and Cu decreased by 4.04%-13.94% and 4.01%-34.7%, and by 8.98%-30.15% and 9.58%-20.03%, respectively. The in vivo bioassays results confirmed decrease in Pb concentrations in the liver, kidney, and blood of mice with the increase in Ferralosol pH and SOC content. These findings revealed that the health risks associated with accidental exposures to Pb- and Cu-contaminated soils with high pH and SOC level were relatively low, and the consistent in vivo and in vitro results for the BAc of Pb and Cu suggest the requirement for a swift and simple approach for assessing the risks of heavy metal contaminated soils. Thus, this study enhanced our understanding of the variations in risk assessments with soil properties of Pb- and Cu-contaminated soils, highlighting the role of soil characteristics in health risk assessment and remediation of contaminated soils.

11.
Food Chem ; 460(Pt 3): 140756, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121782

RESUMEN

Vitamin D plays a crucial role in bone, immunology, and neurophysiological functions but has inadequate bioavailability in the human body. In this paper, six different liquid beverages were used for vitamin D3 fortification, investigating the effect of different food matrices on the bioaccessibility of vitamin D. Not from concentrate (NFC) apple juice (9.34%) and NFC orange juice (8.12%) presented about 20% higher bioaccessibility of vitamin D3 than soybean and skim milk, and achieved a similar value of whole milk (8.04%). Meanwhile, the bioaccessibility of NFC apple and orange juice was markedly about 120% higher than that of apple clear juice. From the correlation analysis, the bioaccessibility of VD3 indicated significant correlations with small intestine retention (0.82) and viscosity (0.66). But small intestinal particle size showed a negative effect on bioaccessibility (-0.78). Therefore, food components, delivery matrices, and physicochemical properties of digesta were key factors to achieve higher bioaccessibility for guiding formulation design.

12.
Plant J ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121193

RESUMEN

Biofortification of green leafy vegetables with pro-vitamin A carotenoids, such as ß-carotene, has remained challenging to date. Here, we combined two strategies to achieve this goal. One of them involves producing ß-carotene in the cytosol of leaf cells to avoid the negative impacts on photosynthesis derived from changing the balance of carotenoids and chlorophylls in chloroplasts. The second approach involves the conversion of chloroplasts into non-photosynthetic, carotenoid-overaccumulating chromoplasts in leaves agroinfiltrated or infected with constructs encoding the bacterial phytoene synthase crtB, leaving other non-engineered leaves of the plant to sustain normal growth. A combination of these two strategies, referred to as strategy C (for cytosolic production) and strategy P (for plastid conversion mediated by crtB), resulted in a 5-fold increase in the amount of ß-carotene in Nicotiana benthamiana leaves. Following several attempts to further improve ß-carotene leaf contents by metabolic engineering, hormone treatments and genetic screenings, it was found that promoting the proliferation of plastoglobules with increased light-intensity treatments not only improved ß-carotene accumulation but it also resulted in a much higher bioaccessibility. The combination of strategies C and P together with a more intense light treatment increased the levels of accessible ß-carotene 30-fold compared to controls. We further demonstrated that stimulating plastoglobule proliferation with strategy P, but also with a higher-light treatment alone, also improved ß-carotene contents and bioaccessibility in edible lettuce (Lactuca sativa) leaves.

13.
Food Chem ; 460(Pt 1): 140517, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39043074

RESUMEN

Soybeans' isoflavone content increases with germination; nevertheless, their bioaccessibility in the gastrointestinal system is limited. This study evaluated the influence of germination time (1, 3, 5, and 7 days) and in vitro gastrointestinal conditions on the isoflavone profile of soybean sprouts. The total isoflavones (4.07 mg/g) and the malonyl genistin (1.37 mg/g) had the highest contents on day 5 in the gastric phase. The highest isoflavone bioaccessibility was observed in daidzein, genistein, and glycitin. An increase in antioxidant capacity was found during germination (day 7 > day 5 > day 3); however, the same trend was not observed during in vitro digestion. In summary, the results indicate that soybean sprouts germinated for 5 days may be more beneficial for consumption since they have the highest and most readily absorbed levels of isoflavones. These data suggest that soybean sprouts may be a functional food that provides bioavailable antioxidants.

14.
Food Chem ; 460(Pt 1): 140538, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39047489

RESUMEN

Plant-based milks emerge as a healthy and vegan alternative for human diet, but these foodstuffs are susceptible to be contaminated by aflatoxins. A new method based on SPE and HPLC-MS/MS analysis was optimized and validated to test the presence of aflatoxins B1, B2, G1 and G2 analysis in almond, oat, rice and soy commercial milks. Moreover, aflatoxin bioaccessibility was evaluated through an in vitro digestion assay applied to each type of spiked milk. Aflatoxins B1, B2 and G1 were detected in one soy milk sample below the LOQ, fulfilling the limits stablished by the European Legislation. The final bioaccessibility percentages were highly dependent on the type of mycotoxin and sample matrix, the highest and the lowest values were obtained for AFB2 (82%-92%) and AFG1 (15%-30%), whereas AFB1 (28%-50%) and AFG2 (32%-76%) values resulted more influenced by the plant-based milk matrix.

15.
Food Chem ; 460(Pt 1): 140522, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047492

RESUMEN

This study evaluated the effect of dielectric barrier discharge (DBD) and glow discharge (glow) cold plasma treatments in color, sugars, organic acids, phenolics (concentration and bioaccessibility), antioxidant activity, volatiles, and microbiota of edible mini-roses. Plasma treatments did not affect the flowers' color, while they increased organic acids and phenolics. Flowers treated with DBD had a higher concentration of most phenolics, including hesperidin (84.04 µg/g) related to antioxidant activity, and a higher mass fraction of most volatiles, including octanal (16.46% after 5 days of storage). Flowers treated with glow had a higher concentration of pelargonidin 3,5-diglucoside (392.73 µg/g), greater bioaccessibility of some phenolics and higher antioxidant activity. Plasma treatments reduced the microbiota diversity in mini-roses. Regardless of the plasma treatment, phylum Proteobacteria, family Erwiniaceae, and genus Rosenbergiella were the dominant groups. Results indicate plasma treatments as promising technologies to improve the quality and increase phenolic and specific volatile compounds in mini-roses.

16.
Food Chem ; 459: 140274, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38991439

RESUMEN

Human dietary exposure to chemical compounds is a priority issue for public health authorities since it constitutes a key step in risk assessment, and food packaging could be an important source of contamination. In this study, the bioaccessibility of cyclodi-BADGE was evaluated in canned seafood samples using a standardized protocol of in vitro gastrointestinal digestion and an analytical method based on liquid chromatography coupled to tandem mass spectrometry. The impact of enzymes, different gastric pHs, and food-covering liquids on the bioaccessibility of cyclodi-BADGE was studied. The results highlighted that cyclodi-BADGE was available to be absorbed at the intestinal level (90.9-112.3%), and its bioaccessibility increased substantially in fat food samples. Finally, the estimated dietary exposure to cyclodi-BADGE in the Spanish adult population reached values of 14.26 µg/kg bw/day for tuna in tomato, exceeding the tolerable daily intake (1.5 µg/kg bw/day) recommended for chemicals with high toxicological risk.

17.
Crit Rev Food Sci Nutr ; : 1-9, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950579

RESUMEN

Bioactive peptides from brewer's spent grain (BSG) and brewer's spent yeast (BSY), two by-products of the brewing industry, have great potential as functional food ingredients, dietary supplements or nutraceuticals to reduce the risk of numerous pathological conditions. Nevertheless, the oral administration of these peptides poses great challenges since peptides must undergo gastrointestinal digestion, intestinal absorption and hepatic metabolism, which can affect their bioavailability and, therefore, the expected outcomes. This review provides a comprehensive and critical analysis of the potential impact of the oral route on the bioactivity of BSG/BSY peptides as assessed by in vitro assays and identifies research gaps that require novel approaches/methodologies. The data collected indicate that in addition to the significant influence of gastrointestinal digestion, intestinal absorption and hepatic metabolism also have a major impact on the bioactivity of brewing peptides. The major gap identified was the insufficient evidence regarding hepatic metabolism, which points for the need of employing in vitro assays in this research field to provide such clarification. Thus, to reach the market, the impact of the oral route on the bioactivities of BSG/BSY peptides must be properly studied in vitro to allow adequate/effective administration (dosage/frequency) with a beneficial impact on the population health.

18.
Foods ; 13(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998478

RESUMEN

The need to improve the physicochemical properties of sea buckthorn juice and the bioavailability of carotenoids is a major challenge for the field. The effects of different natural emulsifiers, such as medium-chain triglycerides (MCTs), tea saponins (TSs) and rhamnolipids (Rha), on the physical and chemical indexes of sea buckthorn juice were studied. The particle size of sea buckthorn juice and the carotenoids content were used as indicators for evaluation. The effects of different addition levels of MCT, Rha and TS on the bioavailability of carotenoids in sea buckthorn juice were investigated by simulating human in vitro digestion tests. The results showed that those emulsifiers, MCT, Rha and TS, can significantly reduce the particle size and particle size distribution of sea buckthorn juice, improve the color, increase the soluble solids content, turbidity and physical stability and protect the carotenoids from degradation. When the addition amount of Rha was 1.5%, the total carotenoids content (TCC) of sea buckthorn juice increased by 45.20%; when the addition amount of TS was 1.5%, the total carotenoids content (TCC) of sea buckthorn juice increased by 37.95%. Furthermore, the bioaccessibility of carotenoids was increased from 36.90 ± 2.57% to 54.23 ± 4.17% and 61.51 ± 4.65% through in vitro digestion by Rha and TS addition, respectively. However, the total carotenoids content (TCC) of sea buckthorn juice and bioaccessibility were not significantly different with the addition of MCT. In conclusion, the findings of this study demonstrate the potential of natural emulsifiers, such as MCT, Rha and TS, to significantly enhance the physicochemical properties and bioavailability of carotenoids in sea buckthorn juice, offering promising opportunities for the development of functional beverages with improved nutritional benefits.

19.
Foods ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998525

RESUMEN

Estimating the impact of pesticide residue bioaccessibility in fruits on dietary exposure is a complex task in human health risk assessment. This research investigated the bioaccessibility of ten commonly used and detected pesticides in bananas and mangoes, as well as the factors influencing it, using an in vitro model. The highest bioaccessibility was observed at pH levels of 2.5 and 6.5 in the gastric and intestinal stages, respectively. Bioaccessibility decreased significantly with increasing solid/liquid ratios for most pesticides. The consumption of protein and four dietary components (carbohydrates, protein, lipids, and dietary fiber) could significantly reduce pesticide bioaccessibility by 9.89-48.32% (p < 0.05). Bioaccessibility in oral and gastric stages among four populations followed the order of adults/the elderly > children > infants, due to decreasing concentrations of α-amylase and pepsin. Pesticides in bananas generally exhibited a higher bioaccessibility (18.65-82.97%) compared to that in mangoes (11.68-87.57%). Bioaccessibility showed a negative correlation with the Log P values of the target pesticide, while no clear relationship was found between bioaccessibility and initial pesticide concentrations. Incorporating bioaccessible pesticide concentrations into risk assessments could lower dietary risk estimates by 11.85-79.57%. Assessing human exposure to pesticides based on bioaccessibility would greatly improve the accuracy of the risk assessment.

20.
Foods ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998579

RESUMEN

The food industry is challenged to develop nutritious and palatable foods that satisfy older people's needs. So, this work aimed to study the incorporation of nanoemulsions enriched with vitamin D3 and omega-3 fatty acids into two desserts (yogurt and fruit puree), characterizing their nutritional profile, viscosity, and color properties and evaluating their in vitro bioaccessibility and sensory response. The results showed that adding nanoemulsion modified the nutrition profile of desserts due to increasing lipids and calories. The desserts' physical properties were also affected, with a decrease in viscosity and a lightening of color. Regarding digestion, the enriched desserts presented a low release of free fatty acids (14.8 and 11.4%, respectively). However, fruit puree showed the highest vitamin D3 and omega-3 fatty acid in vitro bioaccessibility (48.9 and 70.9%, respectively). In addition, older consumers found this dessert more acceptable than yogurt due to the adequate intensity of its sensory attributes (aroma, flavor, sweetness, and consistency). Therefore, the fruit puree can be enriched with nanoemulsions loaded with vitamin D3 and omega-3 fatty acids to improve the bioaccessibility of lipid bioactive compounds and sensory performance, offering a health-enhancing option for older consumers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA