Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Cell Physiol ; : e31434, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279218

RESUMEN

Bone marrow adipose tissue (BMAT) accrues in osteoporosis, whereas its contribution to the progression of bone resorption remains insufficiently understood. To understand the mechanisms that promote BMAT expansion in osteoporosis, in the present study, we performed extensive analysis of the spatiotemporal pattern of BMAT expansion during the progression of bone resorption in TgRANKL transgenic mouse models of osteoporosis expressing human RANKL (receptor activator of nuclear factor-κB ligand). Our results showed that TgRANKL mice of both sexes developed dramatically increased BMAT expansion compared to wild-type (WT) littermates, that was analogous to the levels of RANKL expression and the severity of the bone loss phenotype. BMAT was formed at close proximity to areas undergoing active bone remodelling and bone resorption, whereas bone resorption preceded BMAT development. Expression analysis in bone fractions demonstrated that BMAT constitutes a major source for RANKL production. Ex vivo analysis of isolated bone marrow stromal cells from TgRANKL mice showed an increased adipogenic differentiation capacity compared to WT, while osteoclast supernatants further exaggerated adipogenesis, supporting a critical role of the osteoclast-derived secretome in the differentiation of bone marrow adipocytes. Furthermore, the effectiveness of an antiosteoporosis treatment in BMAT development was investigated upon treatment of TgRANKL models with the bisphosphonate alendronate. Notably, alendronate effectively improved bone mass and attenuated BMAT expansion, indicating a possible involvement of osteoclasts and bone resorption in BMAT development. On the contrary, inhibition of BMAT with PPARγ antagonists (GW9662 or BADGE) effectively ameliorated BMAT expansion but failed to reverse the osteoporotic phenotype of TgRANKL mice. Overall, our data demonstrate that TgRANKL mice constitute unique genetic mouse models for investigating the pathogenic mechanisms that regulate the development and expansion of BMAT in osteolytic diseases.

2.
Front Endocrinol (Lausanne) ; 15: 1422869, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948514

RESUMEN

Objectives: Obesity impairs bone marrow (BM) glucose metabolism. Adult BM constitutes mostly of adipocytes that respond to changes in energy metabolism by modulating their morphology and number. Here we evaluated whether diet or exercise intervention could improve the high-fat diet (HFD) associated impairment in BM glucose uptake (BMGU) and whether this associates with the morphology of BM adipocytes (BMAds) in rats. Methods: Eight-week-old male Sprague-Dawley rats were fed ad libitum either HFD or chow diet for 24 weeks. Additionally after 12 weeks, HFD-fed rats switched either to chow diet, voluntary intermittent running exercise, or both for another 12 weeks. BMAd morphology was assessed by perilipin-1 immunofluorescence staining in formalin-fixed paraffin-embedded tibial sections. Insulin-stimulated sternal and humeral BMGU were measured using [18F]FDG-PET/CT. Tibial microarchitecture and mineral density were measured with microCT. Results: HFD rats had significantly higher whole-body fat percentage compared to the chow group (17% vs 13%, respectively; p = 0.004) and larger median size of BMAds in the proximal tibia (815 µm2 vs 592 µm2, respectively; p = 0.03) but not in the distal tibia. Switch to chow diet combined with running exercise normalized whole-body fat percentage (p < 0.001) but not the BMAd size. At 32 weeks of age, there was no significant difference in insulin-stimulated BMGU between the study groups. However, BMGU was significantly higher in sternum compared to humerus (p < 0.001) and higher in 8-week-old compared to 32-week-old rats (p < 0.001). BMAd size in proximal tibia correlated positively with whole-body fat percentage (r = 0.48, p = 0.005) and negatively with humeral BMGU (r = -0.63, p = 0.02). HFD significantly reduced trabecular number (p < 0.001) compared to the chow group. Switch to chow diet reversed this as the trabecular number was significantly higher (p = 0.008) than in the HFD group. Conclusion: In this study we showed that insulin-stimulated BMGU is age- and site-dependent. BMGU was not affected by the study interventions. HFD increased whole-body fat percentage and the size of BMAds in proximal tibia. Switching from HFD to a chow diet and running exercise improved glucose homeostasis and normalized the HFD-induced increase in body fat but not the hypertrophy of BMAds.


Asunto(s)
Adiposidad , Médula Ósea , Dieta Alta en Grasa , Glucosa , Obesidad , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Dieta Alta en Grasa/efectos adversos , Médula Ósea/metabolismo , Glucosa/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo
3.
Biomed Pharmacother ; 176: 116843, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810405

RESUMEN

Hyperlipidemia-induced osteoporosis is marked by increased bone marrow adiposity, and treatment with statins for hyperlipidemia often leads to new-onset osteoporosis. Endosome-associated trafficking regulator 1 (ENTR1) has been found to interact with different proteins in pathophysiology, but its exact role in adipogenesis is not yet understood. This research aimed to explore the role of ENTR1 in adipogenesis and to discover a new small molecule that targets ENTR1 for evaluating its effectiveness in treating hyperlipidemia-induced osteoporosis. We found that ENTR1 expression increased during the adipogenesis of bone marrow mesenchymal cells (BMSCs). ENTR1 gain- and loss-of-function assays significantly enhanced lipid droplets formation. Mechanistically, ENTR1 binds peroxisome proliferator-activated receptor γ (PPARγ) and enhances its expression, thereby elevating adipogenic markers including C/EBPα and LDLR. Therapeutically, AN698/40746067 attenuated adipogenesis by targeting ENTR1 to suppress PPARγ. In vivo, AN698/40746067 reduced bone marrow adiposity and bone loss, as well as prevented lipogenesis-related obesity, inflammation, steatohepatitis, and abnormal serum lipid levels during hyperlipidemia. Together, these findings suggest that ENTR1 facilitates adipogenesis by PPARγ involved in BMSCs' differentiation, and targeted inhibition of ENTR1 by AN698/40746067 may offer a promising therapy for addressing lipogenesis-related challenges and alleviating osteoporosis following hyperlipidemia.


Asunto(s)
Adipogénesis , Médula Ósea , Hiperlipidemias , Células Madre Mesenquimatosas , Osteoporosis , PPAR gamma , Animales , Masculino , Ratones , Adipogénesis/efectos de los fármacos , Adiposidad/efectos de los fármacos , Médula Ósea/metabolismo , Médula Ósea/efectos de los fármacos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/etiología , Osteoporosis/prevención & control , PPAR gamma/metabolismo
4.
Equine Vet J ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699829

RESUMEN

BACKGROUND: Magnetic resonance spectroscopy (MRS) has been used to investigate metabolic changes within human bone. It may be possible to use MRS to investigate bone metabolism and fracture risk in the distal third metacarpal/tarsal bone (MC/MTIII) in racehorses. OBJECTIVES: To determine the feasibility of using MRS as a quantitative imaging technique in equine bone by using the 1H spectra for the MC/MTIII to calculate fat content (FC). STUDY DESIGN: Observational cross-sectional study. METHODS: Limbs from Thoroughbred racehorses were collected from horses that died or were subjected to euthanasia on racecourses. Each limb underwent magnetic resonance imaging (MRI) at 3 T followed by single-voxel MRS at three regions of interest (ROI) within MC/MTIII (lateral condyle, medial condyle, proximal bone marrow [PBM]). Percentage FC was calculated at each ROI. Each limb underwent computed tomography (CT) and bone mineral density (BMD) was calculated for the same ROIs. All MR and CT images were graded for sclerosis. Histology slides were graded for sclerosis and proximal marrow space was calculated. Pearson or Spearman correlations were used to assess the relationship between BMD, FC and marrow space. Kruskal-Wallis tests were used to check for differences between sclerosis groups for BMD or FC. RESULTS: Eighteen limbs from 10 horses were included. A negative correlation was identified for mean BMD and FC for the lateral condyle (correlation coefficient = -0.60, p = 0.01) and PBM (correlation coefficient = -0.5, p = 0.04). There was a significant difference between median BMD for different sclerosis grades in the condyles on both MRI and CT. A significant difference in FC was identified between sclerosis groups in the lateral condyle on MRI and CT. MAIN LIMITATIONS: Small sample size. CONCLUSIONS: 1H Proton MRS is feasible in the equine MC/MTIII. Further work is required to evaluate the use of this technique to predict fracture risk in racehorses.

5.
Comput Struct Biotechnol J ; 24: 89-104, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38268780

RESUMEN

Background: Bone marrow adipose tissue (BMAT) represents > 10% fat mass in healthy humans and can be measured by magnetic resonance imaging (MRI) as the bone marrow fat fraction (BMFF). Human MRI studies have identified several diseases associated with BMFF but have been relatively small scale. Population-scale studies therefore have huge potential to reveal BMAT's true clinical relevance. The UK Biobank (UKBB) is undertaking MRI of 100,000 participants, providing the ideal opportunity for such advances. Objective: To establish deep learning for high-throughput multi-site BMFF analysis from UKBB MRI data. Materials and methods: We studied males and females aged 60-69. Bone marrow (BM) segmentation was automated using a new lightweight attention-based 3D U-Net convolutional neural network that improved segmentation of small structures from large volumetric data. Using manual segmentations from 61-64 subjects, the models were trained to segment four BM regions of interest: the spine (thoracic and lumbar vertebrae), femoral head, total hip and femoral diaphysis. Models were tested using a further 10-12 datasets per region and validated using datasets from 729 UKBB participants. BMFF was then quantified and pathophysiological characteristics assessed, including site- and sex-dependent differences and the relationships with age, BMI, bone mineral density, peripheral adiposity, and osteoporosis. Results: Model accuracy matched or exceeded that for conventional U-Nets, yielding Dice scores of 91.2% (spine), 94.5% (femoral head), 91.2% (total hip) and 86.6% (femoral diaphysis). One case of severe scoliosis prevented segmentation of the spine, while one case of Non-Hodgkin Lymphoma prevented segmentation of the spine, femoral head and total hip because of T2 signal depletion; however, successful segmentation was not disrupted by any other pathophysiological variables. The resulting BMFF measurements confirmed expected relationships between BMFF and age, sex and bone density, and identified new site- and sex-specific characteristics. Conclusions: We have established a new deep learning method for accurate segmentation of small structures from large volumetric data, allowing high-throughput multi-site BMFF measurement in the UKBB. Our findings reveal new pathophysiological insights, highlighting the potential of BMFF as a novel clinical biomarker. Applying our method across the full UKBB cohort will help to reveal the impact of BMAT on human health and disease.

6.
7.
J Bone Miner Res ; 38(12): 1877-1884, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37904318

RESUMEN

Type 2 diabetes (T2D) has negative effects on skeletal health. A proposed mechanism of diabetic bone disease connects hyperlipidemia to increased bone marrow adiposity and decreased bone quality. Previous research on Type 1 diabetes reported positive associations between serum lipid levels and marrow adiposity, but no data exist for T2D. In addition, marrow adiposity is sex-dependent in healthy populations, but sex has not been addressed adequately in previous reports of marrow adiposity in T2D. The purpose of this study was to quantify associations of marrow adiposity and composition with T2D status, serum lipid levels, and sex. T2D patients and normoglycemic controls (n = 39/37) were included. Single-voxel magnetic resonance spectroscopy (MRS) was performed at the spine and tibia. Quantitative MRS outcomes of marrow adiposity and composition were calculated. Linear regression models were used to compare MRS outcomes among groups and to evaluate associations of MRS outcomes with serum lipid levels. All analyses were performed on sex-stratified subgroups. Total, unsaturated, and saturated fat content at the spine were lower in T2D participants compared to controls in age-adjusted models; these differences were significant in men but not in women. In our study cohort, total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were lower in T2D participants compared to controls. Adjustment for LDL, HDL, and statin use attenuated the association of T2D status with unsaturated fat but not saturated fat in men. Further analysis confirmed significant associations between serum lipid levels and MRS outcomes. Specifically, we found a positive association between LDL cholesterol and total marrow fat in the male T2D group and a negative association between HDL and total marrow fat in the female T2D group. In conclusion, our results suggest that marrow adiposity and composition are associated with lipid levels as well as T2D status, and these relationships are sex-specific. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Femenino , Médula Ósea , Adiposidad , Obesidad , Lípidos
8.
Bone ; 176: 116888, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37652285

RESUMEN

The effect of diet-induced obesity on bone in rodents is variable, with bone mass increases, decreases, and no impact reported. The goal of this study was to evaluate whether the composition of obesogenic diet may influence bone independent of its effect on body weight. As proof-of-principle, we used a mouse model to compare the skeletal effects of a commonly used high fat 'Western' diet and a modified high fat diet. The modified high fat diet included ground English walnut and was isocaloric for macronutrients, but differed in fatty acid composition and contained nutrients (e.g. polyphenols) not present in the standard 'Western' diet. Eight-week-old mice were randomized into 1 of 3 dietary treatments (n = 8/group): (1) low fat control diet (LF; 10 % kcal fat); (2) high fat 'Western' diet (HF; 46 % kcal fat as soybean oil and lard); or (3) modified high fat diet supplemented with ground walnuts (HF + walnut; 46 % kcal fat as soybean oil, lard, and walnut) and maintained on their respective diets for 9 weeks. Bone response in femur was then evaluated using dual energy x-ray absorptiometry, microcomputed tomography, and histomorphometry. Consumption of both obesogenic diets resulted in increased weight gain but differed in impact on bone and bone marrow adiposity in distal femur metaphysis. Mice consuming the high fat 'Western' diet exhibited a tendency for lower cancellous bone volume fraction and connectivity density, and had lower osteoblast-lined bone perimeter (an index of bone formation) and higher bone marrow adiposity than low fat controls. Mice fed the modified high fat diet did not differ from mice fed control (low fat) diet in cancellous bone microarchitecture, or osteoblast-lined bone perimeter, and exhibited lower bone marrow adiposity compared to mice fed the 'Western' diet. This proof-of-principal study demonstrates that two obesogenic diets, similar in macronutrient distribution and induction of weight gain, can have different effects on cancellous bone in distal femur metaphysis. Because the composition of the diets used to induce obesity in rodents does not recapitulate a common human diet, our finding challenges the translatability of rodent studies evaluating the impact of diet-induced obesity on bone.


Asunto(s)
Dieta Alta en Grasa , Aceite de Soja , Animales , Masculino , Ratones , Diáfisis , Dieta Alta en Grasa/efectos adversos , Obesidad/etiología , Aumento de Peso , Microtomografía por Rayos X
9.
Front Endocrinol (Lausanne) ; 14: 1178464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404309

RESUMEN

Objectives: Although paravertebral intramuscular fatty infiltration (known as myosteatosis) following a vertebral fracture is well-known, scarce data are available regarding interactions between muscle, bone, and other fat depots. Based on a homogeneous cohort comprising postmenopausal women with or without a history of fragility fracture, we aimed to better depict the interrelationship between myosteatosis and bone marrow adiposity (BMA). Methods: 102 postmenopausal women were included, 56 of whom had a fragility fracture. Mean proton density fat fraction (PDFF) was measured in the psoas (PDFFPsoas) and paravertebral (PDFFParavertebral) muscles at the lumbar level, as well as in the lumbar spine and non-dominant hip using chemical shift encoding-based water-fat imaging. Visceral adipose tissue (VAT) and total body fat (TBF) were assessed using dual X-ray absorptiometry. Statistical models were adjusted for age, weight, height (all comparisons), and bone mineral density (when considering BMA). Results: PDFF in the psoas and paravertebral muscles was higher in the fracture group compared to controls even after adjustment for age, weight, and height (PDFFPsoas = 17.1 ± 6.1% versus 13.5 ± 4.9%, p=0.004; PDFFParavertebral = 34.4 ± 13.6% versus 24.9 ± 8.8%, p=0.002). Higher PDFFParavertebral was associated with lower PDFF at the lumbar spine (ß = -6.80 ± 2.85, p=0.022) among controls but not in the fracture group. In both groups, a significant relationship between higher PDFFPsoas and higher VAT was observed (ß = 20.27 ± 9.62, p=0.040 in the fracture group, and ß = 37.49 ± 8.65, p<0.001 in the control group). Although solely observed among controls, a similar relationship was observed between PDFFParavertebral and TBF (ß = 6.57 ± 1.80, p<0.001). No significant association was observed between BMA and other fat depots. Conclusion: Myosteatosis is not associated with BMA among postmenopausal women with fragility fractures. Whereas myosteatosis was associated with other fat depots, BMA appears uniquely regulated.


Asunto(s)
Médula Ósea , Fracturas Óseas , Humanos , Femenino , Médula Ósea/diagnóstico por imagen , Adiposidad , Posmenopausia , Vértebras Lumbares/diagnóstico por imagen , Obesidad/complicaciones
10.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37259464

RESUMEN

A variety of metabolic disorders are associated with a decrease in estradiol (E2) during natural or surgical menopause. Postmenopausal women are prone to excessive fat accumulation in skeletal muscle and adipose tissue due to the loss of E2 via abnormalities in lipid metabolism and serum lipid levels. In skeletal muscle and adipose tissue, genes related to energy metabolism and fatty acid oxidation, such as those encoding peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and estrogen-related receptor alpha (ERRα), are downregulated, leading to increased fat synthesis and lipid metabolite accumulation. The same genes regulate lipid metabolism abnormalities in the bone marrow. In this review, abnormalities in lipid metabolism caused by E2 deficiency were investigated, with a focus on genes able to simultaneously regulate not only skeletal muscle and adipose tissue but also bone metabolism (e.g., genes encoding PGC-1α and ERRα). In addition, the mechanisms through which mesenchymal stem cells lead to adipocyte differentiation in the bone marrow as well as metabolic processes related to bone marrow adiposity, bone loss, and osteoporosis were evaluated, focusing on the loss of E2 and lipid metabolic alterations. The work reviewed here suggests that genes underlying lipid metabolism and bone marrow adiposity are candidate therapeutic targets for bone loss and osteoporosis in postmenopausal women.

11.
Diabetes Metab Syndr Obes ; 16: 1167-1176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139348

RESUMEN

Purpose: To investigated the factors that influence BMAC. Patients and Methods: Quantitative computed tomography (QCT) and magnetic resonance imaging (MRI) were applied to measure abdominal fat areas, liver fat content, erector muscle fat content, and BMAC of the L2-4 vertebrae. Sex hormone, adipokine, and inflammatory factor levels were measured on the same day. Results: Although age, erector muscle fat content, estradiol, testosterone, and adiponectin/leptin levels showed correlations with BMAC in the correlation analysis, the equations obtained from the whole population by multivariate analysis were unclear. Patients were stratified according to BMAC quartiles, and differences were found in vBMD, age, estradiol, testosterone, and erector muscle fat content among the four quartiles. Logistic analyses confirmed that age, estradiol/testosterone ratio, and TNF-α had independent effects on BMAC in all quartiles. In addition, height was related to higher BMAC quartiles, and glucose was related to lower BMAC quartiles. Conclusion: Compared to other body fats, BMAC is a unique fat depot. Age, estradiol/testosterone ratio, and TNF-α are all key influencing factors related to BMAC in postmenopausal women. Furthermore, height and glucose levels were related to BMAC in the higher and lower BMAC quartiles, respectively.

12.
Cell Metab ; 35(4): 667-684.e6, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37019080

RESUMEN

The chronic use of glucocorticoids decreases bone mass and quality and increases bone-marrow adiposity, but the underlying mechanisms remain unclear. Here, we show that bone-marrow adipocyte (BMAd) lineage cells in adult mice undergo rapid cellular senescence upon glucocorticoid treatment. The senescent BMAds acquire a senescence-associated secretory phenotype, which spreads senescence in bone and bone marrow. Mechanistically, glucocorticoids increase the synthesis of oxylipins, such as 15d-PGJ2, for peroxisome proliferator-activated receptor gamma (PPARγ) activation. PPARγ stimulates the expression of key senescence genes and also promotes oxylipin synthesis in BMAds, forming a positive feedback loop. Transplanting senescent BMAds into the bone marrow of healthy mice is sufficient to induce the secondary spread of senescent cells and bone-loss phenotypes, whereas transplanting BMAds harboring a p16INK4a deletion did not show such effects. Thus, glucocorticoid treatment induces a lipid metabolic circuit that robustly triggers the senescence of BMAd lineage cells that, in turn, act as the mediators of glucocorticoid-induced bone deterioration.


Asunto(s)
Médula Ósea , PPAR gamma , Ratones , Animales , PPAR gamma/metabolismo , Médula Ósea/metabolismo , Oxilipinas/metabolismo , Glucocorticoides/metabolismo , Adipocitos/metabolismo , Senescencia Celular , Células de la Médula Ósea
13.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36982995

RESUMEN

Sclerostin is a Wnt signaling pathway inhibitor that negatively regulates bone formation. Bone-marrow-derived stromal cell (BMSC) differentiation is influenced by the Wnt pathway, leading to the hypothesis that higher levels of sclerostin might be associated with an increase in bone marrow adiposity (BMA). The main purpose of this study was to determine whether a relationship exists between circulating sclerostin and BMA in post-menopausal women with and without fragility fractures. The relationships between circulating sclerostin and body composition parameters were then examined. The outcomes measures included vertebral and hip proton density fat fraction (PDFF) using the water fat imaging (WFI) MRI method; DXA scans; and laboratory measurements, including serum sclerostin. In 199 participants, no significant correlations were found between serum sclerostin and PDFF. In both groups, serum sclerostin was correlated positively with bone mineral density (R = 0.27 to 0.56) and negatively with renal function (R = -0.22 to -0.29). Serum sclerostin correlated negatively with visceral adiposity in both groups (R = -0.24 to -0.32). Serum sclerostin correlated negatively with total body fat (R = -0.47) and appendicular lean mass (R = -0.26) in the fracture group, but not in the controls. No evidence of a relationship between serum sclerostin and BMA was found. However, serum sclerostin was negatively correlated with body composition components, such as visceral adiposity, total body fat and appendicular lean mass.


Asunto(s)
Adiposidad , Médula Ósea , Humanos , Femenino , Adiposidad/fisiología , Posmenopausia/fisiología , Densidad Ósea/fisiología , Absorciometría de Fotón/métodos , Obesidad
14.
Orthop Traumatol Surg Res ; 109(3): 103529, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36565743

RESUMEN

INTRODUCTION: X-linked hypophosphatemic (XLH) rickets causes significant bone deformities in the lower limbs resulting from a bone mineralization defect. According to Frost's Mechanostat theory, compensatory modeling of the bones takes place during increased mechanical loads. In addition, mechanical stimuli modulate the differentiation of mesenchymal stem cells; common precursors to bone marrow adipocytes and osteoblasts. HYPOTHESIS: Bone deformities of the lower limbs lead to increased femoral bone mass and decreased fatty infiltration of the bone marrow (FIBM) in children with XLH rickets compared to a control group. PATIENTS AND METHODS: Eleven children (10.3years [6-17]) with XLH rickets and 22 healthy children (10.2years [5-15.5]) underwent lower limb Magnetic Resonance Imaging. A calculation of FIBM was performed at the mid-femur, as well as a calculation of the total bone cross-sectional area (CSA), the cortical CSA, the anteroposterior and mediolateral axes of the femur, bone marrow and the thickness of the femoral cortices. RESULTS: Total bone CSA, total cortical CSA and bone marrow CSA were higher in the XLH group than in the control group (p<0.05). The mid-lateral diameters of the femur and bone marrow were more elongated than those of the control group (p<0.001). Only the anterior cortex was thinned in the XLH group (p=0.001), while there was no difference with the control group for the posterior, medial and lateral cortices. The total percentage of FIBM was 72.81% [±3.95] and 77.4% [±5.52] for the XLH and control groups respectively (p<0.001). DISCUSSION: The increase in bone mass in the XLH population reflects an adaptation of bone tissue to the bone deformities present in this pathology. The decrease in FIBM indicates a lower risk of osteoporosis in the XLH population and may constitute a new monitoring parameter in this pathology. LEVEL OF STUDY: III; Case-control study.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Niño , Humanos , Raquitismo Hipofosfatémico Familiar/patología , Médula Ósea/patología , Estudios de Casos y Controles , Huesos , Densidad Ósea
15.
Curr Osteoporos Rep ; 21(1): 77-84, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36542294

RESUMEN

PURPOSE OF REVIEW: Obesity is highly prevalent and is associated with bone fragility and fracture. The changing nutrient availability to bone in obesity is an important facet of bone health. The goal of this article is to summarize current knowledge on the effects of carbohydrate and dietary fat availability on bone, particularly in the context of other tissues. RECENT FINDINGS: The skeleton is a primary site for fatty acid and glucose uptake. The trafficking of carbohydrates and fats into tissues changes with weight loss and periods of weight gain. Exercise acutely influences nutrient uptake into bone and may affect nutrient partitioning to bone. Bone cells secrete hormones that signal to the brain and other tissues information about its energetic state, which may alter whole-body nutrient trafficking. There is a critical need for studies to address the changes that metabolic perturbations have on nutrient availability in bone.


Asunto(s)
Densidad Ósea , Obesidad , Humanos , Obesidad/metabolismo , Grasas de la Dieta/metabolismo , Metabolismo Energético , Nutrientes , Ingestión de Energía
16.
Front Endocrinol (Lausanne) ; 13: 1001210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506047

RESUMEN

Bone marrow adipocytes (BMAds) constitute the most abundant stromal component of adult human bone marrow. Two subtypes of BMAds have been described, the more labile regulated adipocytes (rBMAds) and the more stable constitutive adipocytes (cBMAds), which develop earlier in life and are more resilient to environmental and metabolic disruptions. In vivo, rBMAds are enriched in saturated fatty acids, contain smaller lipid droplets (LDs) and more readily provide hematopoietic support than their cBMAd counterparts. Mouse models have been used for BMAds research, but isolation of primary BMAds presents many challenges, and thus in vitro models remain the current standard to study nuances of adipocyte differentiation. No in vitro model has yet been described for the study of rBMAds/cBMAds. Here, we present an in vitro model of BM adipogenesis with differential rBMAd and cBMAd-like characteristics. We used OP9 BM stromal cells derived from a (C57BL/6xC3H)F2-op/op mouse, which have been extensively characterized as feeder layer for hematopoiesis research. We observed similar canonical adipogenesis transcriptional signatures for spontaneously-differentiated (sOP9) and induced (iOP9) cultures, while fatty acid composition and desaturase expression of Scd1 and Fads2 differed at the population level. To resolve differences at the single adipocyte level we tested Raman microspectroscopy and show it constitutes a high-resolution method for studying adipogenesis in vitro in a label-free manner, with resolution to individual LDs. We found sOP9 adipocytes have lower unsaturation ratios, smaller LDs and higher hematopoietic support than iOP9 adipocytes, thus functionally resembling rBMAds, while iOP9 more closely resembled cBMAds. Validation in human primary samples confirmed a higher unsaturation ratio for lipids extracted from stable cBMAd-rich sites (femoral head upon hip-replacement surgery) versus labile rBMAds (iliac crest after chemotherapy). As a result, the 16:1/16:0 fatty acid unsaturation ratio, which was already shown to discriminate BMAd subtypes in rabbit and rat marrow, was validated to discriminate cBMAds from rBMAd in both the OP9 model in vitro system and in human samples. We expect our model will be useful for cBMAd and rBMAd studies, particularly where isolation of primary BMAds is a limiting step.


Asunto(s)
Médula Ósea , Gotas Lipídicas , Adulto , Humanos , Ratones , Ratas , Animales , Conejos , Ratones Endogámicos C57BL , Ácidos Grasos , Modelos Animales de Enfermedad
17.
Front Endocrinol (Lausanne) ; 13: 981487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187112

RESUMEN

Osteoporosis is defined as a systemic skeletal disease characterized by decreased bone mass and micro-architectural deterioration leading to increased fracture risk. Osteoporosis incidence increases with age in both post-menopausal women and aging men. Among other important contributing factors to bone fragility observed in osteoporosis, that also affect the elderly population, are metabolic disturbances observed in obesity and Type 2 Diabetes (T2D). These metabolic complications are associated with impaired bone homeostasis and a higher fracture risk. Expansion of the Bone Marrow Adipose Tissue (BMAT), at the expense of decreased bone formation, is thought to be one of the key pathogenic mechanisms underlying osteoporosis and bone fragility in obesity and T2D. Our review provides a summary of mechanisms behind increased Bone Marrow Adiposity (BMA) during aging and highlights the pre-clinical and clinical studies connecting obesity and T2D, to BMA and bone fragility in aging osteoporotic women and men.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Osteoporosis , Adiposidad , Anciano , Envejecimiento , Médula Ósea/patología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Fracturas Óseas/metabolismo , Humanos , Masculino , Obesidad/metabolismo , Osteoporosis/patología
18.
Life Sci ; 309: 121020, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36191680

RESUMEN

AIMS: Postmenopausal osteoporosis is one of the world's biggest yet unnoticed health issues. After ovariectomy, declined estrogen level significantly contributes to the elevation of bone marrow adiposity and bone loss leading to osteoporosis. Therapeutics to prevent osteoporosis addressing various aspects are now in short supply. In this study we made an approach to synthesize nanoparticles of naturally occurring PPAR-γ inhibitor, betulinic acid (BA/NPs) and tested the same in altered bone metabolisms developed after ovariectomy. MAIN METHODS: The osteogenic efficacy of BA/NPs was established in human and rat primary osteoblast cells using qRT-PCR and immunoblot analysis. Furthermore, lineage allocations of multipotent bone marrow stromal cells were evaluated. Various aspects of altered bone metabolism after ovariectomy such as bone marrow adiposity and pathological bone loss were evaluated using µCT and histological assessments. KEY FINDINGS: BA/NPs exert potential osteogenic efficacy by modulating key osteogenic markers such as RUNX2 and BMP2. Mechanistically BA/NPs regulate osteoblastogenesis through Wnt/ß-catenin signaling. Further, BA/NPs showed the potential to inhibit the differentiation of multipotent BMSCs towards adipogenesis while favouring the osteogenic lineage via Wnt/ß-catenin pathway. In the in vivo study, increased bone marrow adiposity was reduced in ovariectomized rats after BA/NPs treatment as assessed by histology and µCT analysis. Loss of bone mineral density as a hallmark of pathological bone loss was also abrogated by BA/NPs. Furthermore, increased obesity after OVX was also prevented in BA/NPs treated animals. SIGNIFICANCE: Our findings imply that BA/NPs could be used further as a viable drug lead to counteract various pathophysiological challenges after menopause.


Asunto(s)
Nanopartículas , Osteoporosis , Femenino , Ratas , Humanos , Animales , beta Catenina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Médula Ósea/metabolismo , Adiposidad , PPAR gamma/metabolismo , Vía de Señalización Wnt , Osteogénesis , Diferenciación Celular , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Osteoporosis/metabolismo , Ovariectomía , Estrógenos/uso terapéutico , Obesidad , Ácido Betulínico
19.
Aging Cell ; 21(12): e13726, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36217558

RESUMEN

Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high-fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD-OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD-OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT-scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (-15.6 ± 0.48% in HFD and -37.5 ± 0.235% in HFD-OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD-OVX, p < 0.005). Mechanistically, HFD-OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD-OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Femenino , Ratones , Animales , Humanos , Dieta Alta en Grasa/efectos adversos , Diabetes Mellitus Tipo 2/complicaciones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/metabolismo , Huesos/metabolismo , Estrógenos , Ovariectomía/efectos adversos
20.
Mol Metab ; 65: 101598, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36103974

RESUMEN

OBJECTIVE: The use of thiazolidinediones (TZDs) as insulin sensitizers has been shown to have side effects including increased accumulation of bone marrow adipocytes (BMAds) associated with a higher fracture risk and bone loss. A novel TZD analog MSDC-0602K with low affinity to PPARγ has been developed to reduce adverse effects of TZD therapy. However, the effect of MSDC-0602K on bone phenotype and bone marrow mesenchymal stem cells (BM-MSCs) in relation to obesity has not been intensively studied yet. METHODS: Here, we investigated whether 8-week treatment with MSDC-0602K has a less detrimental effect on bone loss and BM-MSC properties in obese mice in comparison to first generation of TZDs, pioglitazone. Bone parameters (bone microstructure, bone marrow adiposity, bone strength) were examined by µCT and 3-point bending test. Primary BM-MSCs were isolated and measured for osteoblast and adipocyte differentiation. Cellular senescence, bioenergetic profiling, nutrient consumption and insulin signaling were also determined. RESULTS: The findings demonstrate that MSDC-0602K improved bone parameters along with increased proportion of smaller BMAds in tibia of obese mice when compared to pioglitazone. Further, primary BM-MSCs isolated from treated mice and human BM-MSCs revealed decreased adipocyte and higher osteoblast differentiation accompanied with less inflammatory and senescent phenotype induced by MSDC-0602K vs. pioglitazone. These changes were further reflected by increased glycolytic activity differently affecting glutamine and glucose cellular metabolism in MSDC-0602K-treated cells compared to pioglitazone, associated with higher osteogenesis. CONCLUSION: Our study provides novel insights into the action of MSDC-0602K in obese mice, characterized by the absence of detrimental effects on bone quality and BM-MSC metabolism when compared to classical TZDs and thus suggesting a potential therapeutical use of MSDC-0602K in both metabolic and bone diseases.


Asunto(s)
Células Madre Mesenquimatosas , Tiazolidinedionas , Animales , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Antígeno 2 del Estroma de la Médula Ósea/farmacología , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Hipoglucemiantes/farmacología , Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , PPAR gamma/metabolismo , Pioglitazona/metabolismo , Pioglitazona/farmacología , Compuestos de Espiro , Tiazolidinedionas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA