Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
Más filtros











Intervalo de año de publicación
1.
Anal Bioanal Chem ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212700

RESUMEN

Glycosaminoglycans (GAGs), including hyaluronic acid (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), heparan sulfate (HS)/heparin (HP), and keratan sulfate (KS), play pivotal roles in living organisms. Generally, GAGs are analyzed after enzymatic digestion into unsaturated or saturated disaccharides. Due to high structural similarity between disaccharides, however, separation during analysis is challenging. Additionally, little is known about the structures of GAGs and their functional relationships. Elucidating the function of GAGs requires highly sensitive quantitative analytical methods. We developed a method for the simultaneous analysis of 18 types of disaccharides derived from HA (1 type), CS/DS (7 types), HS/HP (8 types), and KS (2 types) potentially detectable in analyses of human urine. The simple method involves HPLC separation with fluorescence detection following derivatization of GAG-derived disaccharides using 4-aminobenzoic acid ethyl ester (ABEE) as a pre-labeling agent and 2-picoline borane as a reductant. The ABEE derivatization reaction can be performed under aqueous conditions, and excess derivatization reagents can be easily, rapidly, and safely removed. This method enables highly sensitive simultaneous analysis of the 18 abovementioned types of GAG-derived disaccharides using HPLC with fluorescence detection in small amounts of urine (1 mL) in a single run. The versatile method described here could be applied to the analysis of GAGs in other biological samples.

2.
ChemSusChem ; : e202401275, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193865

RESUMEN

Organoborane reagents play a pivotal role as Lewis acids in acid-base pairs used in anionic polymerization and in other reactions; yet their high sensitivity to oxygen and moisture necessitates effective stabilization to prevent their oxidation and thus maintain their catalytic activity. In this study, we present novel encapsulation methods employing a cost-effective hexatriacontane (C36H74, C36) organogel to stabilize sensitive organoborane reagents, including triethyl borane (TEB) and a borinane-based ammonium salt (B3NBr). These organoboranes encapsulated in stable, self-standing organogel blocks enable their safe handling in open laboratory environments without the need for a glovebox. Upon heating such borane-containing organogel blocks organoboranes could be freed from the organogel and used to mediate both the homopolymerization of propylene oxide (PO) and the copolymerization of PO with CO2. Furthermore, efficient recovery of the C36 gelator from polymerization mixtures is achieved, with mass recovery ranging from 70% to 90%. This encapsulation method offers a practical and efficient solution for stabilizing, storing, and handling highly reactive organoborane reagents, thereby broadening their applicability and utilization in various chemical transformations.

3.
Chemistry ; 30(54): e202402410, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39034295

RESUMEN

The ubiquitous chemistry of benzene led us to explore ways to stabilise analogous borozene, by capping them with appropriate groups. The mismatch in overlap of ring-cap fragment molecular orbitals in [(HB)2B6H6]2- is overcome by replacing the two BH caps with higher congeners of boron. We calculated the relative energies of all the polyhedral structural candidates for [(HE)2B6H6]2- (E=Al-Tl) and found hexagonal bipyramid (HBP) to be more stable with Al-H caps. A global minimum search also gives HBP as the most stable structure for [Al2B6H8]2-. The capped B6H6 ring in [(HAl)2B6H6]2- has aromaticity comparable to that of benzene.

4.
J Colloid Interface Sci ; 672: 675-687, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865881

RESUMEN

Developing a straightforward and general strategy to regulate the surface microenvironment of a carbon matrix enriched with N/B motifs for efficient atomic utilization and electronic state of metal sites in bifunctional hydrogen production via ammonia-borane hydrolysis (ABH) and water electrolysis is a persistent challenge. Herein, we present a simple, green, and universal approach to fabricate B/N co-doped porous carbons using ammonia-borane (AB) as a triple functional agent, eliminating the need for hazardous and explosive functional agents and complicated procedures. The pyrolysis of AB induces the regulation of the surface microenvironment of the carbon matrix, leading to the formation of abundant surface functional groups, defects, and pore structures. This regulation enhances the efficiency of atom utilization and the electronic state of the active component, resulting in improved bifunctional hydrogen evolution. Among the catalysts, B/N co-doped vulcan carbon (Ru/BNC) with 2.1 wt% Ru loading demonstrates the highest performance in catalytic hydrogen production from ABH, achieving an ultrahigh turnover frequency of 1854 min-1 (depending on the dispersion of Ru). Furthermore, this catalyst shows remarkable electrochemical activity for hydrogen evolution in alkaline water electrolysis with a low overpotential of 31 mV at 10 mA cm-2. The present study provides a simple, green, and universal method to regulate the surface microenvironment of various carbons with B/N modulators, thereby adjusting the atomic utilization and electronic state of active metals for enhanced bifunctional hydrogen evolution.

5.
Angew Chem Int Ed Engl ; 63(33): e202408193, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38802317

RESUMEN

Hydrolysis of ammonia borane (NH3BH3, AB) involves multiple undefined steps and complex adsorption and activation, so single or dual sites are not enough to rapidly achieve the multi-step catalytic processes. Designing multi-site catalysts is necessary to enhance the catalytic performance of AB hydrolysis reactions but revealing the matching reaction mechanisms of AB hydrolysis is a great challenge. In this work, we propose to construct RuPt-Ti multi-site catalysts to clarify the multi-site tandem activation mechanism of AB hydrolysis. Experimental and theoretical studies reveal that the multi-site tandem mode can respectively promote the activation of NH3BH3 and H2O molecules on the Ru and Pt sites as well as facilitate the fast transfer of *H and the desorption of H2 on Ti sites at the same time. RuPt-Ti multi-site catalysts exhibit the highest turnover frequency (TOF) of 1293 min-1 for AB hydrolysis reaction, outperforming the single-site Ru, dual-site RuPt and Ru-Ti catalysts. This study proposes a multi-site tandem concept for accelerating the dehydrogenation of hydrogen storage material, aiming to contribute to the development of cleaner, low-carbon, and high-performance hydrogen production systems.

6.
Angew Chem Int Ed Engl ; 63(33): e202406440, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818696

RESUMEN

Xanthene-backbone FLPs featuring secondary borane functions -B(ArX)H (where ArX=C6F5 (ArF) or C6Cl5 (ArCl)) have been targeted through reactions of the dihydroboranes Me2S ⋅ BArXH2 with [4,5-xanth(PR2)Li]2 (R=Ph, iPr), and investigated in the synthesis of related cationic systems via hydride abstraction. The reactivity of these systems (both cationic and charge neutral) with ammonia have been probed, with a view to probing the potential for proton shuttling via N-H bond 'activation.' We find that in the case of four-coordinate boron systems (cationic or change neutral), the N-H linkage remains intact, supported by a NH⋅⋅⋅P hydrogen bond which is worth up to 17 kcal mol-1 thermodynamically, and enabled by planarization of the flexible xanthene scaffold. For cationic three coordinate systems, N-to-P proton transfer is viable, driven by the ability of the boron centre to stabilise the [NH2]- conjugate base through N-to-B π bonding. This proton transfer can be shown to be reversible in the presence of excess ammonia, depending on the nature of the B-bound ArX group. It is viable in the case of C6F5 substituents, but is prevented by the more sterically encumbering and secondary donor-stabilising capabilities of the C6Cl5 substituent.

7.
Small Methods ; : e2400376, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801007

RESUMEN

Ammonia borane (AB) has emerged as a promising chemical hydrogen storage material. The development of efficient, stable, and cost-effective catalysts for AB hydrolysis is the key to achieving hydrogen energy economy. Here, cobalt phosphide (CoP) is used to anchor single-atom Pt species, acting as robust catalysts for hydrogen generation from AB hydrolysis. Thanks to the high Pt utilization and the synergy between CoP and Pt species, the optimized Pt/CoP-100 catalyst exhibits an unprecedented hydrogen generation rate, giving a record turnover frequency (TOF) value of 39911 mo l H 2 mo l Pt - 1 mi n - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}{\mathrm{\ mi}}{{{\mathrm{n}}}^{{\mathrm{ - 1}}}}$ and turnover number of 2926829 mo l H 2 mo l Pt - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}$ at room temperature. These metrics surpass those of all existing state-of-the-art supported metal catalysts by an order of magnitude. Density functional theory calculations reveal that the integration of single-atom Pt onto the CoP substrate significantly enhances adsorption and dissociation processes for both water and AB molecules, thereby facilitating hydrogen production from AB hydrolysis. Interestingly, the TOF value is further elevated to 54878 mo l H 2 mo l Pt - 1 mi n - 1 ${\mathrm{mo}}{{{\mathrm{l}}}_{{{{\mathrm{H}}}_{\mathrm{2}}}}}{\mathrm{\ mo}}{{{\mathrm{l}}}_{{\mathrm{Pt}}}}^{{\mathrm{ - 1}}}{\mathrm{\ mi}}{{{\mathrm{n}}}^{{\mathrm{ - 1}}}}$ under UV-vis light irradiation, which can be attributed to the efficient separation and mobility of photogenerated carriers at the Pt-CoP interface. The findings underscore the effectiveness of CoP as a support for single-atom metals in hydrogen production, offering insights for designing high-performance catalysts for chemical hydrogen storage.

8.
J Colloid Interface Sci ; 669: 794-803, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38744157

RESUMEN

The coordination between carrier and active metal is critical to the catalytic efficiency of ammonia borane (AB) hydrolysis reaction. In the present study, we report a new type of catalytic support based on molybdenum boride (MBene) MoAl1-xB and demonstrate that the effective combination of MoAl1-xB with Ru nanoparticles can realize the significantly enhanced performance for hydrogen generation. Owing to the efficient activation and dissociation of reactants, the optimal Ru/MoAl1-xB catalyst achieves the large turnover frequency of 494 molH2 molRu-1 min-1, high hydrogen generation rate of 119817 mL min-1 gRu-1 and favorable apparent activation energy of 39.2 kJ mol-1 for the catalytic hydrolysis of AB under alkaline-free condition. The isotopic test suggests the cleavage of OH bond in H2O is the rate-determining step for hydrolysis reaction, while the fracture of B-H bond in AB is also well revealed by attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. Significantly, the flexible on-demand hydrogen generation is achieved by using chemical switches for on-off AB hydrolysis. This study provides a new support platform based on two-dimensional MBene to exploit efficient catalysts to boost AB dehydrogenation.

9.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731507

RESUMEN

Borane-trimethylamine complex (Me3N·BH3; BTM) is the most stable of the amine-borane complexes that are commercially available, and it is cost-effective. It is a valuable reagent in organic chemistry with applications in the reduction of carbonyl groups and carbon-nitrogen double bond reduction, with considerable examples in the reduction of oximes, hydrazones and azines. The transfer hydrogenation of aromatic N-heterocycles and the selective N-monomethylation of primary anilines are further examples of recent applications, whereas the reduction of nitrobenzenes to anilines and the reductive deprotection of N-tritylamines are useful tools in the organic synthesis. Moreover, BTM is the main reagent in the regioselective cleavage of cyclic acetals, a reaction of great importance for carbohydrate chemistry. Recent innovative applications of BTM, such as CO2 utilization as feedstock and radical chemistry by photocatalysis, have extended their usefulness in new reactions. The present review is focused on the applications of borane-trimethylamine complex as a reagent in organic synthesis and has not been covered in previous reviews regarding amine-borane complexes.

10.
J Colloid Interface Sci ; 671: 543-552, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38820839

RESUMEN

Designing and constructing the active center of Ru-based catalysts is the key to efficient hydrolysis of ammonia borane (NH3BH3, AB) for hydrogen production. Herein, V-doped Ru/Ti2.5V0.5C2 dual-active center catalysts were synthesized, showing excellent catalytic ability for AB hydrolysis. The corresponding turnover frequency value was 1072 min-1 at 298 K, and the hydrolysis rate rB of AB was 235 × 103 mL·min-1·gRu-1. X-ray photoelectron spectroscopy results indicated that the interaction between V-doped Ti3C2 and catalytic metal Ru transfers electrons from Ti to Ru, resulting in electron-rich Ru species. According to density functional theory calculations, the activation energy and reaction dissociation energy of the reactants AB and H2O on V-doped catalysts were lower than those of Ru/Ti3C2, thus optimizing the catalytic kinetics of AB hydrolysis. The modification strategy of V-doped Ti3C2 provides a new pathway for the development of high-performance catalysts for AB hydrolysis.

11.
Chemistry ; 30(36): e202400904, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38699895

RESUMEN

Two new chiral 1,2,3-triazole-containing macrocyclic oligoamides (i. e.: triazolopeptoid 4 and 5) were obtained through solid-phase synthesis of linear precursors followed by high dilution macrocyclization reaction. Theoretical (DFT) and spectroscopic (NMR) studies revealed the intricate interplay between the Nα-chiral side chains and their conformational attitudes. BH3-mediated reduction of the tertiary amide groups of known 1-3 and newly synthesized 4 gave novel azamacrocycles 6-9. Detection of borane complexes of azamacrocycles 6 and 9 (i. e.: 10 and 11), corroborated by X-ray diffraction studies, demonstrated the peculiar properties of 1,2,3-triazole-containing macrorings.

12.
J Labelled Comp Radiopharm ; 67(7): 254-262, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703027

RESUMEN

Reductive N-11C-methylation using [11C]formaldehyde and amines has been used to prepare N-11C-methylated compounds. However, the yields of the N-11C-methylated compounds are often insufficient. In this study, we developed an efficient method for base-free reductive N-11C-methylation that is applicable to a wide variety of substrates, including arylamines bearing electron-withdrawing and electron-donating substituents. A 2-picoline borane complex, which is a stable and mild reductant, was used. Dimethyl sulfoxide was used as the primary reaction solvent, and glacial acetic acid or aqueous acetic acid was used as a cosolvent. While reductive N-11C-methylation efficiently proceeded under anhydrous conditions in most cases, the addition of water to the reductive N-11C-methylation generally increased the yield of the N-11C-methylated compounds. Substrates with hydroxy, carboxyl, nitrile, nitro, ester, amide, and phenone moieties and amine salts were applicable to the reaction. This proposed method for reductive N-11C-methylation should be applicable to a wide variety of substrates, including thermo-labile and base-sensitive compounds because the reaction was performed under relatively mild conditions (70°C) without the need for a base.


Asunto(s)
Aminas , Radioisótopos de Carbono , Formaldehído , Hidrocarburos Yodados , Metilación , Radioisótopos de Carbono/química , Aminas/química , Formaldehído/química , Hidrocarburos Yodados/química , Oxidación-Reducción
13.
Chemistry ; 30(43): e202401776, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735846

RESUMEN

B(C6F5)3 and the corresponding anion [B(C6F5)4]- are ubiquitous in main group and transition metal chemistry. Known derivatives are generally limited to the incorporation of electron donating substituents. Herein we describe electrophilic fluorination and dearomatization of such species using XeF2 in the presence of BF3 or Lewis acidic cations. In this fashion the anions [HB(C6F5)3]-, [B(C6F5)4]- and [(C6F5)3BC≡NB(C6F5)3]-, are converted to [FB(C6F7)3]-, [B(C6F7)4]-, and [(C6F7)3BC≡NB(C6F7)3]-, respectively. Similarly, the borane adducts (L)B(C6F7)3 (L=MeCN, OPEt3) are produced. These rare examples of electrophilic attack of electron deficient rings proceed as [XeF][BF4] acts as a frustrated Lewis pair effecting fluorination and dearomatization of C6F5 rings.

14.
ChemSusChem ; 17(15): e202400058, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38630961

RESUMEN

Fluorinated arylborane-based Lewis acid catalysts have shown remarkable activity and serve as ideal examples of transition metal-free catalysts for diverse organic transformations. However, their homogeneous nature poses challenges in terms of recyclability and separation from reaction mixtures. This work presents an efficient technique for the heterogenization of boron Lewis acid catalysts by anchoring Piers' borane to allyl-functionalized iron oxide. This catalyst demonstrates excellent activity in the hydrosilylation of imines and the reductive amination of carbonyls using various silanes as reducing agents under mild reaction conditions. The catalyst exhibits broad tolerance towards a wide range of functional substrates. Furthermore, it exhibits good recyclability and can be easily separated from the products using an external magnetic field. This work represents a significant advance in the development of sustainable heterogenous metal-free catalysts for organic transformations.

15.
Materials (Basel) ; 17(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673151

RESUMEN

This work focuses on the comparison of H2 evolution in the hydrolysis of boron-containing hydrides (NaBH4, NH3BH3, and (CH2NH2BH3)2) over the Co metal catalyst and the Co3O4-based catalysts. The Co3O4 catalysts were activated in the reaction medium, and a small amount of CuO was added to activate Co3O4 under the action of weaker reducers (NH3BH3, (CH2NH2BH3)2). The high activity of Co3O4 has been previously associated with its reduced states (nanosized CoBn). The performed DFT modeling shows that activating water on the metal-like surface requires overcoming a higher energy barrier compared to hydride activation. The novelty of this study lies in its focus on understanding the impact of the remaining cobalt oxide phase. The XRD, TPR H2, TEM, Raman, and ATR FTIR confirm the formation of oxygen vacancies in the Co3O4 structure in the reaction medium, which increases the amount of adsorbed water. The kinetic isotopic effect measurements in D2O, as well as DFT modeling, reveal differences in water activation between Co and Co3O4-based catalysts. It can be assumed that the oxide phase serves not only as a precursor and support for the reduced nanosized cobalt active component but also as a key catalyst component that improves water activation.

16.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675581

RESUMEN

Graphene is a good support for immobilizing catalysts, due to its large theoretical specific surface area and high electric conductivity. Solid chemical converted graphene, in a form with multiple layers, decreases the practical specific surface area. Building pores in graphene can increase specific surface area and provide anchor sites for catalysts. In this study, we have prepared porous graphene (PG) via the process of equilibrium precipitation followed by carbothermal reduction of ZnO. During the equilibrium precipitation process, hydrolyzed N,N-dimethylformamide sluggishly generates hydroxyl groups which transform Zn2+ into amorphous ZnO nanodots anchored on reduced graphene oxide. After carbothermal reduction of zinc oxide, micropores are formed in PG. When the Zn2+ feeding amount is 0.12 mmol, the average size of the Pt nanoparticles on PG in the catalyst is 7.25 nm. The resulting Pt/PG exhibited the highest turnover frequency of 511.6 min-1 for ammonia borane hydrolysis, which is 2.43 times that for Pt on graphene without the addition of Zn2+. Therefore, PG treated via equilibrium precipitation and subsequent carbothermal reduction can serve as an effective support for the catalytic hydrolysis of ammonia borane.

17.
Angew Chem Int Ed Engl ; 63(24): e202404505, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598471

RESUMEN

Ammonia borane (AB) with 19.6 wt % H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2 ⋅ molmetal ⋅ min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrates magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8 % over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.

18.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673948

RESUMEN

A series of bench-stable Co(II) complexes containing hydrazone Schiff base ligands were evaluated in terms of their activity and selectivity in carbon-carbon multiple bond transfer hydrogenation. These cobalt complexes, especially a Co(II) precatalyst bearing pyridine-2-yl-N(Me)N=C-(1-methyl)imidazole-2-yl ligand, activated by LiHBEt3, were successfully used in the transfer hydrogenation of substituted styrenes and phenylacetylenes with ammonia borane as a hydrogen source. Key advantages of the reported catalytic system include mild reaction conditions, high selectivity and tolerance to functional groups of substrates.


Asunto(s)
Boranos , Cobalto , Bases de Schiff , Hidrogenación , Cobalto/química , Bases de Schiff/química , Catálisis , Boranos/química , Complejos de Coordinación/química , Alquinos/química , Amoníaco/química , Estructura Molecular
19.
Molecules ; 29(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611867

RESUMEN

We previously revealed that phosphine-boranes can function as molecular frameworks for biofunctional molecules. In the present study, we exploited the diversity of available phosphines to design and synthesize a series of B-(trifluoromethyl)phenyl phosphine-borane derivatives as novel progesterone receptor (PR) antagonists. We revealed that the synthesized phosphine-borane derivatives exhibited LogP values in a predictable manner and that the P-H group in the phosphine-borane was almost nonpolar. Among the synthesized phosphine-boranes, which exhibited PR antagonistic activity, B-(4-trifluoromethyl)phenyl tricyclopropylphosphine-borane was the most potent with an IC50 value of 0.54 µM. A docking simulation indicated that the tricyclopropylphosphine moiety plays an important role in ligand-receptor interactions. These results support the idea that phosphine-boranes are versatile structural options in drug discovery, and the developed compounds are promising lead compounds for further structural development of next-generation PR antagonists.


Asunto(s)
Boranos , Fosfinas , Receptores de Progesterona , Boranos/farmacología , Simulación por Computador , Descubrimiento de Drogas
20.
ChemSusChem ; 17(9): e202400415, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38482550

RESUMEN

The development of low-cost and high-efficiency catalysts for the hydrolytic dehydrogenation of ammonia borane (AB, NH3BH3) is still a challenging technology. Herein, ultrafine MoOx-doped Ni nanoparticles (~3.0 nm) were anchored on g-C3N4@glucose-derived nitrogen-doped carbon nanosheets via a phosphate-mediated method. The strong adsorption of phosphate-mediated nitrogen-doped carbon nanosheets (PNCS) for metal ions is a key factor for the preparation of ultrasmall Ni nanoparticles (NPs). Notably, the alkaline environment formed by the reduction of metal ions removes the phosphate from the PNCS surface to generate P-free (P)NCS so that the phosphate does not participate in the subsequent catalytic reaction. The synthesized Ni-MoOx/(P)NCS catalysts exhibited outstanding catalytic properties for the hydrolysis of AB, with a high turnover frequency (TOF) value of up to 85.7 min-1, comparable to the most efficient noble-metal-free catalysts and commercial Pt/C catalyst ever reported for catalytic hydrogen production from AB hydrolysis. The superior performance of Ni-MoOx/(P)NCS can be ascribed to its well-dispersed ultrafine metal NPs, abundant surface basic sites, and electron-rich nickel species induced by strong electronic interactions between Ni-MoOx and (P)NCS. The strategy of combining multiple modification measures adopted in this study provides new insights into the development of economical and high-efficiency noble-metal-free catalysts for energy catalysis applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA