Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Case Rep Oncol ; 17(1): 818-830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144242

RESUMEN

Introduction: Nephroblastoma, or Wilms' tumor, is a malignant renal neoplasm commonly found in children, is extremely rare in adults representing only 0.5% of all renal neoplasms. Adult Wilms tumor is rare, to our knowledge fewer than 300 cases have been reported in the English literature to date. However, in older adults after 60 years of age, only less than 45 cases have been reported. For this reason, treatment guidelines in adults still are lacking. Prognosis in nephroblastoma for adult patients is found to be worse than in children. Case Presentation: We report the case of a 65-year-old female with lumbar fossa mass, flank pain and hematuria, and pathologic diagnosis of Wilms tumor. We performed nephrectomy. No adjuvant treatment was given. Our patient remains asymptomatic and without evidence of recurrence 12 months after the surgery. Conclusion: Nephroblastoma in the elderly presents different clinical behavior and prognosis compared to nephroblastoma in children.

2.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950937

RESUMEN

The capacity to regenerate lost tissues varies significantly among animals. Some phyla, such as the annelids, display substantial regenerating abilities, although little is known about the cellular mechanisms underlying the process. To precisely determine the origin, plasticity and fate of the cells participating in blastema formation and posterior end regeneration after amputation in the annelid Platynereis dumerilii, we developed specific tools to track different cell populations. Using these tools, we find that regeneration is partly promoted by a population of proliferative gut cells whose regenerative potential varies as a function of their position along the antero-posterior axis of the worm. Gut progenitors from anterior differentiated tissues are lineage restricted, whereas gut progenitors from the less differentiated and more proliferative posterior tissues are much more plastic. However, they are unable to regenerate the stem cells responsible for the growth of the worms. Those stem cells are of local origin, deriving from the cells present in the segment abutting the amputation plane, as are most of the blastema cells. Our results favour a hybrid and flexible cellular model for posterior regeneration in Platynereis relying on different degrees of cell plasticity.


Asunto(s)
Plasticidad de la Célula , Proliferación Celular , Poliquetos , Regeneración , Animales , Regeneración/fisiología , Poliquetos/fisiología , Poliquetos/citología , Plasticidad de la Célula/fisiología , Células Madre/citología , Diferenciación Celular/fisiología , Anélidos/fisiología
3.
Ann Anat ; 255: 152288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823491

RESUMEN

BACKGROUND: The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES: This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS: Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS: Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.


Asunto(s)
Ambystoma mexicanum , Extremidades , Regeneración , Animales , Humanos , Regeneración/fisiología , Extremidades/fisiología , Ambystoma mexicanum/fisiología , Investigación Biomédica Traslacional , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Amputación Quirúrgica
4.
bioRxiv ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38915675

RESUMEN

The mouse digit tip regenerates following amputation, a process mediated by a cellularly heterogeneous blastema. We previously found the gene Mest to be highly expressed in mesenchymal cells of the blastema and a strong candidate pro-regenerative gene. We now show Mest digit expression is regeneration-specific and not upregulated in post-amputation fibrosing proximal digits. Mest homozygous knockout mice exhibit delayed bone regeneration though no phenotype is found in paternal knockout mice, inconsistent with the defined maternal genomic imprinting of Mest. We demonstrate that promoter switching, not loss of imprinting, regulates biallelic Mest expression in the blastema and does not occur during embryogenesis, indicating a regeneration-specific mechanism. Requirement for Mest expression is tied to modulating neutrophil response, as revealed by scRNAseq and FACS comparing wildtype and knockout blastemas. Collectively, the imprinted gene Mest is required for proper digit tip regeneration and its blastema expression is facilitated by promoter switching for biallelic expression.

5.
Phytomedicine ; 130: 155553, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38820664

RESUMEN

INTRODUCTION: Non-healing wounds resulting from trauma, surgery, and chronic diseases annually affect millions of individuals globally, with limited therapeutic strategies available due to the incomplete understanding of the molecular processes governing tissue repair and regeneration. Salvianolic acid B (Sal B) has shown promising bioactivities in promoting angiogenesis and inhibiting inflammation. However, its regulatory mechanisms in tissue regeneration remain unclear. PURPOSE: This study aims to investigate the effects of Sal B on wound healing and regeneration processes, along with its underlying molecular mechanisms, by employing zebrafish as a model organism. METHODS: In this study, we employed a multifaceted approach to evaluate the impact of Sal B on zebrafish tail fin regeneration. We utilized whole-fish immunofluorescence, TUNEL staining, mitochondrial membrane potential (MMP), and Acridine Orange (AO) probes to analyze the tissue repair and regenerative under Sal B treatment. Additionally, we utilized transgenic zebrafish strains to investigate the migration of inflammatory cells during different phases of fin regeneration. To validate the importance of Caveolin-1 (Cav1) in tissue regeneration, we delved into its functional role using molecular docking and Morpholino-based gene knockdown techniques. Additionally, we quantified Cav1 expression levels through the application of in situ hybridization. RESULTS: Our findings demonstrated that Sal B expedites zebrafish tail fin regeneration through a multifaceted mechanism involving the promotion of cell proliferation, suppression of apoptosis, and enhancement of MMP. Furthermore, Sal B was found to exert regulatory control over the dynamic aggregation and subsequent regression of immune cells during tissue regenerative processes. Importantly, we observed that the knockdown of Cav1 significantly compromised tissue regeneration, leading to an excessive infiltration of immune cells and increased levels of apoptosis. Moreover, the knockdown of Cav1 also affects blastema formation, a critical process influenced by Cav1 in tissue regeneration. CONCLUSION: The results of this study showed that Sal B facilitated tissue repair and regeneration through regulating of immune cell migration and Cav1-mediated fibroblast activation, promoting blastema formation and development. This study highlighted the potential pharmacological effects of Sal B in promoting tissue regeneration. These findings contributed to the advancement of regenerative medicine research and the development of novel therapeutic approaches for trauma.


Asunto(s)
Benzofuranos , Caveolina 1 , Cicatrización de Heridas , Pez Cebra , Animales , Aletas de Animales/efectos de los fármacos , Aletas de Animales/fisiología , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Benzofuranos/farmacología , Caveolina 1/metabolismo , Movimiento Celular/efectos de los fármacos , Depsidos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Regeneración/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo
7.
Biol Rev Camb Philos Soc ; 99(5): 1868-1888, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38817123

RESUMEN

The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.


Asunto(s)
Evolución Biológica , Regeneración , Vertebrados , Animales , Vertebrados/fisiología , Vertebrados/genética , Regeneración/genética , Regeneración/fisiología , Extremidades/fisiología
8.
Dev Dyn ; 253(2): 181-203, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37638700

RESUMEN

In response to injury, humans and many other mammals form a fibrous scar that lacks the structure and function of the original tissue, whereas other vertebrate species can spontaneously regenerate damaged tissues and structures. Peripheral nerves have been identified as essential mediators of wound healing and regeneration in both mammalian and nonmammalian systems, interacting with the milieu of cells and biochemical signals present in the post-injury microenvironment. This review examines the diverse functions of peripheral nerves in tissue repair and regeneration, specifically during the processes of wound healing, blastema formation, and organ repair. We compare available evidence in mammalian and nonmammalian models, identifying critical nerve-mediated mechanisms for regeneration and providing future perspectives toward integrating these mechanisms into a therapeutic framework to promote regeneration.


Asunto(s)
Cicatriz , Mamíferos , Animales , Humanos
9.
J Exp Biol ; 227(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099598

RESUMEN

The occurrence of regeneration of the organs involved in respiratory gas exchange amongst vertebrates is heterogeneous. In some species of amphibians and fishes, the gills regenerate completely following resection or amputation, whereas in mammals, only partial, facultative regeneration of lung tissue occurs following injury. Given the homology between gills and lungs, the capacity of gill regeneration in aquatic species is of major interest in determining the underlying molecular or signalling pathways involved in respiratory organ regeneration. In the present study, we used adult zebrafish (Danio rerio) to characterize signalling pathways involved in the early stages of gill regeneration. Regeneration of the gills was induced by resection of gill filaments and observed over a period of up to 10 days. We screened for the effects on regeneration of the drugs SU5402, dorsomorphin and LY411575, which inhibit FGF, BMP or Notch signalling pathways, respectively. Exposure to each drug for 5 days significantly reduced regrowth of filament tips in regenerating tissue, compared with unresected controls. In separate experiments under normal conditions of regeneration, we used reverse transcription quantitative PCR and observed an increased expression of genes encoding for the bone morphogenetic factor, Bmp2b, fibroblast growth factor, Fgf8a, a transcriptional regulator (Her6) involved in Notch signalling, and Sonic Hedgehog (Shha), in regenerating gills at 10 day post-resection, compared with unresected controls. In situ hybridization confirmed that all four genes were expressed in regenerating gill tissue. This study implicates BMP, FGF, Notch and Shh signalling in gill regeneration in zebrafish.


Asunto(s)
Branquias , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Branquias/metabolismo , Proteínas Hedgehog , Transducción de Señal/genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Pez Cebra/genética , Mamíferos/metabolismo
10.
Dev Biol ; 507: 64-72, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38160963

RESUMEN

Regeneration is a fascinating phenomenon observed in various organisms across the animal kingdom. Different orders of class Insecta are reported to possess comprehensive regeneration abilities. Several signalling molecules, such as morphogens, growth factors, and others trigger a cascade of events that promote wound healing, blastema formation, growth, and repatterning. Furthermore, epigenetic regulation has emerged as a critical player in regulating the process of regeneration. This report highlights the major breakthrough research on wound healing and tissue regeneration. Exploring and reviewing the molecular basis of regeneration can be helpful in the area of regenerative medicine advancements. The understanding gathered from this framework can potentially contribute to hypothesis designing with implications in the field of synthetic biology and human health.


Asunto(s)
Epigénesis Genética , Transducción de Señal , Animales , Humanos , Insectos
11.
Am J Physiol Cell Physiol ; 326(2): C505-C512, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105753

RESUMEN

Cellular reprogramming is characterized by the induced dedifferentiation of mature cells into a more plastic and potent state. This process can occur through artificial reprogramming manipulations in the laboratory such as nuclear reprogramming and induced pluripotent stem cell (iPSC) generation, and endogenously in vivo during amphibian limb regeneration. In amphibians such as the Mexican axolotl, a regeneration permissive environment is formed by nerve-dependent signaling in the wounded limb tissue. When exposed to these signals, limb connective tissue cells dedifferentiate into a limb progenitor-like state. This state allows the cells to acquire new pattern information, a property called positional plasticity. Here, we review our current understanding of endogenous reprogramming and why it is important for successful regeneration. We will also explore how naturally induced dedifferentiation and plasticity were leveraged to study how the missing pattern is established in the regenerating limb tissue.


Asunto(s)
Ambystoma mexicanum , Transducción de Señal , Animales , Reprogramación Celular
12.
Front Cell Dev Biol ; 11: 1101480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965571

RESUMEN

Introduction: The MRL mouse strain is one of the few examples of a mammal capable of healing appendage wounds by regeneration, a process that begins with the formation of a blastema, a structure containing de-differentiating mesenchymal cells. HIF-1α expression in the nascent MRL wound site blastema is one of the earliest identified events and is sufficient to initiate the complete regenerative program. However, HIF-1α regulates many cellular processes modulating the expression of hundreds of genes. A later signal event is the absence of a functional G1 checkpoint, leading to G2 cell cycle arrest with increased cellular DNA but little cell division observed in the blastema. This lack of mitosis in MRL blastema cells is also a hallmark of regeneration in classical invertebrate and vertebrate regenerators such as planaria, hydra, and newt. Results and discussion: Here, we explore the cellular events occurring between HIF-1α upregulation and its regulation of the genes involved in G2 arrest (EVI-5, γH3, Wnt5a, and ROR2), and identify epithelial-mesenchymal transition (EMT) (Twist and Slug) and chromatin remodeling (EZH-2 and H3K27me3) as key intermediary processes. The locus of these cellular events is highly regionalized within the blastema, occurring in the same cells as determined by double staining by immunohistochemistry and FACS analysis, and appears as EMT and chromatin remodeling, followed by G2 arrest determined by kinetic expression studies.

13.
Dev Cell ; 58(22): 2416-2427.e7, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37879337

RESUMEN

Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.


Asunto(s)
Ambystoma mexicanum , Senescencia Celular , Animales , Ambystoma mexicanum/metabolismo , Vía de Señalización Wnt , Células Madre , Proliferación Celular , Extremidades
14.
Front Cell Dev Biol ; 11: 1206157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635872

RESUMEN

Throughout the animal kingdom regenerative ability varies greatly from species to species, and even tissue to tissue within the same organism. The sheer diversity of structures and mechanisms renders a thorough comparison of molecular processes truly daunting. Are "blastemas" found in organisms as distantly related as planarians and axolotls derived from the same ancestral process, or did they arise convergently and independently? Is a mouse digit tip blastema orthologous to a salamander limb blastema? In other fields, the thorough characterization of a reference model has greatly facilitated these comparisons. For example, the amphibian Spemann-Mangold organizer has served as an amazingly useful comparative template within the field of developmental biology, allowing researchers to draw analogies between distantly related species, and developmental processes which are superficially quite different. The salamander limb blastema may serve as the best starting point for a comparative analysis of regeneration, as it has been characterized by over 200 years of research and is supported by a growing arsenal of molecular tools. The anatomical and evolutionary closeness of the salamander and human limb also add value from a translational and therapeutic standpoint. Tracing the evolutionary origins of the salamander blastema, and its relatedness to other regenerative processes throughout the animal kingdom, will both enhance our basic biological understanding of regeneration and inform our selection of regenerative model systems.

15.
Cells ; 12(10)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37408190

RESUMEN

In recent years, interest in the possible molecular regulators of cell proliferation and differentiation in a wide range of regeneration models has grown significantly, but the cell kinetics of this process remain largely a mystery. Here we try to elucidate the cellular aspects of regeneration by EdU incorporation in intact and posteriorly amputated annelid Alitta virens using quantitative analysis. We found that the main mechanism of blastema formation in A. virens is local dedifferentiation; mitotically active cells of intact segments do not significantly contribute to the blastemal cellular sources. Amputation-induced proliferation occurred predominantly within the epidermal and intestinal epithelium, as well as wound-adjacent muscle fibers, where clusters of cells at the same stage of the cell cycle were found. The resulting regenerative bud had zones of high proliferative activity and consisted of a heterogeneous population of cells that differed in their anterior-posterior positions and in their cell cycle parameters. The data presented allowed for the quantification of cell proliferation in the context of annelid regeneration for the first time. Regenerative cells showed an unprecedentedly high cycle rate and an exceptionally large growth fraction, making this regeneration model especially valuable for studying coordinated cell cycle entry in vivo in response to injury.


Asunto(s)
Anélidos , Poliquetos , Animales , Poliquetos/fisiología , Proliferación Celular , Diferenciación Celular/fisiología , División Celular
16.
Front Cell Dev Biol ; 11: 1217185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325560

RESUMEN

Understanding the remarkable capacity of vertebrates to naturally regenerate injured body parts has great importance for potential translation into human therapeutic applications. As compared to other vertebrates, mammals have low regenerative capacity for composite tissues like the limb. However, some primates and rodents can regenerate the distal tips of their digits following amputation, indicating that at least very distal mammalian limb tissues are competent for innate regeneration. It follows that successful digit tip regenerative outcome is highly dependent on the location of the amputation; those proximal to the position of the nail organ do not regenerate and result in fibrosis. This distal regeneration versus proximal fibrosis duality of the mouse digit tip serves as a powerful model to investigate the driving factors in determining each process. In this review, we present the current understanding of distal digit tip regeneration in the context of cellular heterogeneity and the potential for different cell types to function as progenitor cells, in pro-regenerative signaling, or in moderating fibrosis. We then go on to discuss these themes in the context of what is known about proximal digit fibrosis, towards generating hypotheses for these distinct healing processes in the distal and proximal mouse digit.

17.
Front Oncol ; 13: 1091274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007076

RESUMEN

Introduction: Wilms Tumor (WT), or nephroblastoma, is the most common pediatric kidney cancer. Most WTs display a "favorable" triphasic histology, in which the tumor is comprised of blastemal, stromal, and epithelial cell types. Blastemal predominance after neoadjuvant chemotherapy or diffuse anaplasia ("unfavorable" histology; 5-8%) portend a worse prognosis. Blastema likely provide the putative cancer stem cells (CSCs), which retain molecular and histologic features characteristic of nephron progenitor cells (NPCs), within WTs. NPCs arise in the metanephric mesenchyme (MM) and populate the cap mesenchyme (CM) in the developing kidney. WT blastemal cells, like NPCs, similarly express markers, SIX2 and CITED1. Tumor xenotransplantation is currently the only dependable method to propagate tumor tissue for research or therapeutic screening, since efforts to culture tumors in vitro as monolayers have invariably failed. Therefore, a critical need exists to propagate WT stem cells rapidly and efficiently for high-throughput, real-time drug screening. Methods: Previously, our lab developed niche conditions that support the propagation of murine NPCs in culture. Applying similar conditions to WTs, we assessed our ability to maintain key NPC "stemness" markers, SIX2, NCAM, and YAP1, and CSC marker ALDHI in cells from five distinct untreated patient tumors. Results: Accordingly, our culture conditions maintained the expression of these markers in cultured WT cells through multiple passages of rapidly dividing cells. Discussion: These findings suggest that our culture conditions sustain the WT blastemal population, as previously shown for normal NPCs. As a result, we have developed new WT cell lines and a multi-passage in vitro model for studying the blastemal lineage/CSCs in WTs. Furthermore, this system supports growth of heterogeneous WT cells, upon which potential drug therapies could be tested for efficacy and resistance.

18.
Dev Cell ; 58(6): 450-460.e6, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36893754

RESUMEN

Building a blastema from the stump is a key step of salamander limb regeneration. Stump-derived cells temporarily suspend their identity as they contribute to the blastema by a process generally referred to as dedifferentiation. Here, we provide evidence for a mechanism that involves an active inhibition of protein synthesis during blastema formation and growth. Relieving this inhibition results in a higher number of cycling cells and enhances the pace of limb regeneration. By small RNA profiling and fate mapping of skeletal muscle progeny as a cellular model for dedifferentiation, we find that the downregulation of miR-10b-5p is critical for rebooting the translation machinery. miR-10b-5p targets ribosomal mRNAs, and its artificial upregulation causes decreased blastema cell proliferation, reduction in transcripts that encode ribosomal subunits, diminished nascent protein synthesis, and retardation of limb regeneration. Taken together, our data identify a link between miRNA regulation, ribosome biogenesis, and protein synthesis during newt limb regeneration.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Animales , Urodelos/genética , ARN Pequeño no Traducido/metabolismo , Músculo Esquelético/metabolismo , Ribosomas/genética , MicroARNs/genética , MicroARNs/metabolismo , Extremidades/fisiología
19.
Curr Protoc ; 3(3): e684, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36877155

RESUMEN

Due to their strong regenerative capabilities, freshwater planarians are a well-suited model system for studying the effects of chemicals on stem cell biology and regeneration. After amputation, a planarian will regenerate the missing body parts within 1 to 2 weeks. Because planarians have a distinct head morphology that can be easily identified, head and eye regeneration has been a popular qualitative measure of toxicity. However, qualitative measures can only detect strong defects. Here, we present protocols for quantifying the rate of blastema growth to measure regeneration defects for assessment of chemical toxicity. Following amputation, a regenerative blastema forms at the wound site. Over the course of several days, the blastema grows and subsequently re-forms the missing anatomical structures. This growth can be measured by imaging the regenerating planarian. As the blastema tissue is unpigmented, it can be easily distinguished from the remaining pigmented body using standard image analysis techniques. Basic Protocol 1 provides a step-by-step guide for imaging regenerating planarians over several days of regeneration. Basic Protocol 2 describes the necessary steps for the quantification of blastema size using freeware. It is accompanied by video tutorials to facilitate adaptation. Basic Protocol 3 shows how to calculate the growth rate using linear curve fitting in a spreadsheet. The ease of implementation and low cost make this procedure suitable for an undergraduate laboratory teaching setting, in addition to typical research settings. Although we focus on head regeneration in Dugesia japonica, these protocols are adaptable to other wound sites and planarian species. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Imaging planarians during regeneration Basic Protocol 2: Quantitative analysis of blastema size with ImageJ Basic Protocol 3: Quantification of blastema growth rate.


Asunto(s)
Planarias , Animales , Regeneración Nerviosa , Aclimatación , Amputación Quirúrgica
20.
J Biol Rhythms ; 38(3): 269-277, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36960836

RESUMEN

The ability of flatworms to regenerate entire brain structures, and indeed much of their body from mere fragments of the whole animal, presents the unique opportunity to observe the development of day-night rhythms in adult animals. In many animals, young are arrhythmic, and their species-specific timing of activity develops as the animal matures. In this study, we created two flatworm cohorts, housed in isolation, that were regenerating either (1) the brain in a decapitated animal, or (2) major body structures in a bisected, tailless animal. In this way, we observed how bisection influenced the level of activity and diel rhythmicity, and how these developed as each flatworm regenerated. Here, we demonstrate that intact flatworms were predominantly active at night, with peaks in activity seen in the hours after lights-off and before lights-on. While decapitated and tailless flatworms could still move, both were less active than the original animal, and both segments retained a nocturnal lifestyle. Furthermore, decapitated flatworms, once regenerated, again showed a U-shaped pattern of nocturnal activity reminiscent of the two night-time peaks seen in the original animal. These results could be used to further investigate how regeneration may affect motor control and motor output, or to further investigate the presence of a clock in the flatworm brain.


Asunto(s)
Planarias , Animales , Ritmo Circadiano , Regeneración , Cabeza , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA