Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Amino Acids ; 52(10): 1363-1374, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33021685

RESUMEN

Corynebacterium glutamicum has a long and successful history in the biotechnological production of L-lysine. Besides the adjustment of metabolic pathways, intracellular and extracellular transport systems are critical for the cellular metabolism of L-lysine or its by-products. Here, three amino acid transmembrane transporters, namely, GluE, BrnE/BrnF, and LysP, which are widely present in C. glutamicum strains, were each investigated by gene knockout. In comparison with that in the wild-type strain, the yield of L-lysine increased by 9.0%, 12.3%, and 10.0% after the deletion of the gluE, brnE/brnF, and lysP genes, respectively, in C. glutamicum 23,604. Moreover, the amount of by-product amino acids decreased significantly when the gluE and brnE/brnF genes were deleted. It was also demonstrated that there was no effect on the growth of the strain when the gluE or lysP gene was deleted, whereas the biomass of C. glutamicum WL1702 (ΔbrnE/ΔbrnF) in the fermentation medium was significantly reduced in comparison with that of the wild type. These results also provide useful information for enhancing the production of L-lysine or other amino acids by C. glutamicum.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/genética , Corynebacterium glutamicum/metabolismo , Lisina/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crecimiento & desarrollo , Fermentación , Eliminación de Gen , Ingeniería Metabólica , Redes y Vías Metabólicas , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA