Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 240(4): 1673-1686, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37798820

RESUMEN

Anthropogenic introductions are known to be changing the structure of global phytogeographical regions (phytoregions), but previous studies have been limited by incomplete or biased data sets that are likely to underestimate the importance of threatened species. In this work, we analyse a comprehensive data set of all known species and their occurrences (at botanical country resolution) to quantify the impact of potential future extinction scenarios. We used Infomap, a network-based community detection algorithm, to generate phytoregional delineations for six species-distribution scenarios (native, introduced and extinctions of species that are either documented as threatened or likely to be threatened, as well as combinations thereof). We compared the numbers and sizes of phytoregions to characterise the amount and spatial distribution of changes in global phytoregions under each scenario. Extinctions of species that are predicted to be threatened had a greater homogenising effect on phytoregions than introductions, and there was some evidence that introductions may even mitigate the homogenisation caused by extinctions, though this interaction is complex. This research provides the first evidence that the loss of threatened species would have significant ramifications for global phytoregions and demonstrates the need to consider extinction processes in studies of anthropogenic effects on biodiversity patterns.


Asunto(s)
Especies en Peligro de Extinción , Extinción Biológica , Animales , Biodiversidad , Algoritmos , Conservación de los Recursos Naturales
2.
Sci Total Environ ; 901: 165933, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37536603

RESUMEN

An essential prerequisite to safeguard pollinator species is characterisation of the multifaceted diversity of crop pollinators and identification of the drivers of pollinator community changes across biogeographical gradients. The extent to which intensive agriculture is associated with the homogenisation of biological communities at large spatial scales remains poorly understood. In this study, we investigated diversity drivers for 644 bee species/morphospecies in 177 commercial apple orchards across 33 countries and four global biogeographical biomes. Our findings reveal significant taxonomic dissimilarity among biogeographical zones. Interestingly, despite this dissimilarity, species from different zones share similar higher-level phylogenetic groups and similar ecological and behavioural traits (i.e. functional traits), likely due to habitat filtering caused by perennial monoculture systems managed intensively for crop production. Honey bee species dominated orchard communities, while other managed/manageable and wild species were collected in lower numbers. Moreover, the presence of herbaceous, uncultivated open areas and organic management practices were associated with increased wild bee diversity. Overall, our study sheds light on the importance of large-scale analyses contributing to the emerging fields of functional and phylogenetic diversity, which can be related to ecosystem function to promote biodiversity as a key asset in agroecosystems in the face of global change pressures.

3.
Biol Rev Camb Philos Soc ; 98(4): 1388-1423, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37072381

RESUMEN

Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes in the spatial dissimilarities among assemblages (termed 'beta diversity') is an increasingly recognised feature of broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differentiation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By conceptualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological assemblages across space, environmental managers and conservation practitioners can make informed decisions about what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change; (ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and trophic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity) of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity outcomes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth, beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differentiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by altering ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and direction of change in beta diversity, per se.


Asunto(s)
Biodiversidad , Ecosistema , Agua Dulce , Modelos Biológicos
4.
Sci Total Environ ; 798: 149170, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34332378

RESUMEN

Effects of dam operation and extraction of water from rivers on spatial variation in hydrological regimes, and consequences for freshwater biodiversity, are widely predicted but seldom assessed empirically. Evidence of linkages between hydrology and beta diversity contributes to water-management decisions to support landscape-scale biodiversity and avoid inadvertently contributing to further biodiversity decline. Using six lowland rivers in Australia's Murray - Darling Basin that formed a gradient of hydrological alteration, we examined (1) spatial variation in hydrology under modelled scenarios of low water-resource development and flow modification by dams and extraction, (2) how beta diversity of fish among and within rivers was associated with spatial hydrological variation and whether patterns of overall beta diversity differed between native and non-native species, and (3) the associations of spatial and environmental variables and both recent and long-term hydrology with beta diversity. Spatial variation in hydrology among rivers was higher under the modified scenario than under the low-development scenario yet change in the magnitude of within-river (longitudinal) variation was inconsistent between rivers. Beta diversity among rivers was significantly associated with spatial variation in hydrology only in certain circumstances (native species assemblages in specific years). Within-river beta diversity varied among rivers yet was unrelated to longitudinal variation in modified hydrological regimes. Patterns of beta diversity did not differ appreciably if non-native species were included in or excluded from analyses. These findings contradict predictions adopted in ecohydrological science that water resource development homogenises hydrological regimes, in turn causing biotic homogenisation in lowland rivers.


Asunto(s)
Ecosistema , Hidrología , Animales , Biodiversidad , Peces , Ríos
5.
Ecol Lett ; 24(5): 1063-1072, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33715273

RESUMEN

The last two decades have witnessed unprecedented changes in beta diversity, the spatial variation in species composition, from local to global scales. However, analytical challenges have hampered empirical ecologists from quantifying the extinction and colonisation processes behind these changing beta diversity patterns. Here, we develop a novel numerical method to additively partition the temporal changes in beta diversity into components that reflect local extinctions and colonisations. By applying this method to empirical datasets, we revealed spatiotemporal community dynamics that were otherwise undetectable. In mature forests, we found that local extinctions resulted in tree communities becoming more spatially heterogeneous, while colonisations simultaneously caused them to homogenise. In coral communities, we detected non-random community disassembly and reassembly following an environmental perturbation, with a temporally varying balance between extinctions and colonisations. Partitioning the dynamic processes that underlie beta diversity can provide more mechanistic insights into the spatiotemporal organisation of biodiversity.


Asunto(s)
Biodiversidad , Bosques
6.
Ecol Lett ; 22(8): 1264-1273, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31148310

RESUMEN

Globalisation persistently fuels the establishment of non-native species outside their natural ranges. While alien plants have been intensively studied, little is known about alien flower visitors, and especially, how they integrate into natural communities. Here, we focus on mutualistic networks from five Galápagos islands to quantify whether alien and native flower visitors differ consistently in their pairwise interactions. We find that (1) alien flower visitors have more interaction partners and larger species strengths (i.e. plants are more connected to alien insects), (2) native insects tend to have higher partner fidelity as they deviate more from random partner utilisation, and iii) the difference between native and alien flower visitors in network integration intensifies with island degradation. Thus, native and alien flower visitors are not interchangeable, and alien establishment might have yet unforeseen consequences for the pairwise dynamics between plants and flower visitors on the Galápagos - especially on the heavily disturbed islands.


Asunto(s)
Flores , Especies Introducidas , Polinización , Animales , Ecuador , Insectos , Islas , Plantas
7.
Zookeys ; (801): 371-388, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564044

RESUMEN

Compositional changes in natural communities associated with anthropogenic influence often lead to localised extinctions and biodiversity loss. Soil invertebrates are also threatened by urbanisation due to habitat fragmentation, vegetation changes and management, soil alteration, degradation, and disappearing shelter sites. The aim was to assess terrestrial isopod (Oniscidea) assemblages in differently degraded urban forest patches of a metropolitan area (Budapest, Hungary). Study sites were compared by their species richness, composition and the relevant background factors (soil properties, dead wood, litter characteristics, and canopy closure). The degree of urban disturbance was expressed using an urbanisation index (UI) based on built-up density and vegetation cover. The isopods were identified to species level, and were qualified by their habitat preference and naturalness index (TINI). Average Rarity Index (ARI), derived from TINIs provided information on the degree of naturalness/disturbance of each habitat. Altogether 14 isopod species were collected from 23 sample sites. Urbanisation indirectly affected on the composition of isopod assemblages through the quantity of dead wood and soil plasticity. ARIs and UIs of sample sites were negatively correlated. Urban patches harboured habitat generalist, synanthropic and established introduced species with low naturalness value of assemblages. Areas with no or low anthropogenic disturbance maintained stable native, autochthonous assemblages that were characteristic of rural sites in the region. Transitional zones between rural and urban habitats usually maintained a mixed isopod fauna consisting of both urban and rural elements.

8.
Biol Rev Camb Philos Soc ; 93(2): 971-995, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29115026

RESUMEN

Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline.


Asunto(s)
Biodiversidad , Agua Dulce , Humedales , Animales , Conservación de los Recursos Hídricos , Hidrología , Modelos Biológicos
9.
J Anim Ecol ; 86(3): 532-542, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28191629

RESUMEN

Biodiversity change in anthropogenically transformed habitats is often nonrandom, yet the nature and importance of the different mechanisms shaping community structure are unclear. Here, we extend the classic Theory of Island Biogeography (TIB) to account for nonrandom processes by incorporating species traits and phylogenetic relationships into a study of faunal relaxation following habitat loss and fragmentation. Two possible mechanisms can create nonrandom community patterns on fragment islands. First, small and isolated islands might consist of similar or closely related species because they are environmentally homogeneous or select for certain shared traits, such as dispersal ability. Alternatively, communities on small islands might contain more dissimilar or distantly related species than on large islands because limited space and resource availability result in greater competitive exclusion among species with high niche overlap. Breeding birds were surveyed on 36 islands and two mainland sites annually from 2010 to 2014 in the Thousand Island Lake region, China. We assessed community structure of breeding birds on these subtropical land-bridge islands by integrating species' trait and evolutionary distances. We additionally analysed habitat heterogeneity and variance in size ratios to distinguish biotic and abiotic processes of community assembly. Results showed that functional-phylogenetic diversity increased with island area, and decreased with isolation. Bird communities on the mainland were more diverse and generally less clustered than island bird communities and not different than randomly assembled communities. Bird communities on islands tend to be functionally similar and phylogenetically clustered, especially on small and isolated islands. The nonrandom decline in species diversity and change in bird community structure with island area and isolation, along with the relatively homogeneous habitats on small islands, support the environmental filtering hypothesis. Our study demonstrates the importance of integrating multiple forms of diversity for understanding the effects of habitat loss and fragmentation, and further reveals that TIB could be extended to community measures by moving beyond assumptions of species equivalency in colonisation rates and extinction susceptibilities.


Asunto(s)
Biota , Aves/fisiología , Ecosistema , Filogenia , Animales , Aves/clasificación , China , Islas
10.
Ecol Lett ; 20(3): 347-356, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28093844

RESUMEN

A major challenge in ecology, conservation and global-change biology is to understand why biodiversity responds differently to similar environmental changes. Contingent biodiversity responses may depend on how disturbance and dispersal interact to alter variation in community composition (ß-diversity) and assembly mechanisms. However, quantitative syntheses of these patterns and processes across studies are lacking. Using null-models and meta-analyses of 22 factorial experiments in herbaceous plant communities across Europe and North America, we show that disturbance diversifies communities when dispersal is limited, but homogenises communities when combined with increased immigration from the species pool. In contrast to the hypothesis that disturbance and dispersal mediate the strength of niche assembly, both processes altered ß-diversity through neutral-sampling effects on numbers of individuals and species in communities. Our synthesis suggests that stochastic effects of disturbance and dispersal on community assembly play an important, but underappreciated, role in mediating biotic homogenisation and biodiversity responses to environmental change.


Asunto(s)
Biodiversidad , Dispersión de las Plantas , Europa (Continente) , Modelos Biológicos , América del Norte
11.
Ecol Lett ; 19(5): 510-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26918536

RESUMEN

Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here, we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilising effects for regional ecosystems, through local and spatial insurance effects respectively. We further show that at the regional scale, the stabilising effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenisation) and biodiversity loss on ecosystem sustainability at large scales.


Asunto(s)
Biodiversidad , Biota/fisiología , Ecosistema , Modelos Biológicos , Ambiente
12.
Biodivers Data J ; (2): e4117, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25425938

RESUMEN

The recent growing interest on the Mantodea fauna of southern Europe and Portugal in particular, has enabled the discovery of two geographically separated populations of hitherto unknown species in Europe. Analysis of specimens shows that they belong to two Afrotropical mantids: Miomantiscaffra Saussure, 1871 and Miomantispaykullii Stal, 1871, thus raising the number of known species in Europe to 39 and in Portugal to 11. While these are remarkable findings, they also represent the first alien mantis species recorded from this continent. As yet, these species appear to be confined to artificial humanised gardened areas but call for more attention to the problem of biological invasions and the need for better bio-security measures for the conservation of natural ecosystems. In the absence of recent revisionary work on the Mantodea of Portugal and given the need to provide an accessible identification tool, both a checklist and a key to species are provided for all species in the country.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA