Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 185, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080670

RESUMEN

BACKGROUND: Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aß plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS: In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS: Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aß plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS: Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Modelos Animales de Enfermedad , Fosfolípidos , Ratas Transgénicas , Proteínas tau , Animales , Fosfolípidos/metabolismo , Ratas , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/patología , Placa Amiloide/metabolismo , Masculino , Humanos
2.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768742

RESUMEN

The incidences of traumatic brain injuries (TBIs) are increasing globally because of expanding population and increased dependencies on motorized vehicles and machines. This has resulted in increased socio-economic burden on the healthcare system, as TBIs are often associated with mental and physical morbidities with lifelong dependencies, and have severely limited therapeutic options. There is an emerging need to identify the molecular mechanisms orchestrating these injuries to life-long neurodegenerative disease and a therapeutic strategy to counter them. This review highlights the dynamics and role of choline-containing phospholipids during TBIs and how they can be used to evaluate the severity of injuries and later targeted to mitigate neuro-degradation, based on clinical and preclinical studies. Choline-based phospholipids are involved in maintaining the structural integrity of the neuronal/glial cell membranes and are simultaneously the essential component of various biochemical pathways, such as cholinergic neuronal transmission in the brain. Choline or its metabolite levels increase during acute and chronic phases of TBI because of excitotoxicity, ischemia and oxidative stress; this can serve as useful biomarker to predict the severity and prognosis of TBIs. Moreover, the effect of choline-replenishing agents as a post-TBI management strategy has been reviewed in clinical and preclinical studies. Overall, this review determines the theranostic potential of choline phospholipids and provides new insights in the management of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Colina/metabolismo , Fosfolípidos/metabolismo , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/fisiopatología , Colina/fisiología , Comorbilidad/tendencias , Citidina Difosfato Colina/metabolismo , Humanos , Enfermedades Neurodegenerativas , Neuroglía/fisiología , Estrés Oxidativo/fisiología , Fosfatidilcolinas/metabolismo , Fosfolípidos/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-31422159

RESUMEN

Previous studies showed that mild iron deficiency anaemia (IDA) induced by feeding an iron deficient (ID) diet to female guinea pigs during gestation and lactation to alters the auditory functions of the offspring when corn oil is the only source of dietary lipids. Conversely, feeding an ID diet with a dietary fatty acid composition similar to that of typical human western diets induced minor impairments. Since tissue fatty acid metabolism is affected by dietary iron, the current study measured the impacts of these ID diets (ID-corn and ID-west) compared to the corresponding iron-sufficient control diets (IS-corn and IS-west) on encephalum fatty acid metabolism in the offspring at post-natal day 24. IDA induced by the ID-corn diet resulted in significant increases in encephalum n-6 PUFA content, but IDA induced by the ID-west diet had little impact on fatty acid profiles compared to the IS-west group. Brain COX II protein expression and FADS2 mRNA expression were statistically unaffected in both experiments, but encephalum PGE2 concentrations were significantly reduced in ID-west pups. These results suggest IDA studies during prenatal development should consider dietary lipid compositions.


Asunto(s)
Cerebro/metabolismo , Grasas de la Dieta , Eicosanoides/metabolismo , Deficiencias de Hierro , Hierro de la Dieta , Lactancia/sangre , Anemia Ferropénica/metabolismo , Animales , Animales Recién Nacidos , Dieta , Femenino , Cobayas , Hierro/sangre , Masculino , Fenómenos Fisiológicos de la Nutrición , Embarazo , Efectos Tardíos de la Exposición Prenatal
4.
Front Neurosci ; 13: 103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30837829

RESUMEN

Repetitive mild traumatic brain injury (rmTBI) is a major epigenetic risk factor for Alzheimer's disease (AD). The precise nature of how rmTBI leads to or precipitates AD pathology is currently unknown. Numerous neurological conditions have shown an important role for dysfunctional phospholipid metabolism as a driving factor for the pathogenesis of neurodegenerative diseases. However, the precise role in rmTBI and AD remains elusive. We hypothesized that a detailed phospholipid characterization would reveal profiles of response to injury in TBI that overlap with age-dependent changes in AD and thus provide insights into the TBI-AD relationship. We employed a lipidomic approach examining brain phospholipid profiles from mouse models of rmTBI and AD. Cortex and hippocampal tissue were collected at 24 h, 3, 6, 9, and 12 months post-rmTBI, and at ages representing 'pre', 'peri' and 'post' onset of amyloid pathology (i.e., 3, 9, 15 months-old). Total levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), LysoPE, and phosphatidylinositol (PI), including their monounsaturated, polyunsaturated and saturated fatty acid (FA) containing species were significantly increased at acute and/or chronic time points post-injury in both brain regions. However, levels of most phospholipid species in PS1/APP mice were nominal in the hippocampus, while in the cortex, levels were significantly decreased at ages post-onset of amyloid pathology. Sphingomyelin and LysoPC levels showed coincidental trends in our rmTBI and AD models within the hippocampus, an increase at acute and/or chronic time points examined. The ratio of arachidonic acid (omega-6 FA) to docosahexaenoic acid (omega-3 FA)-containing PE species was increased at early time points in the hippocampus of injured versus sham mice, and in PS1/APP mice there was a coincidental increase compared to wild type littermates at all time points. This study demonstrates some overlapping and diverse phospholipid profiles in rmTBI and AD models. Future studies are required to corroborate our findings in human post-mortem tissue. Investigation of secondary mechanisms triggered by aberrant downstream alterations in bioactive metabolites of these phospholipids, and their modulation at the appropriate time-windows of opportunity could help facilitate development of novel therapeutic strategies to ameliorate the neurodegenerative consequences of rmTBI or the potential triggering of AD pathogenesis by rmTBI.

5.
J Neurotrauma ; 36(1): 25-42, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29768974

RESUMEN

Traumatic brain injury (TBI) leads to cellular loss, destabilization of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PLs), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesized that supporting PL synthesis post-injury could improve outcome post-TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of PLs and available for clinical use. The multi-nutrient, Fortasyn® Connect (FC), contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, cofactors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor, Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis post-TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients and is safe and well tolerated, which would enable rapid clinical exploration in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Encéfalo/patología , Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Fosfolípidos/farmacología , Recuperación de la Función , Animales , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA