Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(15): 19121-19136, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588341

RESUMEN

Plate-type hollow black TiO2 (HL/BT) with a high NIR reflectance was fabricated for the first time as a LiDAR-detectable black material. A TiO2 layer was formed on commercial-grade glass by using the sol-gel method to obtain a plate-type structure. The glass template was then etched with hydrofluoric acid to form a hollow structure, and blackness was further achieved through NaBH4 reduction, which altered the oxidation state of TiO2 to black TixO2x-1 or Ti4+ to Ti3+ and Ti2+. The blackness of the HL/BT material was maintained by a novel approach that involved etching prior to reduction. The thickness of the TiO2 layer was controlled to maximize the NIR reflectance when applied as paint. The HL/BT material with a thickness of 140 nm (HL/BT140) showed a blackness (L*) of 13.3 and high NIR reflectance of 23.6% at a wavelength of 905 nm. This is attributed to the effective light reflection at the interface created by the TiO2 layer and the hollow structure. Plate-type HL/BT140 provides excellent spreadability, durability, and thermal stability in practical paint applications compared with sphere-type materials due to the higher contacting area to the applied surface, making it suitable for use as a LiDAR-detectable inorganic black pigment in autonomous environments.

2.
ACS Appl Mater Interfaces ; 16(3): 3019-3030, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38217858

RESUMEN

Urease-powered nano/micromotors can move at physiological urea concentrations, making them useful for biomedical applications, such as treating bladder cancer. However, their movement in biological environments is still challenging. Herein, Janus micromotors based on black TiO2 with urease asymmetric catalytic coating were designed to take benefit of the optical properties of black TiO2 under near-infrared light and the movement capability in simulated bladder environments (urea). The black TiO2 microspheres were half-coated with a thin layer of Au, and l-Cysteine was utilized to attach the urease enzyme to the Au surface using its thiol group. Biocatalytic hydrolysis of urea through urease at biologically relevant concentrations provided the driving force for micromotors. A variety of parameters, such as urea fuel concentration, viscosity, and ionic character of the environment, were used to investigate how micromotors moved in different concentrations of urea in water, PBS, NaCl, and urine. The results indicate that micromotors are propelled through ionic self-diffusiophoresis caused by urea enzymatic catalysis. Due to their low toxicity and in vitro anticancer effect, micromotors are effective agents for photothermal therapy, which can help kill bladder cancer cells. These promising results suggest that biocompatible micromotors hold great potential for improving cancer treatment and facilitating diagnosis.


Asunto(s)
Ureasa , Neoplasias de la Vejiga Urinaria , Humanos , Terapia Fototérmica , Microesferas , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Urea
3.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836836

RESUMEN

Efficient and stable electrode materials are urgently required for wastewater treatment in the electrocatalytic degradation of toxic and refractory organic pollutants. Ti3+ self-doping black TiO2 nanotube arrays (Ti/B-TiO2-NTs) as an interlayer were used for preparing a novel PbO2 electrode via an electrochemical reduction technology, and a sodium dodecyl sulfate (SDS)-modified PbO2 catalytic layer was successfully achieved via an electrochemical deposition technology. The physicochemical characterization tests showed that the Ti/B-TiO2-NTs/PbO2-SDS electrodes have a denser surface and finer grain size with the introduction of Ti3+ in the interlayer of Ti/TiO2-NTs and the addition of SDS in the active layer of PbO2. The electrochemical characterization results showed that the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode had higher oxygen evolution potential (2.11 V vs. SCE), higher electrode stability, smaller charge-transfer resistance (6.74 Ω cm-2), and higher hydroxyl radical production activity, leading to it possessing better electrocatalytic properties. The above results indicated that the physicochemical and electrochemical characterization of the PbO2 electrode were all enhanced significantly with the introduction of Ti3+ and SDS. Furthermore, the Ti/B-TiO2-NTs/PbO2-SDS electrodes displayed the best performance on the degradation of methylene blue (MB) in simulated wastewater via bulk electrolysis. The removal efficiency of MB and the chemical oxygen demand (COD) could reach about 99.7% and 80.6% under the optimal conditions after 120 min, respectively. The pseudo-first-order kinetic constant of the Ti/B-TiO2-NTs/PbO2-SDS electrode was 0.03956 min-1, which was approximately 3.18 times faster than that of the Ti/TiO2-NTs/PbO2 electrode (0.01254 min-1). In addition, the Ti/B-TiO2-NTs/PbO2-SDS electrodes showed excellent stability and reusability. The degradation mechanism of MB was explored via the experimental identification of intermediates. In summary, the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode is a promising electrode in treating wastewater.

4.
J Hazard Mater ; 460: 132323, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666174

RESUMEN

Passivation of nanoscale zero valent iron (nZVI, Fe0) impaired its longevity while black TiO2 (b-TiO2) suffered from restricted optical properties. Using a facile approach, a novel Z-scheme heterojunction catalyst (Fe0@CQDs-TiO2(b)) of nZVI decorated with carbon quantum dots (CQDs) implanted into b-TiO2 was designed. Characterization results revealed the optical potential of the passivation coating of nZVI. The incorporation of CQDs stimulated the creation of active •OH during the dark reaction, and led to an accelerated mobility of photo-excited carriers of b-TiO2 and optimized its band gap (narrowing from 2.36 eV to 2.15 eV) during the light reaction. The photo-elimination capacity of metronidazole (MNZ) on Fe0@CQDs-TiO2(b) (99.36%) was 2.64, 8.25 and 1.34 fold beyond that on nZVI, b-TiO2 and Fe0@b-TiO2, respectively. The assembled material offered excellent adaptability to environmental substrates, in addition to being virtually unaffected by tap (95.62%) and river water (92.62%). The mechanism of MNZ degradation was elaborated, and the combination of density functional theory (DFT) calculations and LC-MS discerned 12 intermediates and 3 routes. Toxicity assessment of these products was conducted to ensure no inadvertent negative environmental impacts arose. This work proposed an original direction and mechanism for the application of passivation layers in nZVI-based materials for environmental restoration.

5.
Sci Bull (Beijing) ; 68(22): 2760-2768, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37770326

RESUMEN

Solar-driven interfacial evaporation is a highly efficient and ecofriendly technology for producing freshwater. Herein, self-floating plasmon Ag/black TiO2/carbon porous layered foams (Ag-BTCFs) were demonstrated as efficient solar-thermal convectors using freeze-drying cast-molding and high-temperature surface hydrogenation strategies. This all-in-one three-dimensional (3D) cross-linked self-floating porous layered foam material with full-spectrum absorption can fully harvest sunlight (∼95.45%) and effectively block heat transfer to its sublayer. The synergy of sufficient utilization of absorbed ultraviolet radiation by black TiO2 (b-TiO2), visible light absorption by Ag nanoparticles (Ag NPs) via localized surface plasmon resonance, and near-infrared absorption by layered-amorphous carbon can achieve full-solar-spectrum absorption to concentrate thermal energy. In addition to their synergistic effect, they are conducive to the relaxation of hot electrons when utilizing photogenerated holes to degrade pollutants in domestic wastewater. The steam generation efficiency of Ag-BTCFs is up to 1.79 kg m-2h-1 due to their solar energy conversion efficiency of 81.74% under 1 sun irradiation, which is five times higher than the evaporation rate of pure water. Notably, the material's efficient ion removal rate of 99.80% for solar desalination indicates its high potential for various applications. This strategy provides new insights for fabricating recyclable heat-blocking layer systems against thermal loss to enhance solar steam generation.

6.
Environ Sci Pollut Res Int ; 30(31): 77850-77874, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37266783

RESUMEN

This article presents a methodological approach to use manganese (Mn3+Mn7+)-modified black titanium dioxide (Mn/BTiO2) as a photocatalyst to optimize and improve visible-light-driven photodegradation of treated agro-industrial effluent (TPOME). A modified wet chemical process was used to prepare BTiO2. The BTiO2 was then wet impregnated with Mn and calcined at 300 °C for 1 h to produce Mn/BTiO2. The activity of Mn/BTiO2 was investigated in terms of photo-assisted elimination of chemical oxygen demand (COD), phenolic compounds (PCs), color, and total organic carbon (TOC). Using the design of experiments (DOE), the conditions of the photocatalytic process, including photocatalyst loading, Mn concentration, hydrogen peroxide (H2O2) dose, and irradiation time, were optimized. Under the optimum conditions (0.85 g/L photocatalyst loading, 0.048 mol/L H2O2 dose, 0.301 wt.% Mn concentration, and 204 min irradiation time) COD, PCs, color, and TOC removal efficiencies of 88.87%, 86.04%, 62.8%, and 84.66%, respectively, were obtained. Statistical analysis showed that the response variable's removal from TPOME estimation had high R2 and low RMSE, MSE, MAD, MAE, and MAPE values, indicating high reliability. This study demonstrated the significant potential of the developed photocatalytic system for the treatment of waste effluent generated by the palm oil industry and other agro-industries, with the ability to simultaneously reduce a number of organic pollution indicators (OPIs).


Asunto(s)
Peróxido de Hidrógeno , Eliminación de Residuos Líquidos , Aceite de Palma , Peróxido de Hidrógeno/química , Manganeso/análisis , Fotólisis , Reproducibilidad de los Resultados , Titanio/química , Residuos Industriales/análisis
7.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985872

RESUMEN

Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.

8.
Nanomaterials (Basel) ; 13(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903809

RESUMEN

Anodic TiO2 nanotubes were transformed into anatase at 400 °C for 2 h in air and subjected to electrochemical reduction at different conditions. It revealed that the reduced black TiOx nanotubes were not stable in contact with air; however, their lifetime was considerably extended to even a few hours when isolated from the influence of atmospheric oxygen. The order of polarization-induced reduction and spontaneous reverse oxidation reactions were determined. Upon irradiation with simulated sunlight, the reduced black TiOx nanotubes generated lower photocurrents than non-reduced TiO2, but a lower rate of electron-hole recombination and better charge separation were observed. In addition, the conduction band edge and energy level (Fermi level), responsible for trapping electrons from the valence band during the reduction of TiO2 nanotubes, were determined. The methods presented in this paper can be used for determination of the spectroelectrochemical and photoelectrochemical properties of electrochromic materials.

9.
Materials (Basel) ; 16(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36984072

RESUMEN

The increasing climate crisis requires an improvement in renewable energy technologies. One of them are fuel cells, devices that are capable of generating electricity directly from the chemical reaction that is taking place inside of them. Despite the advantages of these solutions, a lack of the appropriate materials is holding them back from commercialization. This research shows preliminary results from a simple way to prepare black TiO2 coatings, doped with Cu or Ni using the plasma electrolytic oxidation process, which can be used as anodes in urea-fueled fuel cells. They show activity toward urea oxidation, with a maximum current density of 130 µA cm-2 (@1 V vs. Hg|HgO) observed for Cu-enhanced TiO2 and low potential of only 0.742 V (Vs Hg|HgO) required for 50 µA cm-2 for Ni-enhanced TiO2. These results demonstrate how the PEO process can be used for the preparation of TiO2-based doped materials with electrocatalytic properties toward urea electrooxidation.

10.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36770430

RESUMEN

Titanium dioxide (TiO2) nanomaterials have been widely used in photocatalytic energy conversion and environmental remediation due to their advantages of low cost, chemical stability, and relatively high photo-activity. However, applications of TiO2 have been restricted in the ultraviolet range because of the wide band gap. Broadening the light absorption of TiO2 nanomaterials is an efficient way to improve the photocatalytic activity. Thus, black TiO2 with extended light response range in the visible light and even near infrared light has been extensively exploited as efficient photocatalysts in the last decade. This review represents an attempt to conclude the recent developments in black TiO2 nanomaterials synthesized by modified treatment, which presented different structure, morphological features, reduced band gap, and enhanced solar energy harvesting efficiency. Special emphasis has been given to the newly developed synthetic methods, porous black TiO2, and the approaches for further improving the photocatalytic activity of black TiO2. Various black TiO2, doped black TiO2, metal-loaded black TiO2 and black TiO2 heterojunction photocatalysts, and their photocatalytic applications and mechanisms in the field of energy and environment are summarized in this review, to provide useful insights and new ideas in the related field.

11.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36770479

RESUMEN

Black TiO2 with abundant oxygen vacancies (OVs)/B-doped graphitic carbon nitride (g-C3N4) Z-scheme heterojunction nanocomposites are successfully prepared by the one-pot strategy. The OVs can improve not only photogenerated carrier separation, but also the sorption and activation of antibiotic compounds (tetracycline hydrochloride, TC). The prepared heterojunction photocatalysts with a narrow bandgap of ∼2.13 eV exhibit excellent photocatalytic activity for the degradation of tetracycline hydrochloride (65%) under visible light irradiation within 30 min, which is several times higher than that of the pristine one. The outstanding photocatalytic property can be ascribed to abundant OVs and B element-dope reducing the bandgap and extending the photo-response to the visible light region, the Z-scheme formation of heterojunctions preventing the recombination of photogenerated electrons and holes, and promoting their effective separation.

12.
Angew Chem Int Ed Engl ; 62(14): e202300406, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36754865

RESUMEN

Oxygen vacancies-enriched black TiO2 is one promising support for enhancing hydrogen evolution reaction (HER). Herein, oxygen vacancies enriched black TiO2 supported sub-nanometer Pt clusters (Pt/TiO2 -OV ) with metal support interactions is designed through solvent-free microwave and following low-temperature electroless approach for the first time. High-temperature and strong reductants are not required and then can avoid the aggregation of decorated Pt species. Experimental and theoretical calculation verify that the created oxygen vacancies and Pt clusters exhibit synergistic effects for optimizing the reaction kinetics. Based on it, Pt/TiO2 -OV presents remarkable electrocatalytic performance with 18 mV to achieve 10 mA cm-2 coupled with small Tafel slope of 12 mV dec-1 . This work provides quick synthetic strategy for preparing black titanium dioxide based nanomaterials.

13.
J Colloid Interface Sci ; 630(Pt B): 382-393, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36332431

RESUMEN

A consensus is yet to be reached on the effects of oxygen vacancy (VO) on the performance of TiO2 for photocatalytic water splitting as contrasting viewpoints have been presented in the latest researches. Herein, a comprehensive set of spectroelectrochemical methods are deployed to clearly reveal the advantages and disadvantages of VO on the performance of TiO2. The results indicate that surface VO improves the photocatalytic activity while bulk VO has a negative effect on the water reduction performance of TiO2. Intensity-modulated photocurrent spectroscopy (IMPS) and UV-vis spectroscopy provide compelling evidence that the improvement of H2 evolution can be attributed to the presence of defect level, while the low interface charge transfer efficiency caused by surface VO limits the further improvement of photocatalytical H2 evolution, which can be alleviated by an organic hole transport coating. The density functional theory (DFT) and surface photovoltaic (SPV) analyses confirm that the built-in field between TiO2 and hole molecules is the reason for the interface charge transfer efficiency improvement. Our findings provide a comprehensive understanding of VO in TiO2 by carrier behavior analysis and a scheme to further promote the photocatalytic performance.

14.
Nanomaterials (Basel) ; 12(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500917

RESUMEN

Quantum dot-sensitized solar cells (QDSSC) have been regarded as one of the most promising candidates for effective utilization of solar energy, but its power conversion efficiency (PCE) is still far from meeting expectations. One of the most important bottlenecks is the limited collection efficiency of photogenerated electrons in the photoanodes. Herein, we design QDSSCs with a dual-photoanode architecture, and assemble the dual photoanodes with black TiO2 nanoparticles (NPs), which were processed by a femtosecond laser in the filamentation regime, and common CdS/CdSe QD sensitizers. A maximum PCE of 11.7% with a short circuit current density of 50.3 mA/cm2 is unambiguously achieved. We reveal both experimentally and theoretically that the enhanced PCE is mainly attributed to the improved light harvesting of black TiO2 due to the black TiO2 shells formed on white TiO2 NPs.

15.
Nanomaterials (Basel) ; 12(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893534

RESUMEN

Special attention has recently been paid to surface-defective titanium dioxide and black TiO2 with advanced optical, electrical, and photocatalytic properties. Synthesis of these materials for photodegradation and mineralization of persistent organic pollutants in water, especially under visible radiation, presents interest from scientific and application points of view. Chemical reduction by heating a TiO2 and NaBH4 mixture at 350 °C successfully introduced Ti3+ defects and oxygen vacancies at the surface of TiO2, with an increase in the photocatalytic degradation of amoxicillin-an antibiotic that is present in wastewater due to its intense use in human and animal medicine. Three TiO2 samples were prepared at different annealing temperatures to control the ratio between anatase and rutile and were subjected to chemical reduction. Electron paramagnetic resonance investigations showed that the formation of surface Ti3+ defects in a high concentration occurred mainly in the anatase sample annealed at 400 °C, contributing to the bandgap reduction from 3.32 eV to 2.92 eV. The reduced band gap enhances visible light absorption and the efficiency of photocatalysis. The nanoparticles of ~90 m2/g specific surface area and 12 nm average size exhibit ~100% efficiency in the degradation of amoxicillin under simulated solar irradiation compared with pristine TiO2. Mineralization of amoxicillin and by-products was over 75% after 48 h irradiation for the anatase sample, where the Ti3+ defects were present in a higher concentration at the catalyst's surface.

16.
J Nanobiotechnology ; 20(1): 315, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794573

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest malignant tumors with features of matrix barrier caused poor drug permeability, and susceptibility to drug resistance. Herein, a PDAC and its stromal cell dual-targeted photothermal-chemotherapy strategy is explored to loosen the matrix and reverse drug resistance. To achieve this goal, black TiO2-Gd nanocomposites were conjugated with insulin like growth factor 1 (IGF1), and loaded with gemcitabine (GEM) to construct bTiO2-Gd-IGF1-GEM nanoprobes. In vitro results show that under 808 nm near-infrared irradiation, killing effect of the nanoprobes on drug-resistant MIA PaCa-2 cell is 3.3 times than that of GEM alone. In vivo experiments indicate the synergetic photothermal-chemotherapy not only loosens fibrous matrix of pancreatic tumor model, but also dramatically inhibits tumor growth, and almost completely eradicates the tumor after 12 days of treatment. In addition, relaxation rate of the nanoprobes is 8.2 times than commercial contrast agent Magnevist, therefore boosts the signal of magnetic resonance imaging in pancreatic tumor. In conclusion, our results reinforce that the prepared nanoprobes are promising to break matrix barrier and overcome drug resistance in PDAC.


Asunto(s)
Neoplasias Pancreáticas , Gadolinio DTPA , Humanos , Factor I del Crecimiento Similar a la Insulina , Imagen por Resonancia Magnética , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Titanio , Neoplasias Pancreáticas
17.
Nanomaterials (Basel) ; 12(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35564210

RESUMEN

In this research, changes in several characteristics of partially reduced titania were studied. The reduction process used made it possible to gradually observe changes in the material depending on the amount of reducing agent used. We used NaBH4 to impregnate commercial TiO2 with isopropyl alcohol. Impregnated TiO2 nanoparticles were dried and thermally treated in a nitrogen flow to obtain blue titania samples. Thorough spectroscopic characterization showed that oxygen atoms from hydroxyl groups, as well as from the surface, and the lattice of TiO2 was consumed. This caused changes in the surface and even in the bulk of TiO2 when the amount of reducing agent used was increased. Structural, optical, superficial, and textural characteristics were studied using XRD, Raman, DRS UV-Vis-NIR, Mid-DRIFT, XPS, and nitrogen adsorption/desorption isotherms. A photocatalytic test of the degradation of methylene blue dye was performed. Among different effects on the mentioned characteristics, we found evidence of changes in the surface properties of the blue titania samples and their probable effect on the photocatalytic properties. The reduction process implied a preponderant decrease in the surface hydrophilicity of the reduced samples, an effect shown for the first time in this type of material.

18.
Small ; 18(22): e2200708, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35535477

RESUMEN

Titanium miniplates are biocompatible materials used in modern oral and maxillofacial surgery to treat facial bone fractures. However, plate removal is often required due to implant complications. Among them, a biofilm formation on an infected miniplate is associated with severe inflammation, which frequently results in implant failure. In light of this, new strategies to control or treat oral bacterial biofilm are of high interest. Herein, the authors exploit the ability of nanorobots against multispecies bacterial biofilm grown onto facial commercial titanium miniplate implants to simulate pathogenic conditions of the oral microenvironment. The strategy is based on the use of light-driven self-propelled tubular black-TiO2 /Ag nanorobots, that unlike traditional ones, exhibit an extended absorption and motion actuation from UV to the visible-light range. The motion analysis is performed separately over UV, blue, and green light irradiation and shows different motion behaviors, including a fast rotational motion that decreases with increasing wavelengths. The biomass reduction is monitored by evaluating LIVE/DEAD fluorescent and digital microscope images of bacterial biofilm treated with the nanorobots under motion/no-motion conditions. The current study and the obtained results can bring significant improvements for effective therapy of infected metallic miniplates by biofilm.


Asunto(s)
Biopelículas , Titanio , Bacterias , Prótesis e Implantes
19.
J Hazard Mater ; 433: 128796, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366445

RESUMEN

Black TiO2 nanotube arrays (black TNAs) suffer from the low activity and deactivation for peroxymonosulfate (PMS) activation, which limit their application in the oxidative destruction of organic pollutants in water. Here, we report an efficient, environmentally benign, and cost-effective method to enhance the catalytic activity and prevent the deactivation of black TNAs in PMS activation by utilizing solar energy. Optical absorption and electrochemical analysis and density functional theory calculations demonstrated that abundant oxygen vacancies (estimated to be 26%) on the black TNAs surface markedly improved solar light absorption and electrical conductivity and played a critical role as a catalytic active site for PMS activation. As a result, the solar light-irradiated black TNAs/PMS system exhibited the higher phenol degradation rate (k = 0.0488 min-1) and total organic carbon (TOC) removal efficiency (~70%) compared to other TNAs systems. These results were ascribed to the switching of the reaction mechanism from non-radical mechanism to radical-involved. Black TNAs oxidized organic pollutants by mediating electron transfer from organics to PMS in the dark (i.e., a non-radical pathway). On the other hand, PMS activation under solar light irradiation involved the production of highly reactive sulfate and hydroxyl radicals (i.e., radical pathway), markedly improving the degradation and mineralization of organics. Additionally, the solar light-irradiated black TNAs showed relative pH-independence for PMS activation and durable catalytic performance without the loss of activity during the repetitive reaction cycles.

20.
Bioact Mater ; 17: 18-28, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35386468

RESUMEN

Given that apoptosis increases the risk of plaque rupture, strategies that reduce intracellular lipid levels without killing foam cells are warranted for safe and effective treatment of atherosclerosis. In this study, a mild phototherapy strategy is carried out to achieve the hypothesis. Foam cell-targeted nanoprobes that allow photothermal therapy (PTT) and/or photodynamic therapy (PDT) were prepared by loading hyaluronan and porphine onto black TiO2 nanoparticles. The results showed that when temperatures below 45 °C, PTT alone and PTT + PDT significantly reduced the intracellular lipid burden without inducing evidently apoptosis or necrosis. In contrast, the use of PDT alone resulted in only a slight reduction in lipid levels and induced massive apoptosis or necrosis. The protective effect against apoptosis or necrosis after mild-temperature PTT and PTT + PDT was correlated with the upregulation of heat shock protein 27. Further, mild-temperature PTT and PTT + PDT attenuated intracellular cholesterol biosynthesis and excess cholesterol uptake via the SREBP2/LDLR pathway, and also triggered ABCA1-mediated cholesterol efflux, ultimately inhibiting lipid accumulation in foam cells. Our results offer new insights into the mechanism of lipid regulation in foam cells and indicate that the black TiO2 nanoprobes could allow safer and more effective phototherapy of atherosclerosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA