Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Antimicrob Agents Chemother ; : e0081724, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133024

RESUMEN

Escherichia coli ST131 is a multidrug-resistant lineage associated with the global spread of extended-spectrum ß-lactamase-producing organisms. Particularly, ST131 clade C1 is the most predominant clade in Japan, harboring blaCTX-M-14 at a high frequency. However, the process of resistance gene acquisition and spread remains unclear. Here, we performed whole-genome sequencing of 19 E. coli strains belonging to 12 STs and 12 fimH types collected between 1997 and 2016. Additionally, we analyzed the full-length genome sequences of 96 ST131-H30 clade C0 and C1 strains, including those obtained from this study and those registered in public databases, to understand how ST131 clade C1 acquired and spread blaCTX-M-14. We detected conjugative IncFII plasmids and IncB/O/K/Z plasmids carrying blaCTX-M-14 in diverse genetic lineages of E. coli strains from the 1990s to the 2010s, suggesting that these plasmids played an important role in the spread of blaCTX-M-14. Molecular phylogenetic and molecular clock analyses of the 96 ST131-H30 clade C0 and C1 strains identified 8 subclades. Strains harboring blaCTX-M-14 were clustered in subclades 4 and 5, and it was inferred that clade C1 acquired blaCTX-M-14 around 1993. All 34 strains belonging to subclade 5 possessed blaCTX-M-14 with ISEcp1 upstream at the same chromosomal position, indicating their common ancestor acquired blaCTX-M-14 in a single ISEcp1-mediated transposition event during the early formation of the subclade around 1999. Therefore, both the horizontal transfer of plasmids carrying blaCTX-M-14 to diverse genetic lineages and chromosomal integration in the predominant genetic lineage have contributed to the spread of blaCTX-M-14.

2.
Vet World ; 17(7): 1596-1602, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39185037

RESUMEN

Background and Aim: The excessive use of antimicrobials in livestock farming leads to the emergence and dissemination of antimicrobial-resistant organisms. This study aimed to detect extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli genes in integrated poultry-fish farms in Bogor, Indonesia. Materials and Methods: A total of 256 samples were collected from six poultry-fish farms. One hundred and seventy-five chicken cloaca swabs, 60 fish skin swabs, six pond water samples, and 15 farmer's hand swabs. ESBL-producing E. coli was confirmed through double-disk diffusion. The specific primers and probe genes for quantitative polymerase chain reaction detection of ESBL-producing E. coli targeted blaTEM, blaCTX-M, blaSHV, and blaOXA-48 genes. Results: Among the 256 samples tested, 145 (56.6%) were positive for E. coli, and 67.6% (98/145) were identified as ESBL-producing E. coli. The most ESBL-producing E. coli isolates were obtained from chicken cloaca (78.3%, 72/92), followed by pond water (66.7%, 4/6), fish skin (47.6%, 20/42), and farmer's hand swabs (40%, 2/5). About 100% of the isolates carried the genes blaTEM and blaCTX-M, whereas 17.3% and 24.5% carried blaSHV and blaOXA-48, respectively. Conclusion: ESBL-producing E. coli genes were investigated in chicken cloaca, fish, pond water, and farmers' hands within an interconnected poultry-fish farming operation. The ESBL-producing E. coli in chickens can transfer resistant genes to aquatic environments. The transfer could harm other aquatic species and food chains, potentially threatening human health.

3.
Foodborne Pathog Dis ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39029478

RESUMEN

Extended-spectrum ß-lactamase (ESBL)-producing Salmonella is emerging as a worldwide public health concern. In this study, we aimed to investigate the antimicrobial resistance profiles and molecular characteristics of ESBL-producing Salmonella enterica serovar Typhimurium (S. Typhimurium). We obtained a total of 995 S. Typhimurium isolates from the feces and carcasses of pigs (n = 678), chickens (n = 202), and cattle (n = 115) during 2010-2021 in Korea. We found that 35 S. Typhimurium isolates (3.5%) showed resistance to ceftiofur: pigs (51.4%, 18/35) and cattle (42.9%, 15/35). All of the ceftiofur-resistant S. Typhimurium isolates demonstrated multidrug resistance. Moreover, ceftiofur-resistant S. Typhimurium isolates displayed significantly higher rates of resistance to chloramphenicol and trimethoprim/sulfamethoxazole than ceftiofur-susceptible S. Typhimurium isolates (p < 0.05). The ceftiofur-resistant S. Typhimurium isolates produced four different CTX-M-type ß-lactamase, comprising blaCTX-M-55 in the majority (51.4%, 18/35), followed by blaCTX-M-65 (28.6%, 10/35), blaCTX-M-14 (17.1%, 6/35), and blaCTX-M-1 (2.9%, 1/35). Among the 35 ceftiofur-resistant S. Typhimurium isolates, 16 blaCTX-M-55-positive isolates and one blaCTX-M-1-positive isolate were transferred to recipient Escherichia coli RG488 by conjugation. The predominantly found transposable units were blaCTX-M-55-orf477 (45.7%, 16/35), followed by blaCTX-M-65-IS903 (28.6%, 10/35) and blaCTX-M-14-IS903 (17.1%, 6/35). Ceftiofur-resistant S. Typhimurium represented 19 types, with types P1-19 (22.9%, 8/35) and P12-34 (22.9%, 8/35) making up the majority and being found in most farms nationwide. Sequence types (STs) were different by animal species: ST19 (48.6%, 17/35) and ST34 (42.9%, 15/35) were mostly found STs in pigs and cattle, respectively. These findings showed that food animals, especially pigs and cattle, act as reservoirs of blaCTX-M-harboring S. Typhimurium that can potentially be spread to humans.

4.
One Health ; 18: 100685, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39010965

RESUMEN

Transmission of extended-spectrum ß-lactamase (ESBL) genes has increased the global prevalence of ESBL-producing bacteria, especially in developing countries. Human infection with these bacteria may be food-mediated but has not been fully elucidated. Therefore, we aimed to examine ESBL-producing bacteria in edible river fish and elucidate their potential for horizontal gene transfer. A total of 173 ESBL-producing Enterobacterales were isolated (Escherichia coli [n = 87], Klebsiella pneumoniae [n = 52], Enterobacter cloacae complex [n = 18], Citrobacter freundii complex [n = 14], Atlantibacter hermannii [n = 1] and Serratia fonticola [n = 1]) from 56 of 80 fish intestinal contents sampled. Among the bacterial bla CTX-M genotypes, bla CTX-M-55 was the most predominant, followed by bla CTX-M-15, bla CTX-M-27, and bla CTX-M-65. Furthermore, we found that ESBL-producing Enterobacterales were able to transfer their bla CTX-M genes to E. coli. In summary, our results suggest that ESBL-producing Enterobacterales transfer bla CTX-M to indigenous gut E. coli in humans, following the consumption of contaminated fish.

5.
Front Cell Infect Microbiol ; 14: 1410921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015336

RESUMEN

Objective: The emergence of clinical Klebsiella pneumoniae strains harboring acrAB-tolC genes in the chromosome, along with the presence of two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65 genes on a plasmid, has presented a significant clinical challenge. Methods: In order to study the detailed genetic features of K. pneumoniae strain SC35, both the bacterial chromosome and plasmids were sequenced using Illumina and nanopore platforms. Furthermore, bioinformatics methods were employed to analyze the mobile genetic elements associated with antibiotic resistance genes. Results: K. pneumoniae strain SC35 was found to possess a class A beta-lactamase and demonstrated resistance to all tested antibiotics. This resistance was attributed to the presence of efflux pump genes, specifically acrAB-tolC, on the SC35 chromosome. Additionally, the SC35 plasmid p1 carried the two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65, as well as bla TEM-1 with rmtB, which shared overlapping structures with mobile genetic elements as In413, Tn3, and TnAs3. Through plasmid transfer assays, it was determined that the SC35 plasmid p1 could be successfully transferred with an average conjugation frequency of 6.85 × 10-4. Conclusion: The structure of the SC35 plasmid p1 appears to have evolved in correlation with other plasmids such as pKPC2_130119, pDD01754-2, and F4_plasmid pA. The infectious strain SC35 exhibits no susceptibility to tested antibioticst, thus effective measures should be taken to prevent the spread and epidemic of this strain.


Asunto(s)
Antibacterianos , Cromosomas Bacterianos , Infecciones por Klebsiella , Klebsiella pneumoniae , Plásmidos , beta-Lactamasas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Plásmidos/genética , beta-Lactamasas/genética , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Cromosomas Bacterianos/genética , Humanos , Pruebas de Sensibilidad Microbiana , Secuencias Repetitivas Esparcidas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Microorganisms ; 12(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930563

RESUMEN

Edwardsiella ictaluri is responsible for causing bacillary necrosis (BNP) in striped catfish (Pangasianodon hypophthalmus) in Vietnam. This study offers a comprehensive genomic characterization of E. ictaluri to enhance understanding of the molecular epidemiology, virulence, and antimicrobial resistance. E. ictaluri isolates were collected from diseased striped catfish in the Mekong Delta. The species was confirmed through PCR. Antimicrobial susceptibility testing was conducted using minimum inhibitory concentrations for commonly used antimicrobials. Thirty representative isolates were selected for whole genome sequencing to delineate their genomic profiles and phylogeny. All strains belonged to ST-26 and exhibited genetic relatedness, differing by a maximum of 90 single nucleotide polymorphisms. Most isolates carried multiple antimicrobial resistance genes, with the tet(A) gene present in 63% and floR in 77% of the genomes. The ESBL gene, blaCTX-M-15, was identified in 30% of the genomes. Three plasmid replicon types were identified: IncA, p0111, and IncQ1. The genomes clustered into two clades based on their virulence gene profile, one group with the T3SS genes and one without. The genetic similarity among Vietnamese isolates suggests that disease spread occurs within the Mekong region, underscoring the importance of source tracking, reservoir identification, and implementation of necessary biosecurity measures to mitigate spread of BNP.

7.
Appl Environ Microbiol ; 90(6): e0229723, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38722170

RESUMEN

Salmonella Typhimurium is a zoonotic pathogen that poses a major threat to public health. This generalist serotype can be found in many hosts and the environment where varying selection pressures may result in the accumulation of antimicrobial resistance determinants. However, the transmission of this serotype between food-producing hosts, specifically between poultry layer flocks and nearby dairy herds, was never demonstrated. We investigated an outbreak at a dairy in Israel to determine the role of nearby poultry houses to be sources of infection. The 2-month outbreak resulted in a 47% mortality rate among 15 calves born in that period. Routine treatment of fluid therapy, a nonsteroidal anti-inflammatory, and cefquinome was ineffective, and control was achieved by the introduction of vaccination of dry cows against Salmonella (Bovivac S, MSD Animal Health) and a strict colostrum regime. Whole genome sequencing and antimicrobial sensitivity tests were performed on S. Typhimurium strains isolated from the dairy (n = 4) and strains recovered from poultry layer farms (n = 10). We identified acquired antimicrobial-resistant genes, including the blaCTX-M-55 gene, conferring resistance to extended-spectrum cephalosporins, which was exclusive to dairy isolates. Genetic similarity with less than five single nucleotide polymorphism differences between dairy and poultry strains suggested a transmission link. This investigation highlights the severe impact of S. Typhimurium on dairy farms and the transmission risk from nearby poultry farms. The accumulation of potentially transferable genes conferring resistance to critically important antimicrobials underscores the increased public health risk associated with S. Typhimurium circulation between animal hosts.IMPORTANCESalmonella Typhimurium is one of the major causes of food-borne illness globally. Infections may result in severe invasive disease, in which antimicrobial treatment is warranted. Therefore, the emergence of multi-drug-resistant strains poses a significant challenge to successful treatment and is considered one of the major threats to global health. S. Typhimurium can be found in a variety of animal hosts and environments; however, its transmission between food-producing animals, specifically poultry layers flocks and dairy herds, was never studied. Here, we demonstrate the transmission of the pathogen from poultry to a nearby dairy farm. Alarmingly, the multi-drug-resistant strains collected during the outbreak in the dairy had acquired resistance to extended-spectrum cephalosporins, antibiotics critically important in treating Salmonellosis in humans. The findings of the study emphasize the increased risk to public health posed by zoonotic pathogens' circulation between animal hosts.


Asunto(s)
Antibacterianos , Granjas , Salud Pública , Salmonelosis Animal , Salmonella typhimurium , Animales , Salmonella typhimurium/genética , Salmonella typhimurium/efectos de los fármacos , Salmonelosis Animal/microbiología , Salmonelosis Animal/epidemiología , Salmonelosis Animal/transmisión , Bovinos , Antibacterianos/farmacología , Aves de Corral/microbiología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/transmisión , Israel/epidemiología , Industria Lechera , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/epidemiología , Farmacorresistencia Bacteriana/genética , Brotes de Enfermedades/veterinaria , Pollos/microbiología , Humanos , Farmacorresistencia Bacteriana Múltiple/genética
8.
Antibiotics (Basel) ; 13(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786174

RESUMEN

The P1 phage has garnered attention as a carrier of antibiotic resistance genes (ARGs) in Enterobacteriaceae. However, the transferability of ARGs by P1-like phages carrying ARGs, in addition to the mechanism underlying ARG acquisition, remain largely unknown. In this study, we elucidated the biological characteristics, the induction and transmission abilities, and the acquisition mechanism of the blaCTX-M-27 gene in the P1 phage. The P1-CTX phage exhibited distinct lytic plaques and possessed a complete head and tail structure. Additionally, the P1-CTX phage was induced successfully under various conditions, including UV exposure, heat treatment at 42 °C, and subinhibitory concentrations (sub-MICs) of antibiotics. Moreover, the P1-CTX phage could mobilize the blaCTX-M-27 gene into three strains of Escherichia coli (E. coli) and the following seven different serotypes of Salmonella: Rissen, Derby, Kentucky, Typhimurium, Cerro, Senftenberg, and Muenster. The mechanism underlying ARG acquisition by the P1-CTX phage involved Tn1721 transposition-mediated movement of blaCTX-M-27 into the ref and mat genes within its genome. To our knowledge, this is the first report documenting the dynamic processes of ARG acquisition by a phage. Furthermore, this study enriches the research on the mechanism underlying the phage acquisition of drug resistance genes and provides a basis for determining the risk of drug resistance during phage transmission.

9.
Microorganisms ; 12(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38674598

RESUMEN

Multi-drug resistance of bacteria producing extended-spectrum ß-lactamase (ESBL) is a public health challenge. Thus, this study aimed to investigate the antimicrobial susceptibility of ESBL-producing Escherichia coli (ESBL-EC) in Hunan Province, China. A total of 1366 fecal samples were collected from pig, chicken, and cattle farms over a six-year period, which were assessed using strain isolation, 16S rRNA identification, polymerase chain reaction, drug sensitivity testing, whole-genome sequencing, and bioinformatics analysis. The results showed an overall prevalence of 6.66% for ESBL-EC strains, with ESBL positivity extents for pigs, chickens, and cattle isolates at 6.77%, 6.54%, and 12.5%, respectively. Most ESBL-EC isolates were resistant to cefotaxime, tetracycline, and trimethoprim-sulfamethoxazole; however, all the isolates were susceptible to meropenem, with relatively low resistance to amikacin and tigecycline. Various multi-locus sequence types with different origins and similar affinities were identified, with ST155 (n = 16) being the most common subtype. Several types of resistance genes were identified among the 91 positive strains, with beta-lactamase blaCTX-M-55 being the most common ESBL genotype. IncFIB was the predominant plasmid type. Widespread use of antibiotics in animal farming may increase antibiotic resistance, posing a serious threat to the health of farmed animals and, thus, to human food security and health.

10.
Microbiol Spectr ; 12(6): e0424023, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687059

RESUMEN

The interaction between coexisting plasmids can affect plasmid-carried resistance gene persistence and spread. However, whether the persistence of the blaCTX-M gene in clinical Enterobacteriaceae is related to the interaction of coresident nonresistance-conferring plasmids has not been reported. This study was initiated to elucidate how a nonresistance-conferring IncI1 plasmid affected the blaCTX-M-bearing IncFII plasmid colocated on the same cell. Herein, we constructed three isogenic derivatives of E. coli C600, designated as C600FII, C600I1, and C600FII+I1, which harbored the blaCTX-M-IncFII plasmid and/or the nonresistance-IncI1 one. We discovered that strain C600FII+I1 conferred higher fitness advantages than strain C600FII; also, the stability of the blaCTX-M-IncFII plasmid was noticeably improved in an antibiotic-free environment when it coexisted with the IncI1 plasmid. To further explore why the IncI1 plasmid enhanced the persistence of the blaCTX-M-IncFII plasmid, we assessed the blaCTX-M-IncFII plasmid's copy numbers, conjugation frequencies, and rep gene expressions in strains C600FII and C600FII+I1. The results demonstrated that the rep expressions of the blaCTX-M-IncFII plasmid in strain C600FII+I1 was greatly decreased, along with the plasmid's copy numbers and mating efficiencies, compared to those in strain C600FII. Moreover, further study revealed that the intracellular ATP levels of strain C600FII+I1 were far lower than those of strain C600FII. Our findings confirmed that coexistence of the nonresistance-IncI1 plasmid can keep the blaCTX-M-IncFII plasmid more stable by increasing the fitness advantages of the host bacteria, which will pose a threat to preventing the long-term presence of the plasmid-carried blaCTX-M gene in clinical Enterobacteriaceae. IMPORTANCE: So far, plasmid-carried blaCTX-M is still the most common extended-spectrum beta-lactamase (ESBL) genotype in clinical settings worldwide. Except for the widespread use of third-generation cephalosporins, the interaction between coexisting plasmids can also affect the long-term stable existence of the blaCTX-M gene; however, the study on that is still sparse. In the present study, we assess the interaction of coinhabitant plasmids blaCTX-M-IncFII and nonresistance-IncI1. Our results confirmed that the increased fitness advantages of strain C600FII+I1 were attributable to the cohabitant nonresistance-IncI1 plasmid, which largely reduced the intracellular ATP levels of host bacteria, thus decreasing the rep gene expression of the blaCTX-M-IncFII plasmid, its copy numbers, and mating efficiencies, while the higher fitness advantages of strain C600FII+I1 enhanced the persistence of the blaCTX-M-IncFII plasmid. The results indicate that the nonresistance-IncI1 plasmid contributes to the long-term existence of the blaCTX-M-IncFII plasmid, implying a potentially new strategy for controlling the spread of resistance plasmids in clinical settings by targeting nonresistance plasmids.


Asunto(s)
Escherichia coli , Plásmidos , beta-Lactamasas , Escherichia coli/genética , Plásmidos/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Pruebas de Sensibilidad Microbiana , Humanos
11.
Microbiol Resour Announc ; 13(6): e0005624, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38682768

RESUMEN

Extended-spectrum ß-lactamase-producing Atlantibacter hermannii was isolated from an edible river fish, Anabas testudineus, which was sold in a market located in Vietnam. The genome sequence was obtained by using next-generation sequencing, which involved Oxford Nanopore and Illumina technologies. The 92 kb plasmid encodes the gene blaCTX-M-27.

12.
Antibiotics (Basel) ; 13(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667039

RESUMEN

Extended-spectrum ß-lactamase-producing Escherichia coli ST131 has become widespread worldwide. This study aims to characterize the virulome, resistome, and population structure of E. coli ST131 isolates from clinical blood samples in Hungary. A total of 30 C2/H30Rx and 33 C1-M27 ST131 isolates were selected for Illumina MiSeq sequencing and 30 isolates for MinION sequencing, followed by hybrid de novo assembly. Five C2/H30Rx and one C1-M27 cluster were identified. C1-M27 isolates harbored the F1:A2:B20 plasmid in 93.9% of cases. Long-read sequencing revealed that blaCTX-M-27 was on plasmids. Among the C2/H30Rx isolates, only six isolates carried the C2-associated F2:A1:B- plasmid type. Of 19 hybrid-assembled C2/H30Rx genomes, the blaCTX-M-15 gene was located on plasmid only in one isolate, while in the other isolates, ISEcp1 or IS26-mediated chromosomal integration of blaCTX-M-15 was detected in unique variations. In one isolate a part of F2:A1:B- plasmid integrated into the chromosome. These results suggest that CTX-M-15-producing C2/H30Rx and CTX-M-27-producing C1-M27 subclades may have emerged and spread in different ways in Hungary. While blaCTX-M-27 was carried mainly on the C1/H30R-associated F1:A2:B20 plasmid, the IncF-like plasmids of C2/H30Rx or its composite transposons have been incorporated into the chromosome through convergent evolutionary processes.

13.
Heliyon ; 10(5): e26379, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38449644

RESUMEN

The discharge of untreated or partially treated wastewater can have detrimental impacts on the quality of water bodies, posing a significant threat to public health and the environment. In Ecuador, previous research indicates a high prevalence of antimicrobial resistant (AMR) bacteria in surface waters affected by human activities, including irrigation channels. In this study, we analyzed sediment samples collected from an irrigation channel utilized for agricultural purposes in northern Ecuador, using microbiological techniques and whole-genome sequencing (WGS). Our investigation revealed the first documented occurrence of E. kobei in Ecuador and the initial report of environmental E. kobei ST2070. Furthermore, we identified the coexistence of OXA-10-type class D ß-lactamase and KPC-2-type class A ß-lactamase in the E. kobei isolate (UTA41), representing the first report of such a phenomenon in this species. Additionally, we detected various antibiotic resistance genes in the E. kobei UTA41 isolate, including blaCTX-M-12, fosA, aac(6')-lb, sul2, msr(E), and mph(A), as well as virulence genes such as bacterial efflux pump and siderophore biosynthesis genes. We also identified two intact prophage regions (Entero_186 and Klebsi_phiKO2) in the isolate. Our study presents the first evidence of E. kobei isolate containing two carbapenemase-encoding genes in environmental samples from Latin America. This finding indicates the potential spread of critical-priority bacteria in water samples originating from anthropogenic sources, such as urban wastewater discharges and livestock facilities.

14.
Antibiotics (Basel) ; 13(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38534694

RESUMEN

Poultry products in Zambia form an integral part of the human diet in many households, as they are cheap and easy to produce. The burden of poultry diseases has, however, remained a major challenge. Growing consumer demand for poultry products in Zambia has resulted in non-prudent antimicrobial use on farms, intending to prevent and treat poultry diseases for growth optimisation and maximising profits. This cross-sectional study aimed to identify the different types of bacteria causing diseases in chickens in Lusaka and to detect the extended-spectrum lactamase (ESBL)-encoding genes. We collected 215 samples from 91 diseased chickens at three post-mortem facilities and screened them for Gram-negative bacteria. Of these samples, 103 tested positive for various clinically relevant Enterobacteriaceae, including Enterobacter (43/103, 41.7%), Escherichia coli (20/103, 19.4%), Salmonella (10/103, 9.7%), and Shigella (8/103, 7.8%). Other isolated bacteria included Yersinia, Morganella, Proteus, and Klebsiella, which accounted for 21.4%. E. coli, Enterobacter, Salmonella, and Shigella were subjected to antimicrobial susceptibility testing. The results revealed that E. coli, Enterobacter, and Shigella were highly resistant to tetracycline, ampicillin, amoxicillin, and trimethoprim-sulfamethoxazole, while Salmonella showed complete susceptibility to all tested antibiotics. The observed resistance patterns correlated with antimicrobial usage estimated from sales data from a large-scale wholesale and retail company. Six (6/14, 42.9%) E. coli isolates tested positive for blaCTX-M, whilst eight (8/14, 57.1%) Enterobacter samples tested positive for blaTEM. Interestingly, four (4/6, 66.7%) of the E. coli isolates carrying blaCTX-M-positive strains were also positive for blaTEM. Sanger sequencing of the PCR products revealed that five (5/6, 83.3%) of the abovementioned isolates possessed the blaCTX-M-15 allele. The results suggest the presence of potentially pathogenic ESBL-producing Enterobacteriaceae in poultry, threatening public health.

15.
Microbiol Resour Announc ; 13(3): e0122623, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38358276

RESUMEN

Extended-spectrum ß-lactamase-producing non-O1 Vibrio cholerae was isolated from edible Mastacembelus sp. in Vietnam. The genome sequence was sequenced using DNBSEQ-G400 and MinION Mk1b. A plasmid of approximately 183-kb encoding blaCTX-M-55 and blaTEM-1 was detected.

16.
Infect Drug Resist ; 17: 365-375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318209

RESUMEN

Objective: Escherichia coli is a common Gram-negative human pathogen. The emergence of E. coli with multiple-antibiotic-resistant phenotypes has become a serious health concern. This study reports the whole-genome sequences of third-generation cephalosporin-resistant (3GC-R) and multidrug-resistant (MDR) E. coli EC6868 and explores the acquired antibiotic-resistance genes (ARGs) as well as their genetic contexts. Methods: E. coli EC6868 was isolated from a vaginal secretion sample of a pregnant patient in China. The antimicrobial susceptibility was assessed, and whole-genome sequencing was conducted. The acquired ARGs, insertion sequence (IS) elements, and integrons within the genome of E. coli EC6868 were identified, and the genetic contexts associated with the ARGs were analyzed systematically. Results: E. coli EC6868 was determined to belong to ST69 and harbored a 144.9-kb IncF plasmid (pEC6868-1) with three replicons (Col156, IncFIBAP001918, and IncFII). The ESBL gene blaCTX-M-27 was located on the structure "∆ISEcp1-blaCTX-M-27-IS903B", which was widely present in the species of Enterobacteriales. Other ARGs carried by plasmid pEC6868-1 were mainly located on the 18.9-kb IS26-composite transposon (five copies of intact IS26 and one copy of truncated IS26) composing of IS26-mphA-mrx(A)-mphR(A)-IS6100, ∆TnAs3-eamA-tet(A)-tetR(A)-aph(6)-Id-aph(3")-Ib-sul2-IS26, and a class 1 integron, which was widely present on IncF plasmids of E. coli, mainly distributed in ST131, ST38, and ST405. Notably, pEC6868 in our study was the first report on a plasmid harboring the 18.9-kb structure in E. coli ST69 in China. Conclusion: The 3GC-R E. coli ST69 strain with an MDR IncF plasmid carrying blaCTX-M-27 and other ARGs, conferring resistance to aminoglycosides, macrolides, sulfonamides, tetracycline, and trimethoprim, was identified in a hospital in China. Mobile genetic elements including ISEcp1, IS903B, IS26, Tn3, IS6100 and class 1 integron were found within the MDR region, which could play important roles in the global dissemination of these resistance genes.

17.
Ital J Pediatr ; 50(1): 31, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402215

RESUMEN

BACKGROUND: Gram-negative bacilli represents an important pathogen in hospital-acquired infections (HAIs) worldwide. The emergence of antibiotic resistance in these pathogens warrants attention for the proper management of infections. Extended-spectrum beta-lactamase (ESBL) resistance represents a major therapeutic problem in infections due to Gram-negative bacilli. The present study aimed to study the extended-spectrum beta-lactamase genes blaTEM, blaSHV, and blaCTX-M by multiplex polymerase reaction in isolated Gram-negative bacilli from HAIs in pediatric patients. METHODS: The study included one hundred-five isolates of Gram-negative bacilli from pediatric patients with different types of HAIs. The isolates were subjected to full microbiological identification, antibiotics susceptibility by disc diffusion method, the phenotypic study of ESBL, and the genetic study of ESBL genes by multiplex PCR. RESULTS: Fifty isolates of Gram-Negative bacilli showed ESBL activity by a phenotypic study by double disc diffusion method (50/105). All ESBL producers' isolates were positive by PCR for ESBL genes. The most frequent gene was blaTEM (64%), followed by blaSHV (30%) and CTX-M (22%). Mixed genes were found in 4 isolates (8%) for blaTEM and blaSHV, blaTEM and CTX-M. There was a significant association between PCR for ESBL genes and phenotypic ESBL detection (P = 0.001). There was significant detection of ESBL genes in E. coli (28%), followed by Enterobacter spp. (26%), Klebsiella spp. (24%), Serratia (14%), Pseudomonas spp. (6%) and Proteus (2%), P = 0.01. There Seventy percent of isolates positive for ESBL production had an insignificant association between MDR and PCR for ESBL genes (P = 0.23). CONCLUSION: The present study highlights the prevalence of ESBL activity among clinical isolates of Gram-negative bacilli isolated from hospital-acquired infections in pediatric patients. The most common gene responsible for this activity was blaTEM gee followed by blaSHV and blaCTX-M. There was a high prevalence of multiple antibiotic resistance among isolates with ESBL activity. The finding of the present study denotes the importance of screening extended beta-lactamase among Gram-negative bacilli associated with HAIs in pediatric patients.


Asunto(s)
Infección Hospitalaria , Escherichia coli , Humanos , Niño , Escherichia coli/genética , Prevalencia , beta-Lactamasas/genética , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Genotipo , Hospitales , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
18.
Mol Biol Rep ; 51(1): 167, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252349

RESUMEN

BACKGROUND: The increasing cases of bloodstream infections among children at neonatal intensive care units (NICUs) led this work to investigate biofilm production, antibiotics and the presence of ESßL genes in Serratia marcescens (S. marcescens) strains isolated from blood. METHODS: Twenty S. marcescens strains were isolated and identified by the VITEK-2 system over 7 months from late 2022 to mid-2023 from Ibn Al-Balady Hospital in Baghdad. Kirby-Bauer test was used to measure antibiotic susceptibility. RESULTS: The results revealed that 95% of twenty S. marcescens isolates were non-susceptible to Ampicillin and Amoxicillin-clavulanic. Furthermore, S. marcescens isolates showed a high sensitivity rate 70% toward Imipenem. All S. marcescens strains 100% were produced biofilm. This work clarifies that, out of 20 S. marcescens strains, 80% were harbored ESßL genes. The coexistence of blaTEM, blaCTX and blaSHV genes was shown in 43.75% of strains, while 56.25% of S. marcescens strains harbored single ES[Formula: see text]L genes. The biofilm values increase with the accuracy of EsßL genes. Phylogenetic analyses based on the sequence of blaCTX-M and blaTEM were done with closely related genes in the GenBank using MEGA6 software. CONCLUSIONS: The distribution of blaTEM, blaCTX and blaSHV genes among local S. marcescens strains may be attributed to the indiscriminate use of antibiotics. The results confirmed the spread of ESßL genes in S. marcescens from blood infections among newborn infants.


Asunto(s)
Unidades de Cuidado Intensivo Neonatal , Serratia marcescens , Niño , Lactante , Recién Nacido , Humanos , Filogenia , Serratia marcescens/genética , Antibacterianos/farmacología , Biopelículas , beta-Lactamasas/genética
19.
Med Microecol ; 182023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38148908

RESUMEN

The increasing abundance of extended spectrum (ß-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate blaCTX-M gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The blaCTX-M associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of blaCTX-M transfer between chickens and humans in the community.

20.
Microorganisms ; 11(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004806

RESUMEN

Elevated detection rates of the blaCTX-M-55 gene in animals have been reported as a result of antibiotic misuse in clinics. To investigate the horizontal transfer mechanism of blaCTX-M-55 and its associated mobile genetic elements (MGEs), we isolated 318 nonrepetitive strains of Escherichia coli (E. coli) from bovine samples in Xinjiang and Gansu provinces, China. All E. coli strains were screened for the CTX-M-55 gene using PCR. The complete genomic data were sequenced using the PacBio triplet sequencing platform and corrected using the Illumina data platform. The genetic environment of the plasmids carrying the resistance blaCTX-M-55 gene was mapped using the software Easyfig2.2.3 for comparison. The results showed that all blaCTX-M-55-positive strains were resistant to multiple antibiotics. Five strains of Escherichia coli carry the blaCTX-M-55 gene, which is adjacent to other resistance genes and is located on the IncHI2-type plasmid. Four of the five blaCTX-M-55-harbor strains carried translocatable units (TUs). All the donor bacteria carrying the blaCTX-M-55 genes could transfer horizontally to the recipient (E. coli J53 Azr). This study demonstrates that the transmission of blaCTX-M-55 is localized on IS26-flanked composite transposons. The cotransmission and prevalence of blaCTX-M-55 with other MDR resistance genes on epidemic plasmids require enhanced monitoring and control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA