Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 788
Filtrar
1.
Heliyon ; 10(15): e35423, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170432

RESUMEN

Introduction: In prior reports, Jie-Du-Tong-Luo (JDTL) was reported to help control insulin secretion and blood glucose in patients with diabetes, while also protecting liver and pancreatic islet cells against injury caused by exposure to high glucose (HG) levels. This study was thus developed to assess the effects of JDTL on HG and palmitic acid (PA)-induced muscle injury and to explore the mechanistic basis for these effects. Methods: A model of muscle injury was established using mouse C2C12 myotubes treated with HG + PA. A proteomics approach was used to assess changes in protein levels following JDTL treatment, after which Western immunoblotting was employed to validate significantly affected pathways. Results: JDTL was able to protect against HG + PA-induced muscle cell injury in this experimental system, altering lipid metabolism and inflammatory activity in these injured C2C12 myotubes. Western blotting suggested that JDTL is capable of activating PI3K/Akt/PPARγ signaling to control lipid metabolism without any corresponding impact on the inflammatory NF-κB pathway. Conclusions: These data highlight the ability of JDTL to protect against HG + PA-induced injury to muscle cells, and suggest that the underlying basis for such efficacy is related to the PI3K/Akt/PPARγ pathway-mediated modulation of lipid metabolism.

2.
Virulence ; 15(1): 2388219, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39192628

RESUMEN

Clostridium perfringens type A causes gas gangrene, which involves muscle infection. Both alpha toxin (PLC), encoded by the plc gene, and perfringolysin O (PFO), encoded by the pfoA gene, are important when type A strains cause gas gangrene in a mouse model. This study used the differentiated C2C12 muscle cell line to test the hypothesis that one or both of those toxins contributes to gas gangrene pathogenesis by releasing growth nutrients from muscle cells. RT-qPCR analyses showed that the presence of differentiated C2C12 cells induces C. perfringens type A strain ATCC3624 to upregulate plc and pfoA expression, as well as increase expression of several regulatory genes, including virS/R, agrB/D, and eutV/W. The VirS/R two component regulatory system (TCRS) and its coupled Agr-like quorum sensing system, along with the EutV/W TCRS (which regulates expression of genes involved in ethanolamine [EA] utilization), were shown to mediate the C2C12 cell-induced increase in plc and pfoA expression. EA was demonstrated to increase toxin gene expression. ATCC3624 growth increased in the presence of differentiated C2C12 muscle cells and this effect was shown to involve both PFO and PLC. Those membrane-active toxins were each cytotoxic for differentiated C2C12 cells, suggesting they support ATCC3624 growth by releasing nutrients from differentiated C2C12 cells. These findings support a model where, during gas gangrene, increased production of PFO and PLC in the presence of muscle cells causes more damage to those host cells, which release nutrients like EA that are then used to support C. perfringens growth in muscle.


Asunto(s)
Toxinas Bacterianas , Clostridium perfringens , Gangrena Gaseosa , Fosfolipasas de Tipo C , Clostridium perfringens/genética , Clostridium perfringens/crecimiento & desarrollo , Clostridium perfringens/metabolismo , Clostridium perfringens/fisiología , Ratones , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Línea Celular , Gangrena Gaseosa/microbiología , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo , Diferenciación Celular , Células Musculares/microbiología , Células Musculares/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum
3.
Protein Sci ; 33(9): e5156, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39180494

RESUMEN

Executioner caspases, such as caspase-3, are known to induce apoptosis, but in other contexts, they can control very different fates, including cell differentiation and neuronal plasticity. While hundreds of caspase substrates are known to be specifically targeted during cell death, we know very little about how caspase activity brings about non-apoptotic fates. Here, we report the first proteome identification of cleavage events in C2C12 cells undergoing myogenic differentiation and its comparison to undifferentiated or dying C2C12 cells. These data have identified new caspase substrates, including caspase substrates specifically associated with differentiation, and show that caspases are regulating proteins involved in myogenesis in myotubes, several days after caspase-3 initiated differentiation. Cytoskeletal proteins emerged as a major group of non-apoptotic caspase substrates. We also identified proteins with well-established roles in muscle differentiation as substrates cleaved in differentiating cells.


Asunto(s)
Diferenciación Celular , Desarrollo de Músculos , Animales , Ratones , Línea Celular , Caspasa 3/metabolismo , Caspasas/metabolismo , Proteoma/metabolismo , Proteoma/análisis
4.
BMC Complement Med Ther ; 24(1): 296, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095777

RESUMEN

BACKGROUND: The fruit of Phyllanthus emblica L., a traditional medicine in China and India, is used to treat diabetes mellitus. Its water extract (WEPE) has demonstrated hypoglycemic effects in diabetic rats, but its mechanisms on glucose utilization and insulin resistance in skeletal muscle remain unclear. Therefore, this study aims to investigate the effects and underlying mechanisms of WEPE on glucose utilization and insulin resistance using C2C12 myotubes. METHODS: Effects of WEPE on glucose uptake, GLUT4 translocation, and AMPK and AKT phosphorylation were investigated in C2C12 myotubes and palmitate-treated myotubes. An AMPK inhibitor and siRNA were used to explore the mechanisms of WEPE. Glucose uptake was determined using a 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake assay, and protein expression and GLUT4 translocation were assessed via western blotting. RESULTS: In normal myotubes, WEPE significantly stimulated glucose uptake and GLUT4 translocation to the plasma membrane at concentrations of 125 and 250 µg/mL. This was accompanied by an increase in the phosphorylation of AMPK and its downstream targets. However, both compound C and AMPK siRNA blocked the WEPE-induced GLUT4 translocation and glucose uptake. Moreover, pretreatment with STO-609, a calcium/calmodulin-dependent protein kinase kinase ß (CaMKKß) inhibitor, inhibited WEPE-induced AMPK phosphorylation and attenuated the WEPE-stimulated glucose uptake and GLUT4 translocation. In myotubes treated with palmitate, WEPE prevented palmitate-induced insulin resistance by enhancing insulin-mediated glucose uptake and AKT phosphorylation. It also restored the insulin-mediated translocation of GLUT4 from cytoplasm to membrane. However, these effects of WEPE on glucose uptake and GLUT4 translocation were blocked by pretreatment with compound C. CONCLUSIONS: WEPE significantly stimulated basal glucose uptake though CaMKKß/AMPK pathway and markedly ameliorated palmitate-induced insulin resistance by activating the AMPK pathway in C2C12 myotubes.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glucosa , Resistencia a la Insulina , Fibras Musculares Esqueléticas , Phyllanthus emblica , Extractos Vegetales , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Animales , Ratones , Glucosa/metabolismo , Extractos Vegetales/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Frutas , Transportador de Glucosa de Tipo 4/metabolismo , Línea Celular , Palmitatos/farmacología , Ácido Palmítico/farmacología
5.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125678

RESUMEN

Moringa oleifera is widely grown throughout the tropics and increasingly used for its therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols, and phenolic acids. Research to date largely consists of geographically limited studies that only examine material available locally. These practices make it unclear as to whether moringa samples from one area are superior to another, which would require identifying superior variants and distributing them globally. Alternatively, the finding that globally cultivated moringa material is essentially functionally equivalent means that users can easily sample material available locally. We brought together accessions of Moringa oleifera from four continents and nine countries and grew them together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples evaluated using the Total Antioxidant Capacity assay did not show any significant difference between extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment with different extracts. H2O2 exposure caused an increase in cell death that was diminished in all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical origin. These results are encouraging because they suggest that the use of moringa for its therapeutic benefits can proceed without the need for the lengthy and complex global exchange of materials between regions.


Asunto(s)
Antioxidantes , Metabolómica , Moringa oleifera , Fibras Musculares Esqueléticas , Extractos Vegetales , Hojas de la Planta , Moringa oleifera/química , Moringa oleifera/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Metabolómica/métodos , Animales , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Línea Celular , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Metaboloma/efectos de los fármacos
6.
Pediatr Surg Int ; 40(1): 238, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167102

RESUMEN

PURPOSE: We investigated the effects of mouse-derived DFAT on the myogenic differentiation of a mouse-derived myoblast cell line (C2C12) and examined the therapeutic effects of rat-derived DFAT on anal sphincter injury using a rat model. METHODS: C2C12 cells were cultured using DMEM and DFAT-conditioned medium (DFAT-CM), evaluating MyoD and Myogenin gene expression via RT-PCR. DFAT was locally administered to model rats with anorectal sphincter dysfunction 3 days post-CTX injection. Therapeutic effects were assessed through functional assessment, including anal pressure measurement using solid-state manometry pre/post-CTX, and on days 1, 3, 7, 10, 14, 17, and 21 post-DFAT administration. Histological evaluation involved anal canal excision on days 1, 3, 7, 14, and 21 after CTX administration, followed by hematoxylin-eosin staining. RESULTS: C2C12 cells cultured with DFAT-CM exhibited increased MyoD and Myogenin gene expression compared to control. Anal pressure measurements revealed early recovery of resting pressure in the DFAT-treated group. Histologically, DFAT-treated rats demonstrated an increase in mature muscle cells within newly formed muscle fibers on days 14 and 21 after CTX administration, indicating enhanced muscle tissue repair. CONCLUSION: DFAT demonstrated the potential to enhance histological and functional muscle tissue repair. These findings propose DFAT as a novel therapeutic approach for anorectal sphincter dysfunction treatment.


Asunto(s)
Canal Anal , Modelos Animales de Enfermedad , Regeneración , Animales , Ratas , Canal Anal/fisiopatología , Ratones , Regeneración/fisiología , Manometría/métodos , Ratas Sprague-Dawley , Adipocitos , Miogenina/genética , Miogenina/metabolismo , Línea Celular , Masculino , Desdiferenciación Celular/fisiología , Proteína MioD/genética , Diferenciación Celular
7.
J Med Food ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167545

RESUMEN

Fermented red ginseng (FRG) enhances the bioactivity and bioavailability of ginsenosides, which possess various immunomodulatory, antiaging, anti-obesity, and antidiabetic properties. However, the effects of FRG extract on muscle atrophy and the underlying molecular mechanisms remain unclear. This study aimed to elucidate the effects of FRG extract on muscle atrophy using both in vitro and in vivo models. In vitro experiments used dexamethasone (DEX)-induced C2C12 myotubes to assess cell viability, myotube diameter, and fusion index. In vivo experiments were conducted on hind limb immobilization (HI)-induced mice to evaluate grip strength, muscle mass, and fiber cross-sectional area (CSA) of the gastrocnemius (GAS), quadriceps (QUA), and soleus (SOL) muscles. Molecular mechanisms were investigated through the analysis of key signaling pathways associated with muscle protein synthesis, energy metabolism, and protein degradation. FRG extract treatment enhanced viability of DEX-induced C2C12 myotubes and restored myotube diameter and fusion index. In HI-induced mice, FRG extract improved grip strength, increased muscle mass and CSA of GAS, QUA, and SOL muscles. Mechanistic studies revealed that FRG extract activated the insulin-like growth factor 1/protein kinase B (Akt)/mammalian target of rapamycin signaling pathway, promoted muscle energy metabolism via the sirtuin 1/peroxisome proliferator-activated receptor gamma-coactivator-1α pathway, and inhibited muscle protein degradation by suppressing the forkhead box O3a, muscle ring-finger 1, and F-box protein (Fbx32) signaling pathways. FRG extract shows promise for ameliorating muscle atrophy by modulating key molecular pathways associated with muscle protein synthesis, energy metabolism, and protein degradation, offering insights for future drug development.

8.
J Cell Physiol ; : e31359, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988048

RESUMEN

Skeletal muscle constitutes the largest percentage of tissue in the animal body and plays a pivotal role in the development of normal life activities in the organism. However, the regulation mechanism of skeletal muscle growth and development remains largely unclear. This study investigated the effects of Ankrd1 on the proliferation and differentiation of C2C12 myoblasts. Here, we identified Ankrd1 as a potential regulator of muscle cell development, and found that Ankrd1 knockdown resulted in the proliferation ability decrease but the differentiation level increase of C2C12 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyzes as well as RNA-seq results showed that Ankrd1 knockdown activated focal adhesion kinase (FAK)/F-actin signal pathway with most genes significantly enriched in this pathway upregulated. The integrin subunit Itga6 promoter activity is increased when Ankrd1 knockdown, as demonstrated by a dual-luciferase reporter assay. This study revealed the molecular mechanism by which Ankrd1 knockdown enhanced FAK phosphorylation activity through the alteration of integrin subunit levels, thus activating FAK/Rho-GTPase/F-actin signal pathway, eventually promoting myoblast differentiation. Our data suggested that Ankrd1 might serve as a potential regulator of muscle cell development. Our findings provide new insights into skeletal muscle growth and development and valuable references for further study of human muscle-related diseases.

9.
Prev Nutr Food Sci ; 29(2): 154-161, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38974592

RESUMEN

Skeletal muscle atrophy, which is characterized by diminished muscle mass, strength, and function, is caused by malnutrition, physical inactivity, aging, and diseases. Korean mint (Agastache rugosa Kuntze) possesses various biological functions, including anti-inflammatory, antioxidant, anticancer, and antiosteoporosis activities. Moreover, it contains tilianin, which is a glycosylated flavone that exerts antioxidant, anti-inflammatory, antidiabetic, and neuroprotective activities. However, no studies have analyzed the inhibitory activity of A. rugosa extract (ARE) and tilianin on muscle atrophy. Thus, the present study investigated the potential of ARE and tilianin on muscle atrophy and their underlying mechanisms of action in C2C12 myotubes treated with tumor necrosis factor-α (TNF-α). The results showed that ARE and tilianin promoted the phosphatidylinositol 3-kinase/protein kinase B pathway, thereby activating mammalian target of rapamycin (a protein anabolism-related factor) and its downstream factors. Moreover, ARE and tilianin inhibited the mRNA expression of muscle RING-finger protein-1 and atrogin-1 (protein catabolism-related factors) by blocking Forkhead box class O3 translocation. ARE and tilianin also mitigated inflammatory responses by downregulating nuclear factor-kappa B expression levels, thereby diminishing the expression levels of inflammatory cytokines, including TNF-α and interleukin-6. Additionally, ARE and tilianin enhanced the expression levels of antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Overall, these results suggest that ARE and tilianin are potential functional ingredients for preventing or improving muscle atrophy.

10.
Food Sci Anim Resour ; 44(4): 951-965, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974720

RESUMEN

Lactiplantibacillus plantarum is a valuable potential probiotic species with various proven health-beneficial effects. L. plantarum LM1001 strain was selected among ten strains of L. plantarum based on proteolytic activity on whey proteins. L. plantarum LM1001 produced higher concentrations of total free amino acids and branched-chain amino acids (Ile, Leu, and Val) than other L. plantarum strains. Treatment of C2C12 myotubes with whey protein culture supernatant (1%, 2% and 3%, v/v) using L. plantarum LM1001 significantly increased the expression of myogenic regulatory factors, such as Myf-5, MyoD, and myogenin, reflecting the promotion of myotubes formation (p<0.05). L. plantarum LM1001 displayed ß-galactosidase activity but did not produce harmful ß-glucuronidase. Thus, the intake of whey protein together with L. plantarum LM1001 has the potential to aid protein digestion and utilization.

11.
J Clin Biochem Nutr ; 75(1): 33-39, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39070528

RESUMEN

The amounts of Reactive oxygen species (ROS) become higher by strenuous exercises which consume larger amounts of oxygen in active muscles. Since these ROS directly injured muscles, the high ROS concentration involves muscle fatigue. Thus, an immediate ROS scavenging system in the muscle is desired. Since Monascus pigment (MP) involves physiologically active substances which scavenge ROS, it may be a clue to save the muscle injury. However, there are no reports examining MP effects on oxidative stress in skeletal muscle. In this study, we investigated the effect and mechanism of MP on skeletal muscle cells damaged by oxidative stress. The ability to directly eliminate ROS was evaluated by mixing MP solutions with •OH and O2 •-, a type of ROS. The effect of peroxidation in C2C12 cells was evaluated by cell viability assay and Western blotting. MP scavenges •OH and O2 •-. MP treatment increases the survival rate under oxidative stress. At that time, the expression of catalase was increased: the enzyme change H2O2 into H2O to rescue the cells under oxidative stress. We conclude that monascus pigment suppressed myotube damage under oxidative stress by both non-enzymatic ROS scavenging and up-regulation of catalase expression.

12.
Biochem Biophys Rep ; 39: 101762, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39026565

RESUMEN

Background: Cell confluency and serum deprivation promote the transition of C2C12 myoblasts into myocytes and subsequence fusion into myotubes. However, despite all myoblasts undergoing the same serum deprivation trigger, their responses vary: whether they become founder myocytes, remain proliferative, or evolve into fusion-competent myocytes remains unclear. We have previously shown that depletion of the scaffolding protein palladin in myoblasts inhibits cell migration and promotes premature muscle differentiation, pointing to its potential significance in muscle development and the necessity for a more in-depth examination of its function in cellular heterogeneity. Methods and results: Here, we showed that the subcellular localization of palladin might contribute to founder-fate cell decision in the early differentiation process. Depleting palladin in C2C12 myoblasts depleted integrin-ß3 plasma membrane localization of and focal adhesion formation at the early stage of myogenesis, decreased kindlin-2 and metavinculin expression during the myotube maturation process, leading to the inability of myocytes to fuse into preexisting mature myotubes. This aligns with previous findings where early differentiation into nascent myotubes occurred but compromised maturation. In contrast, wildtype C2C12 overexpressing the 140-kDa palladin isoform developed a polarized morphology with star-like structures toward other myoblasts. However, this behaviour was not observed in palladin-depleted cells, where the 140-kDa palladin overexpression could not recover cell migration capacity, suggesting other palladin isoforms are also needed to establish cell polarity. Conclusion: Our study identifies a counter-intuitive role for palladin in regulating myoblast-to-myocyte cell fate decisions and impacting their ability to form mature multinucleated myotubes by influencing cell signalling pathways and cytoskeletal organization, necessary for skeletal muscle regeneration and repair studies.

13.
J Proteome Res ; 23(8): 3444-3459, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39024330

RESUMEN

Ferroptosis adversely affects the viability, differentiation, and metabolic integrity of C2C12 myoblasts, contributing to the decline in skeletal muscle health. The intricate mechanisms behind this process are not fully understood. In this study, we induced ferroptosis in myoblasts using targeted inducers and found a marked decrease in specific redox metabolites, particularly taurine. Taurine supplementation effectively reversed the deleterious effects of ferroptosis, significantly increased cellular glutathione levels, reduced MDA and ROS levels, and rejuvenated impaired myogenic differentiation. Furthermore, taurine downregulated HO-1 expression and decreased intracellular Fe2+ levels, thereby stabilizing the labile iron pool. Using NMR metabolomic analysis, we observed that taurine profoundly promoted glycerophospholipid metabolism, which is critical for cell membrane repair, and enhanced mitochondrial bioenergetics, thereby increasing the energy reserves essential for muscle satellite cell regeneration. These results suggest that taurine is a potent ferroptosis inhibitor that attenuates key drivers of this process, strengthens oxidative defenses, and improves redox homeostasis. This combined effect protects cells from ferroptosis-induced damage. This study highlights the potential of taurine as a valuable ferroptosis inhibitor that protects skeletal muscle from ferroptosis-induced damage and provides a basis for therapeutic strategies to rejuvenate and facilitate the regeneration of aging skeletal muscle.


Asunto(s)
Ferroptosis , Homeostasis , Hierro , Mioblastos , Oxidación-Reducción , Taurina , Taurina/farmacología , Ferroptosis/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/citología , Hierro/metabolismo , Animales , Ratones , Homeostasis/efectos de los fármacos , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Glutatión/metabolismo , Estrés Oxidativo/efectos de los fármacos , Glicerofosfolípidos/metabolismo
14.
Mol Nutr Food Res ; 68(14): e2300685, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38860356

RESUMEN

SCOPE: Kaempferol (KMP), a bioactive flavonoid compound found in fruits and vegetables, contributes to human health in many ways but little is known about its relationship with muscle mass. The effect of KMP on C2C12 myoblast differentiation and the mechanisms that might underlie that effect are studied. METHODS AND RESULTS: This study finds that KMP (1, 10 µM) increases the migration and differentiation of C2C12 myoblasts in vitro. Studying the possible mechanism underlying its effect on migration, the study finds that KMP activates Integrin Subunit Beta 1 (ITGB1) in C2C12 myoblasts, increasing p-FAK (Tyr398) and its downstream cell division cycle 42 (CDC42), a protein previously associated with cell migration. Regarding differentiation, KMP upregulates the expression of myosin heavy chain (MHC) and activates IGF1/AKT/mTOR/P70S6K. Interestingly, pretreatment with an AKT inhibitor (LY294002) and siRNA knockdown of IGF1R leads to a decrease in cell differentiation, suggesting that IGF1/AKT activation is required for KMP to induce C2C12 myoblast differentiation. CONCLUSION: Together, the findings suggest that KMP enhances the migration and differentiation of C2C12 myoblasts through the ITG1B/FAK/paxillin and IGF1R/AKT/mTOR pathways. Thus, KMP supplementation might potentially be used to prevent or delay age-related loss of muscle mass and help maintain muscle health.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Integrina beta1 , Quempferoles , Mioblastos , Paxillin , Proteínas Proto-Oncogénicas c-akt , Receptor IGF Tipo 1 , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Quempferoles/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Integrina beta1/metabolismo , Paxillin/metabolismo , Línea Celular , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética
15.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928453

RESUMEN

Production of functional myosin heavy chain (MHC) of striated muscle myosin II for studies of isolated proteins requires mature muscle (e.g., C2C12) cells for expression. This is important both for fundamental studies of molecular mechanisms and for investigations of deleterious diseases like cardiomyopathies due to mutations in the MHC gene (MYH7). Generally, an adenovirus vector is used for transfection, but recently we demonstrated transfection by a non-viral polymer reagent, JetPrime. Due to the rather high costs of JetPrime and for the sustainability of the virus-free expression method, access to more than one transfection reagent is important. Here, we therefore evaluate such a candidate substance, GenJet. Using the human cardiac ß-myosin heavy chain (ß-MHC) as a model system, we found effective transfection of C2C12 cells showing a transfection efficiency nearly as good as with the JetPrime reagent. This was achieved following a protocol developed for JetPrime because a manufacturer-recommended application protocol for GenJet to transfect cells in suspension did not perform well. We demonstrate, using in vitro motility assays and single-molecule ATP turnover assays, that the protein expressed and purified from cells transfected with the GenJet reagent is functional. The purification yields reached were slightly lower than in JetPrime-based purifications, but they were achieved at a significantly lower cost. Our results demonstrate the sustainability of the virus-free method by showing that more than one polymer-based transfection reagent can generate useful amounts of active MHC. Particularly, we suggest that GenJet, due to its current ~4-fold lower cost, is useful for applications requiring larger amounts of a given MHC variant.


Asunto(s)
Cadenas Pesadas de Miosina , Transfección , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Humanos , Transfección/métodos , Línea Celular , Animales , Ratones , Miosinas Cardíacas
16.
Elife ; 122024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913071

RESUMEN

Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.


Asunto(s)
Eugenol , Interleucina-15 , Fibras Musculares Esqueléticas , Factores de Transcripción NFATC , Condicionamiento Físico Animal , Canales Catiónicos TRPV , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Animales , Interleucina-15/metabolismo , Eugenol/farmacología , Eugenol/metabolismo , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Mioquinas
17.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 219-227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945887

RESUMEN

This study investigated the protective effect of carnosine and its components (L-histidine and ß-alanine [HA]) against dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Myotubes were treated with Dex (10 µM) to induce muscle atrophy manifested by decreased myotube diameter, low myosin heavy chain content, and increased expression of muscle atrophy-associated ubiquitin ligases (Atrogin-1, MuRF-1, and Cbl-b). Carnosine (20 mM) treatment significantly improved the myotube diameter and MyHC protein expression level in Dex-treated C2C12 myotubes. It also downregulated the expression of Atrogin-1, MuRF-1, and Cbl-b and suppressed the expression of forkhead box O3 (FoxO3a) mediated by Dex. Furthermore, reactive oxygen species production was increased by Dex but was ameliorated by carnosine treatment. However, HA (20 mM), the component of carnosine, treatment was found ineffective in preventing Dex-induced protein damage. Therefore, based on above results it can be suggested that carnosine could be a potential therapeutic agent to prevent Dex-induced muscle atrophy compared to its components HA.


Asunto(s)
Carnosina , Dexametasona , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Especies Reactivas de Oxígeno , Proteínas Ligasas SKP Cullina F-box , Carnosina/farmacología , Dexametasona/farmacología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Animales , Ratones , Proteínas Musculares/metabolismo , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Forkhead Box O3/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Cadenas Pesadas de Miosina/metabolismo
18.
Int J Med Sci ; 21(8): 1461-1471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903922

RESUMEN

Dasatinib is one of the second-generation tyrosine kinase inhibitors used to treat chronic myeloid leukemia and has a broad target spectrum, including KIT, PDGFR, and SRC family kinases. Due to its broad drug spectrum, dasatinib has been reported at the basic research level to improve athletic performance by eliminating senescent cell removal and to have an effect on muscle diseases such as Duchenne muscular dystrophy, but its effect on myoblasts has not been investigated. In this study, we evaluated the effects of dasatinib on skeletal muscle both under normal conditions and in the regenerating state. Dasatinib suppressed the proliferation and promoted the fusion of C2C12 myoblasts. During muscle regeneration, dasatinib increased the gene expressions of myogenic-related genes (Myod, Myog, and Mymx), and caused abnormally thin muscle fibers on the CTX-induced muscle injury mouse model. From these results, dasatinib changes the closely regulated gene expression pattern of myogenic regulatory factors during muscle differentiation and disrupts normal muscle regeneration. Our data suggest that when using dasatinib, its effects on skeletal muscle should be considered, particularly at regenerating stages.


Asunto(s)
Diferenciación Celular , Dasatinib , Desarrollo de Músculos , Músculo Esquelético , Mioblastos , Regeneración , Dasatinib/farmacología , Animales , Ratones , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Músculo Esquelético/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/citología , Proliferación Celular/efectos de los fármacos , Humanos , Línea Celular , Inhibidores de Proteínas Quinasas/farmacología
19.
Exp Gerontol ; 193: 112468, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38801840

RESUMEN

BACKGROUND: Aged sarcopenia is characterized by loss of skeletal muscle mass and strength, and mitochondrial dysregulation in skeletal myocyte is considered as a major factor. Here, we aimed to analyze the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on mitochondrial reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in aged skeletal muscles. METHODS: C2C12 cells were stimulated by 50 µM 7ß-hydroxycholesterol (7ß-OHC) to observe the changes of cellular ROS, mitochondrial ROS, and expression of PGC-1α and Nrf2. Different PGC-1α expression in cells was established by transfection with small interfering RNA (siRNA) or plasmids overexpressing PGC-1α (pEX-3-PGC-1α). The effects of different PGC-1α expression on cellular ROS, mitochondrial ROS and Nrf2 expression were measured in cells. Wild type (WT) mice and PGC-1α conditional knockout (CKO) mice were used to analyze the effects of PGC-1α on aged sarcopenia and expression of Nrf2 and CD38 in gastrocnemius muscles. Diethylmaleate, a Nrf2 activator, was used to analyze the connection between PGC-1α and Nrf2 in cells and in mice. RESULTS: In C2C12 cells, the expressions of PGC-1α and Nrf2 were declined by the 7ß-OHC treatment or PGC-1α silence. Moreover, PGC-1α silence increased the harmful ROS and decreased the Nrf2 protein expression in the 7ß-OHC-treated cells. PGC-1α overexpression decreased the harmful ROS and increased the Nrf2 protein expression in the 7ß-OHC-treated cells. Diethylmaleate treatment decreased the harmful ROS in the 7ß-OHC-treated or PGC-1α siRNA-transfected cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia, decreased Nrf2 expression and increased CD38 expression in gastrocnemius muscles compared with the WT mice. Diethylmaleate treatment improved the muscle function and decreased the CD38 expression in the old two genotypes. CONCLUSIONS: Our study demonstrated that PGC-1α modulated mitochondrial oxidative stress in aged sarcopenia through regulating Nrf2.


Asunto(s)
Ratones Noqueados , Músculo Esquelético , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno , Sarcopenia , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Masculino , Envejecimiento/metabolismo , Ratones Endogámicos C57BL , Línea Celular , Mitocondrias Musculares/metabolismo , Mitocondrias/metabolismo
20.
Am J Physiol Cell Physiol ; 327(1): C124-C139, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38766767

RESUMEN

Protein synthesis regulation is critical for skeletal muscle hypertrophy, yet other established cellular processes are necessary for growth-related cellular remodeling. Autophagy has a well-acknowledged role in muscle quality control, but evidence for its role in myofiber hypertrophy remains equivocal. Both mammalian target of rapamycin complex I (mTORC1) and bone morphogenetic protein (BMP)-Smad1/5 (Sma and Mad proteins from Caenorhabditis elegans and Drosophila, respectively) signaling are reported regulators of myofiber hypertrophy; however, gaps remain in our understanding of how this regulation is integrated with growth processes and autophagy regulation. Therefore, we investigated the mTORC1 and Smad1/5 regulation of protein synthesis and autophagy flux during serum-stimulated myotube growth. Chronic serum stimulation experiments were performed on day 5 differentiated C2C12 myotubes incubated in differentiation medium [2% horse serum (HS)] or growth medium [5% fetal bovine serum (FBS)] for 48 h. Rapamycin or LDN193189 was dosed for 48 h to inhibit mTORC1 and BMP-Smad1/5 signaling, respectively. Acute serum stimulation was examined in day 7 differentiated myotubes. Protein synthesis was measured by puromycin incorporation. Bafilomycin A1 and immunoblotting for LC3B were used to assess autophagy flux. Chronic serum stimulation increased myotube diameter 22%, total protein 21%, total RNA 100%, and Smad1/5 phosphorylation 404% and suppressed autophagy flux. Rapamycin, but not LDN193189, blocked serum-induced myotube hypertrophy and the increase in total RNA. Acute serum stimulation increased protein synthesis 111%, Smad1/5 phosphorylation 559%, and rpS6 phosphorylation 117% and suppressed autophagy flux. Rapamycin increased autophagy flux during acute serum stimulation. These results provide evidence for mTORC1, but not BMP-Smad1/5, signaling being required for serum-induced myotube hypertrophy and autophagy flux by measuring LC3BII/I expression. Further investigation is warranted to examine the role of autophagy flux in myotube hypertrophy.NEW & NOTEWORTHY The present study demonstrates that myotube hypertrophy caused by chronic serum stimulation requires mammalian target of rapamycin complex 1 (mTORC1) signaling but not bone morphogenetic protein (BMP)-Smad1/5 signaling. The suppression of autophagy flux was associated with serum-induced myotube hypertrophy and mTORC1 regulation of autophagy flux by measuring LC3BII/I expression. Rapamycin is widely investigated for beneficial effects in aging skeletal muscle and sarcopenia; our results provide evidence that rapamycin can regulate autophagy-related signaling during myotube growth, which could benefit skeletal muscle functional and metabolic health.


Asunto(s)
Autofagia , Hipertrofia , Diana Mecanicista del Complejo 1 de la Rapamicina , Fibras Musculares Esqueléticas , Transducción de Señal , Animales , Ratones , Autofagia/efectos de los fármacos , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Hipertrofia/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/efectos de los fármacos , Suero/metabolismo , Proteína Smad1/metabolismo , Proteína Smad1/genética , Proteína Smad5/metabolismo , Proteína Smad5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA