Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38903082

RESUMEN

BACKGROUND AND AIMS: In vivo induction of alcoholic chronic pancreatitis (ACP) causes significant acinar damage, increased fibroinflammatory response, and heightened activation of cyclic response element binding protein 1 (CREB) when compared with alcohol (A) or chronic pancreatitis (CP) mediated pancreatic damage. However, the study elucidating the cooperative interaction between CREB and the oncogenic Kras G12D/+ (Kras*) in promoting pancreatic cancer progression with ACP remains unexplored. METHODS: Experimental ACP induction was established in multiple mouse models, followed by euthanization of the animals at various time intervals during the recovery periods. Tumor latency was determined in these mice cohorts. Here, we established CREB deletion (Creb fl/fl ) in Ptf1a CreERTM/+ ;LSL-Kras G12D+/-(KC) genetic mouse models (KCC-/-). Western blot, phosphokinase array, and qPCR were used to analyze the pancreata of Ptf1a CreERTM+/-, KC and KCC -/- mice. The pancreata of ACP-induced KC mice were subjected to single-cell RNA sequencing (scRNAseq). Further studies involved conducting lineage tracing and acinar cell explant cultures. RESULTS: ACP induction in KC mice had detrimental effects on the pancreatic damage repair mechanism. The persistent existence of acinar cell-derived ductal lesions demonstrated a prolonged state of hyperactivated CREB. Persistent CREB activation leads to acinar cell reprogramming and increased pro-fibrotic inflammation in KC mice. Acinar-specific Creb ablation reduced advanced PanINs lesions, hindered tumor progression, and restored acinar cell function in ACP-induced mouse models. CONCLUSIONS: Our findings demonstrate that CREB cooperates with Kras* to perpetuate an irreversible ADM and PanIN formation. Moreover, CREB sustains oncogenic activity to promote the progression of premalignant lesions toward cancer in the presence of ACP.

2.
J Pineal Res ; 76(1): e12934, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241676

RESUMEN

Melatonin is a molecule ubiquitous in nature and involved in several physiological functions. In the brain, melatonin is converted to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and then to N1-acetyl-5-methoxykynuramine (AMK), which has been reported to strongly enhance long-term object memory formation. However, the synthesis of AMK in brain tissues and the underlying mechanisms regarding memory formation remain largely unknown. In the present study, young and old individuals from a melatonin-producing strain, C3H/He mice, were employed. The amount of AMK in the pineal gland and plasma was very low compared with those of melatonin at night; conversely, in the hippocampus, the amount of AMK was higher than that of melatonin. Indoleamine 2, 3-dioxygenase (Ido) mRNA was expressed in multiple brain tissues, whereas tryptophan 2,3-dioxygenase (Tdo) mRNA was expressed only in the hippocampus, and its lysate had melatonin to AFMK conversion activity, which was blocked by the TDO inhibitor. The expression levels of phosphorylated cAMP response element binding protein (CREB) and PSD-95 in whole hippocampal tissue were significantly increased with AMK treatment. Before increasing in the whole tissue, CREB phosphorylation was significantly enhanced in the nuclear fraction. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that downregulated genes in hippocampus of old C3H/He mice were more enriched for long-term potentiation (LTP) pathway. Gene set enrichment analysis showed that LTP and neuroactive receptor interaction gene sets were enriched in hippocampus of old mice. In addition, Ido1 and Tdo mRNA expression was significantly decreased in the hippocampus of old mice compared with young mice, and the decrease in Tdo mRNA was more pronounced than Ido1. Furthermore, there was a higher decrease in AMK levels, which was less than 1/10 that of young mice, than in melatonin levels in the hippocampus of old mice. In conclusion, we first demonstrated the Tdo-related melatonin to AMK metabolism in the hippocampus and suggest a novel mechanism of AMK involved in LTP and memory formation. These results support AMK as a potential therapeutic agent to prevent memory decline.


Asunto(s)
Melatonina , Ratones , Animales , Melatonina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Fosforilación , Ratones Endogámicos C3H , Kinuramina/metabolismo , Envejecimiento , Hipocampo/metabolismo , ARN Mensajero/metabolismo
3.
Nutr Neurosci ; 27(5): 413-424, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37116073

RESUMEN

OBJECTIVE: The main purpose of the present study was to assess the beneficial effect of Lactobacillus plantarum GM11 (LacP GM11), screened from Sichuan traditional fermented food, in depressive rats induced by chronic unpredictable mild stress (CUMS). METHODS: Male SPF SD rats were randomly assigned to 3 groups: the control group, CUMS group and CUMS + LacP GM11 group (n = 10). The rats in the CUMS and LacP GM11 groups received CUMS stimulation for 42 d. The behavioral tests and levels of monoamine neurotransmitter, glucocorticoid hormone and brain-derived neurotrophic factor (BDNF) in the serum and hippocampus were measured. The effects of LacP GM11 on the mRNA and protein expression of BDNF and cAMP response element binding protein (CREB) in the hippocampus were also investigated. RESULTS: After supplementation for 21 d, LacP GM11 was associated with alleviation of depressive-like behavior, not anxiety-like behavior, in depressive rats. LacP GM11 increased the levels of 5-hydroxytryptamine (5-HT) and BDNF and decreased the level of cortisol (CORT) in the serum and hippocampus in depressed rats. In addition, treatment with LacP GM11 also increased the mRNA and protein expression of BDNF and CREB in the hippocampus. CONCLUSIONS: This work has revealed that LacP GM11 has potential beneficial effects on depression. This effect might be related to alleviating monoamine neurotransmitter deficiency, HPA axis hyperfunction and CREB-BDNF signaling pathway downregulation. This study demonstrates that LacP GM11 could be a potential therapeutic approach to treat depression and other mental health problems.


Asunto(s)
Depresión , Lactobacillus plantarum , Ratas , Masculino , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Sistema Hipotálamo-Hipofisario , Ratas Sprague-Dawley , Sistema Hipófiso-Suprarrenal , Hipocampo/metabolismo , Serotonina/metabolismo , Neurotransmisores/metabolismo , ARN Mensajero/metabolismo , Estrés Psicológico/psicología , Modelos Animales de Enfermedad
4.
J Biol Chem ; 300(1): 105497, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016514

RESUMEN

For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.


Asunto(s)
Membrana Celular , AMP Cíclico , Transducción de Señal , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Núcleo Celular/metabolismo
5.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1012698

RESUMEN

ObjectiveTo decipher the mechanism of Wenxiao powder in alleviating corticosterone-induced depression-like behaviors in mice. MethodMale ICR mice were randomized into normal, model, paroxetine (20 mg·kg-1), and low- and high-dose (3.27, 6.54 g·kg-1, respectively) Wenxiao powder groups. The mice in normal and model groups received equal volume of saline. Other groups except the normal group were injected with corticosterone subcutaneously 0.5 h after gavage to induce depression. Mice were tested for depression-like behaviors after drug administration. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the corticosterone content in the serum. Nissl staining was performed to observe the damage of hippocampal neurons. Immunofluorescence staining was employed to observe the expression of double cortin (DCX) in the dentate gyrus (DG) of the hippocampus. Western blot was employed to determine the expression of proteins in the brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB)/extracellular signal-regulated kinase (ERK)/cAMP-response element-binding protein (CREB) pathway in the hippocampus. ResultCompared with the normal group, the model group showed decreased sucrose preference rate, increased immobility time in the tail suspension test (P<0.01), and reduced residence time in the central area of the open field and the total movement distance (P<0.05, P<0.01). In addition, the modeling elevated the corticosterone level in the serum (P<0.01), decreased the volume and intensified the nuclear staining of hippocampal neurons in the DG area, reduced the expression of DCX in the DG area, and down-regulated the protein levels of BDNF, phosphorylated (p)-TrkB, p-ERK, and p-CREB in the hippocampus (P<0.05, P<0.01). Compared with the model group, low-dose Wenxiao powder improved the mouse behavivors in the sucrose preference, open field, and tail suspension tests (P<0.05, P<0.01), and high-dose Wenxiao powder improved the behaviors in the sucrose preference and open field tests (P<0.05, P<0.01). In addition, Wenxiao powder lowered the serum corticosterone level (P<0.01) and recovered the structure and morphology of neurons with obvious nuclei and presence of Nissl bodies in the DG area of the hippocampus. Moreover, Wenxiao powder at both doses promoted the expression of DCX in the DG area, and high-dose Wenxiao powder up-regulated the protein levels of BDNF, p-TrkB, p-ERK, and p-CREB in the hippocampus (P<0.05, P<0.01). ConclusionWenxiao powder can alleviate corticosterone-induced depression-like behaviors and promote neurogenesis in mice possibly by activating the BDNF/TrkB/ERK/CREB signaling pathway.

6.
Mol Cancer ; 22(1): 136, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582744

RESUMEN

BACKGROUND: New therapies are urgently needed in melanoma, particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. To uncover novel potentiators of T cell anti-tumor immunity, we carried out an ex vivo pharmacological screen and identified 5-Nonyloxytryptamine (5-NL), a serotonin agonist, as increasing the ability of T cells to target tumor cells. METHODS: The pharmacological screen utilized lymphocytic choriomeningitis virus (LCMV)-primed splenic T cells and melanoma B16.F10 cells expressing the LCMV gp33 CTL epitope. In vivo tumor growth in C57BL/6 J and NSG mice, in vivo antibody depletion, flow cytometry, immunoblot, CRISPR/Cas9 knockout, histological and RNA-Seq analyses were used to decipher 5-NL's immunomodulatory effects in vitro and in vivo. RESULTS: 5-NL delayed tumor growth in vivo and the phenotype was dependent on the hosts' immune system, specifically CD8+ T cells. 5-NL's pro-immune effects were not directly consequential to T cells. Rather, 5-NL upregulated antigen presenting machinery in melanoma and other tumor cells in vitro and in vivo without increasing PD-L1 expression. Mechanistic studies indicated that 5-NL's induced MHC-I expression was inhibited by pharmacologically preventing cAMP Response Element-Binding Protein (CREB) phosphorylation. Importantly, 5-NL combined with anti-PD1 therapy showed significant improvement when compared to single anti-PD-1 treatment. CONCLUSIONS: This study demonstrates novel therapeutic opportunities for augmenting immune responses in poorly immunogenic tumors.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma , Ratones , Animales , Regulación hacia Arriba , Ratones Endogámicos C57BL , Virus de la Coriomeningitis Linfocítica/genética , Melanoma/tratamiento farmacológico
7.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37175416

RESUMEN

Neurofilament light chain (NF-L) plays critical roles in synapses that are relevant to neuropsychiatric diseases. Despite postmortem evidence that NF-L is decreased in opiate abusers, its role and underlying mechanisms remain largely unknown. We found that the microinjection of the histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) into the ventrolateral orbital cortex (VLO) attenuated chronic morphine-induced behavioral sensitization. The microinjection of TSA blocked the chronic morphine-induced decrease of NF-L. However, our chromatin immunoprecipitation (ChIP)-qPCR results indicated that this effect was not due to the acetylation of histone H3-Lysine 9 and 14 binding to the NF-L promotor. In line with the behavioral phenotype, the microinjection of TSA also blocked the chronic morphine-induced increase of p-ERK/p-CREB/p-NF-L. Finally, we compared chronic and acute morphine-induced behavioral sensitization. We found that although both chronic and acute morphine-induced behavioral sensitization were accompanied by an increase of p-CREB/p-NF-L, TSA exhibited opposing effects on behavioral phenotype and molecular changes at different addiction contexts. Thus, our findings revealed a novel role of NF-L in morphine-induced behavioral sensitization, and therefore provided some correlational evidence of the involvement of NF-L in opiate addiction.


Asunto(s)
Filamentos Intermedios , Morfina , Ratas , Animales , Morfina/farmacología , Fosforilación , Ratas Sprague-Dawley , Aprendizaje , Inhibidores de Histona Desacetilasas/farmacología
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-965648

RESUMEN

ObjectiveTo investigate the role of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP-response element binding protein (CREB) signaling pathway in water metabolism and intestinal epithelial permeability in ulcerative colitis (UC) and the intervention mechanism of Shaoyaotang based on the theory of large intestine governing fluids. MethodSixty male SD rats were divided into blank group, model group, mesalazine group (0.42 g·kg-1), Shaoyaotang low-dose group (11.1 g·kg-1), Shaoyaotang medium-dose group (22.2 g·kg-1) and Shaoyaotang high-dose group (44.4 g·kg-1), with 10 in each group. The UC rat model of internal retention of dampness-heat was established by compound factors. The blank group and the model group were given normal saline (ig). The mesalazine group was given mesalazine (ig), and Shaoyaotang low-, medium- and high-dose groups were administrated with corresponding doses of Shaoyaotang (ig). The treatment lasted for 14 days. The diarrhea score and fecal moisture content of rats in each group were observed. The contents of diamine oxidase (DAO) and D-lactic acid in plasma were detected by enzyme-linked immunosorbent assay (ELISA). The protein expressions of aquaporin (AQP)8, AQP4, ZO-1 and Occludin in colon tissues were detected by immunohistochemistry, while those of cAMP, PKA and CREB in colon tissues were determined by Western blot. ResultCompared with the normal group, the model group had elevated diarrhea score and fecal moisten content (P<0.01), increased contents of DAO and D-lactic acid in plasma (P<0.01) and decreased protein expressions of ZO-1, Occludin, AQP8, AQP4, cAMP, PKA and CREB in colon (P<0.01). Compared with the conditions in the model group, the contents of DAO and D-lactic acid in plasma in each administration groups were lower (P<0.01), while the protein expressions of ZO-1, Occludin, AQP8, AQP4, cAMP, PKA and CREB in colon were higher (P<0.01). ConclusionShaoyaotang alleviates the diarrhea in UC, probably through activating cAMP/PKA/CREB signaling pathway, up-regulating expressions of AQPs, enhancing tight junctions in intestinal epithelium and thus improving the water metabolism in colon and the intestinal mucosal permeability.

9.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-978462

RESUMEN

ObjectiveTo observe the effects of modified Shenqiwan on renal function and fibrosis in diabetic nephropathy mice and explore the underlying mechanism based on the glycogen synthase kinase-3β (GSK-3β)/cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signaling pathway. MethodFifty male db/db mice and 10 db/m mice were used in this study. The fifty db/db mice were randomly divided into model group, irbesartan group, and low-, medium-, and high-dose modified Shenqiwan groups. The 10 db/m mice were assigned to the normal group. The mice in the low-, medium-, and high-dose modified Shenqiwan groups were administered with modified Shenqiwan in the dosage form of suspension of Chinese medicinal granules by gavage, those in the irbesartan group were given irbesartan suspension by gavage, and those in the normal and model groups were given distilled water of equal volume by gavage. The intervention lasted for 12 weeks. The blood glucose levels, urine albumin-to-creatinine ratio (UACR), and the protein expression levels of GSK-3β, CREB, transforming growth factor-β1 (TGF-β1), E-cadherin, Vimentin, fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), and Collagen type Ⅳ (Coll Ⅳ) in the mouse kidneys were recorded before and after treatment. The extent of renal pathological damage was also observed. ResultCompared with the normal group, the model group showed significant increases in blood glucose levels, UACR levels, and the protein expression levels of GSK-3β, TGF-β1, E-cadherin, Vimentin, FN, PAI-1, and Coll Ⅳ in the kidneys (P<0.05), decreased protein expression level of CREB (P<0.05), and severe renal pathological damage. Compared with the model group, the low-, medium-, and high-dose modified Shenqiwan groups and the irbesartan group showed varying degrees of decreases in blood glucose levels, UACR levels, and the protein expression levels of GSK-3β, TGF-β1, E-cadherin, Vimentin, FN, PAI-1, and Coll Ⅳ in the kidneys (P<0.05), increased expression level of CREB protein (P<0.05), and improved renal pathological damage. ConclusionModified Shenqiwan can effectively reduce blood glucose levels, improve renal function, and alleviate fibrosis, and the mechanism of action is related to the inhibition of the GSK-3β/CREB signaling pathway.

10.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-973742

RESUMEN

ObjectiveTo investigate the mechanism of Buyang Huanwutang in treating diabetic peripheral neuropathy (DPN) via mitochondrial transport. MethodDiabetes in SD rats was induced by a high-carbohydrate/high-fat diet and intraperitoneal injection of streptozotocin (STZ). The 45 diabetic rats were randomly assigned into a DPN group, an alpha-lipoic acid (60 mg·kg-1·d-1) group, and a Buyang Huanwutang (15 g·kg-1·d-1) group, with 15 rats in each group. Fifteen normal SD rats were fed with the standard diet and set as the control group. The rats were administrated with corresponding drugs by gavage for 12 weeks. The paw withdraw threshold (PWT) and motor nerve conduction velocity (MNCV) were measured at the end of medication, and the sciatic nerve and the bilateral dorsal root ganglia of L4-5 were collected. The injury model of NSC34 cells was established by treating with 50 mmol·L-1 glucose and 250 μmol·L-1 sodium palmitate. The NSC34 cells were then randomly assigned into a blank (10% blank serum) group, a DPN (10% blank serum) group, an apha-lipoic acid (10% apha-lipoic acid-containing serum) group, a Buyang Huanwutang (10% Buyang Huanwutang-containing serum) group, and a Buyang Huanwutang + Compound C (CC) (10% Buyang Huanwutang-containing serum + 10 μmol·L-1 CC) group. The cell intervention lasted for 24 h. The immunofluorescence method, immunohistochemistry, and Western blot were employed to determine the expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylated cAMP-response element binding protein (p-CREB), kinesin family member 5A (KIF5A), and dynein cytoplasmic 1 intermediate chain 2 (DYNC1I2). ResultCompared with the control group, the DPN group of rats showed increased fasting blood glucose (P<0.01), decreased MNCV and PWT (P<0.01), down-regulated expression of KIF5A, p-AMPK/AMPK, and p-CREB/CREB (P<0.01), and up-regulated expression of DYNC1I2 (P<0.01). Compared with the DPN group, drug intervention groups showed increased MNCV and PWT (P<0.01), up-regulated expression of KIF5A, p-AMPK/AMPK, and p-CREB/CREB (P<0.05, P<0.01), and down-regulated expression of DYNC1I2 (P<0.05, P<0.01). The Buyang Huanwutang group had higher levels of MNCV and KIF5A (P<0.05) and lower level of DYNC1I2 (P<0.01) than the apha-lipoic acid group. Compared with the blank group, the DPN group of NSC34 cells showed decreased levels of KIF5A, p-AMPK/AMPK, and p-CREB/CREB (P<0.01) and increased level of DYNC1I2 (P<0.01). The apha-lipoic acid group and Buyang Huanwutang group had higher levels of KIF5A, p-AMPK/AMPK, and p-CREB/CREB (P<0.05, P<0.01) and lower level of DYNC1I2 (P<0.01) in NSC34 cells than the DPN group. Buyang Huanwutang group had higher KIF5A level (P<0.05) in NSC34 cells than the apha-lipoic acid group. Moreover, the Buyang Huanwutang + CC group had lower levels of KIF5A, DYNC1I2, p-AMPK/AMPK, and p-CREB/CREB (P<0.01) in NSC34 cells than the Buyang Huanwutang group. ConclusionBuyang Huanwutang may regulate mitochondrial anterograde transport via the AMPK/CREB pathway to prevent and treat DPN.

11.
J Ginseng Res ; 46(5): 666-674, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090685

RESUMEN

Background: Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods: Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3ß activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results: TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3ß (p-Ser9 GSK 3ß), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3ß activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3ß polypeptide. PPD promoted the binding and subsequently decreased GSK 3ß activity. Conclusion: These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3ß (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3ß kinase activity, thereby activating the plasticity-related CREB-BDNF signaling pathway.

12.
J Alzheimers Dis ; 89(3): 955-975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35964195

RESUMEN

BACKGROUND: Scutellarin, a flavonoid purified from the Chinese herb Erigeron breviscapus, has been reported to prevent Alzheimer's disease (AD) by affecting Aß assembly. Given the low brain uptake rate of scutellarin, we hypothesize that the microbiota-gut-brain axis may be a potential route by which scutellarin prevents AD. OBJECTIVE: This study aimed to explore the microbiota-gut-brain mechanism by which scutellarin prevented AD. METHODS: Scutellarin was administrated to APP/PS1 mouse model of AD for two months, and the behaviors, pathological changes as well as gut microbial changes in APP/PS1 mice were evaluated after scutellarin treatment. RESULTS: This study found that scutellarin improved Aß pathology, neuroinflammation, and cognitive deficits in APP/PS1 mice. It elucidated the effects of scutellarin on the diversity and activity of gut microbiota in APP/PS1 mice and these findings promoted us to focus on inflammation-related bacteria and short-chain fatty acids (SCFAs). Cognitive behaviors were significantly associated with inflammatory cytokines and inflammation-related bacteria, suggesting that microbiota-gut-brain axis was involved in this model and that inflammatory pathway played a crucial role in this axis. Moreover, we observed that cAMP-PKA-CREB-HDAC3 pathway downstream of SCFAs was activated in microglia of AD and inactivated by scutellarin. Furthermore, by chromatin immunoprecipitation (ChIP) assays, we found that the increased association between acetylated histone 3 and interleukin-1ß (IL-1ß) promoter in AD mice was reversed by scutellarin, leading to a decreased level of IL-1ß in scutellarin-treated AD mice. CONCLUSION: Scutellarin reverses neuroinflammation and cognitive impairment in APP/PS1 mice via beneficial regulation of gut microbiota and cAMP-PKA-CREB-HDAC3 signaling in microglia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Microbioma Gastrointestinal , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apigenina/farmacología , Apigenina/uso terapéutico , Eje Cerebro-Intestino , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Glucuronatos , Histonas , Inflamación/complicaciones , Interleucina-1beta/metabolismo , Ratones , Ratones Transgénicos , Presenilina-1/metabolismo
13.
Zhongguo Zhen Jiu ; 42(8): 907-13, 2022 Aug 12.
Artículo en Chino | MEDLINE | ID: mdl-35938334

RESUMEN

OBJECTIVE: To observe the regulative effect of Tongdu Tiaoshen acupuncture on the depression-like behavior and cAMP-response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/tyrosine protein kinase B (TrkB) signaling pathway of hippocampus in rats with post-stroke depression (PSD), and to explore its possible mechanism on improving PSD. METHODS: A total of 36 SPF SD rats were randomized into a sham operation group, a model group and a Tongdu Tiaoshen group, 12 rats in each group. The compound method of Zea Longa suture-occlusion and chronic unpredictable mild stress (CUMS) was used to establish the PSD model in rats of the model group and the Tongdu Tiaoshen group. On the 4th day after modeling, acupuncture was applied at "Dazhui" (GV 14), "Shuigou" (GV 26), "Baihui" (GV 20) and "Shenting" (GV 24) in the Tongdu Tiaoshen group, 40 min every time, once a day, 6 times a week for 4 weeks consecutively. On the 2nd day after PSD modeling and after 4-week intervention, Zea Longa neurobehavioral score was evaluated, sucrose water consumption test and open-field test were performed; biochemical method was used to detect the SOD, CAT activity and MDA level in hippocampal CA1 area; ELISA method was used to detect the serum level of BDNF; real-time PCR was used to detect the mRNA expression of BDNF, TrkB and CREB in hippocampal CA1 area; Western blot was used to detect the protein expression of BDNF, TrkB, CREB and p-CREB in hippocampal CA1 area. RESULTS: Compared with the sham operation group, Zea Longa neurobehavioral scores were increased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were decreased after modeling and intervention in the model group and after modeling in the Tongdu Tiaoshen group (P<0.05). Compared with the model group, Zea Longa neurobehavioral score was decreased (P<0.05), percentage of sucrose water consumption, horizontal motion and vertical motion scores of open-field test were increased after intervention in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were decreased (P<0.05), MDA level in hippocampal CA1 area was increased in the model group (P<0.05); compared with the model group, the SOD and CAT activity in hippocampal CA1 area and serum level of BDNF were increased (P<0.05), MDA level was decreased in the Tongdu Tiaoshen group (P<0.05). Compared with the sham operation group, the mRNA expression of BDNF, TrkB and CREB as well as the protein expression of BDNF, TrkB, CREB and p-CREB were decreased in hippocampal CA1 area in the model group (P<0.05); compared with the model group, the mRNA expression of BDNF, TrkB and CREB, the protein expression of BDNF, TrkB and p-CREB as well as the ratio of p-CREB/CREB were increased in the Tongdu Tiaoshen group (P<0.05). CONCLUSION: Tongdu Tiaoshen acupuncture can improve the depression-like behavior in PSD rats, the mechanism may be related to the inhibition of oxidative stress in hippocampal tissues and the enhanced activity of CREB/BDNF/TrkB signaling pathway.


Asunto(s)
Terapia por Acupuntura , Accidente Cerebrovascular , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Depresión/etiología , Depresión/terapia , Hipocampo/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Accidente Cerebrovascular/complicaciones , Sacarosa , Superóxido Dismutasa
14.
Cell Cycle ; 21(21): 2223-2238, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35792905

RESUMEN

Excessive apoptosis of placental trophoblast cells is considered a major cause of pre-eclampsia (PE) pathogenesis. Phosphorylation of the widely expressed cAMP response element binding protein (CREB) regulates apoptosis and may be involved in PE incidence. Low-dose aspirin (LDA) is an effective approach for preventing PE with unclear mechanisms. Thus we examined whether LDA protects against PE by inhibiting trophoblast cell apoptosis through CREB. The effects of LDA on human PE placenta, PE model rat placenta, and hydrogen peroxide (H2O2)-induced HTR-8/SVneo cell apoptosis were analyzed. TUNEL assay, immunohistochemistry, Cell Counting Assay Kit-8 (CCK-8) assay, western blot, and flow cytometry assay were performed. In the placenta of human PE and rat PE models, the TUNEL index increased and was partially corrected with LDA pre-treatment. Meanwhile, decreased Bcl-2 and increased Bax expression were significantly reversed by LDA pre-treatment. In HTR-8/SVneo cells, H2O2 decreased cell viability, promoted apoptosis, reduced the Bcl-2/Bax ratio, aggravated loss of mitochondrial membrane potential (MMP), increased cytoplasmic cytochrome c release, and simultaneously activated caspase-9 and caspase-3. These effects were effectively restored by LDA pre-treatment in the cells. Moreover, LDA promoted CREB phosphorylation in trophoblast cells. CREB interference further promoted apoptosis, reduced the Bcl-2/Bax ratio, and increased MMP loss. CREB interference also reversed the inhibitory effect of LDA on H2O2-induced apoptosis in HTR-8/SVneo cells. Thus, LDA was shown to inhibit trophoblast cell mitochondrial apoptosis by activating the CREB/Bcl-2 pathway, providing novel evidence for the protective mechanism of LDA in PE.Abbreviations; PE: Pre-eclampsia; LDA: low-dose aspirin; CREB: cAMP response element binding protein; ROS: reactive oxygen species; H2O2: hydrogen peroxide; PBS: Phosphate-buffered saline; Bcl-2: B-cell lymphoma-2; MMP: Mitochondrial membrane potential; Cyt-c: CytochromeC.


Asunto(s)
Preeclampsia , Trofoblastos , Animales , Apoptosis , Aspirina/metabolismo , Aspirina/farmacología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Movimiento Celular/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocromos c/metabolismo , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Fosfatos/metabolismo , Fosfatos/farmacología , Placenta/metabolismo , Preeclampsia/patología , Embarazo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Trofoblastos/metabolismo , Proteína X Asociada a bcl-2/metabolismo
15.
BMC Pulm Med ; 22(1): 140, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410283

RESUMEN

BACKGROUND: Pulmonary fibrosis is a fatal lung disease with complex pathogenesis and limited effective therapies. Salt-inducible kinase 2 (SIK2) is a kinase that phosphorylates CRTCs and regulates many physiological processes. However, the role of SIK2 on pulmonary fibrosis remains unclear, and whether SIK2 inhibitor can attenuate pulmonary fibrosis is unknown. METHOD: We subjected human fetal lung fibroblasts (HFLs) to transforming growth factor-ß1 (5 ng/mL) for 12 h, and examined the expression of SIK2, CRTCs and pCRTCs in fibroblasts by western-blot. To address the roles of SIK2 and CRTCs involved in the progression of pulmonary fibrosis, HFLs were treated with a small-molecule inhibitor ARN-3236 or by siRNA-mediated knockdown of SIK2 expression. Pulmonary fibrosis model was established with mice by exposing to bleomycin, and assessed by H&E and Masson's trichrome staining. COL1A and α-SMA distributions were detected in lung tissues by immunohistochemical staining. RESULTS: We discovered that SIK2 and phosphorylated-CRTC2 were expressed at a low basal level in normal lung tissues and quiescent fibroblasts, but increased in fibrotic lung tissues and activated fibroblasts. Inhibition of SIK2 by ARN-3236 prevented the fibroblasts differentiation and extracellular matrix expression in HFLs and attenuated bleomycin-induced pulmonary fibrosis in mice. Mechanistically, inactivation of SIK2 resulted in the dephosphorylation and nuclear translocation of CRTC2. Within the nucleus, CRTC2 binds to CREB, promoting CREB-dependent anti-fibrotic actions. CONCLUSION: In conclusion, our results elucidated a previously unexplored role of SIK2 in pulmonary fibrosis, and identified SIK2 as a new target for anti-fibrosis medicines.


Asunto(s)
Bleomicina , Fibrosis Pulmonar , Animales , Bleomicina/toxicidad , Fibroblastos/metabolismo , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , ARN Interferente Pequeño/efectos adversos , ARN Interferente Pequeño/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
16.
Brain Res Bull ; 184: 56-67, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35367313

RESUMEN

Sepsis-associated encephalopathy (SAE), a fatal complication of sepsis, contributes to cognitive impairment, high morbidity, and mortality. The molecular mechanism of hydrogen (H2) administration, as a promising strategy for the treatment of SAE, is still unclear. Peroxisome proliferator-activated receptor α (PPARα) is essential for alleviating symptoms and complications of SAE. However, little is known about the role of PPARα in SAE. This study was designed to evaluate the expression of PPARα in SAE and determine whether H2 can alleviate SAE through regulation of the cAMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling pathway and its downstream proteins via PPARα. After the injection of GW6471 (the PPARα inhibitor) or GW7647 (the PPARα agonist) or saline, C57BL/6 J mice were subjected to cecal ligation and puncture (CLP) or sham operation, then treated with 2% H2 by inhalation for 1 h after the operation. The 7-day survival rate was recorded, and the Y-maze test was used to assess cognitive function. Apoptotic cells were observed by TUNEL staining, and brain tissues were collected for pathological analysis by H&E staining. In addition, the levels of pro-inflammatory and anti-inflammatory cytokines (TNF-α, IL-6, IL-18, HMGB1, and IL-1ß) were measured by ELISA and the expression of PPARα, CREB, BDNF and other neurotrophins, postsynaptic density protein of 95 kDa (PSD95) by Western blot. The relationship between PPARα and the CREB-BDNF signaling pathway was explored by coimmunoprecipitation (CO-IP). The results showed the expression of PPARα was decreased in SAE mice and that activation of PPARα in septic mice improved the survival rate and alleviated cognitive dysfunction. Furthermore, PPARα may have exerted anti-inflammatory and anti-apoptotic effects in septic mice. In addition, the GW6471 downregulated the expression of CREB, BDNF and other neurotrophins in SAE mice treated with H2. The expression of PSD95 was also downregulated and upregulated following the expression of PPARα. These results illustrated that H2 alleviates sepsis-induced brain injury in mice through the regulation of neurotrophins and hippocampal plasticity-related genes via PPARα by activating the CREB-BDNF signaling pathway.


Asunto(s)
Encefalopatía Asociada a la Sepsis , Sepsis , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Expresión Génica , Hipocampo/metabolismo , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , PPAR alfa/metabolismo , Sepsis/metabolismo , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Transducción de Señal
17.
J Agric Food Chem ; 70(12): 3708-3718, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35298142

RESUMEN

Allergic asthma is a refractory disease that affects hundreds of millions of people worldwide. Betanin is a natural plant-derived nutrient and possesses health-promoting properties. The effects of betanin on allergic asthma remain unknown. Herein, the effects and mechanisms of betanin on allergic asthma were explored in ovalbumin (OVA)-induced BALB/c mice. Betanin in doses of 0, 20, 60, and 180 mg/kg was applied. Peripheral inflammatory cells, IgE, pulmonary pathology, T cell subsets, cytokine levels, protein expressions of the cAMP-PKA-CREB/CREM pathway, and gut microbial profile were measured. The 60 and 180 mg/kg/day betanin doses significantly downregulated IgE, eotaxin, eosinophil infiltration, mucus hyperproduction, and Th2. A 180 mg/kg/day betanin dose also significantly reduced percentages of Th17, Tc17, and Tc2 and Th2- and Th17-signature cytokines and upregulated the cAMP-PKA-CREB pathway. Additionally, 20 mg/kg/day betanin altered the gut microbial profile. In conclusion, betanin dose-dependently alleviated allergic asthma and upregulated the cAMP-PKA-CREB pathway in mice. This study provides a novel nutritional strategy to treat allergic asthma.


Asunto(s)
Asma , Betacianinas , Animales , Asma/tratamiento farmacológico , Betacianinas/farmacología , Modelos Animales de Enfermedad , Humanos , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Células Th2
18.
Biomed Pharmacother ; 146: 112566, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34954642

RESUMEN

BACKGROUND: G protein-coupled receptors (GPCRs) regulate the pathological and physiological functions of the heart. GPCR antagonists are widely used in the treatment of chronic heart failure. Despite therapeutic advances in the treatments for cardiovascular diseases, heart failure is a major clinical health problem, with significant mortality and morbidity. Corticotropin releasing hormone receptor 2 (CRHR2) is highly expressed in cardiomyocytes, and cardiomyocyte-specific deletion of the genes encoding CRHR2 suppresses pressure overload-induced cardiac dysfunction. This suggests that the negative modulation of CRHR2 may prevent the progression of heart failure. However, there are no systemic drugs against CRHR2. FINDINGS: We developed a novel, oral, small molecule antagonist of CRHR2, RQ-00490721, to investigate the inhibition of CRHR2 as a potential therapeutic approach for the treatment of heart failure. In vitro, RQ-00490721 decreased CRHR2 agonist-induced 3', 5'-cyclic adenosine monophosphate (cAMP) production. In vivo, RQ-00490721 showed sufficient oral absorption and better distribution to peripheral organs than to the central nervous system. Oral administration of RQ-00490721 inhibited the CRHR2 agonist-induced phosphorylation of cAMP-response element binding protein (CREB) in the heart, which regulates a transcription activator involved in heart failure. RQ-00490721 administration was not found to affect basal heart function in mice but protected them from pressure overload-induced cardiac dysfunction. INTERPRETATION: Our results suggest that RQ-00490721 is a promising agent for use in the treatment of chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca/patología , Miocitos Cardíacos/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Administración Oral , Animales , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-940485

RESUMEN

ObjectiveTo investigate the effect and mechanism of total flavones of Spatholobi Caulis (TFSC) against depression in rats. MethodThe fifty KM mice were randomly divided into the normal group and high-, medium-, and low-dose (1, 0.5, 0.25 g·kg-1) TFSC groups and gavaged with the corresponding drugs for 12 successive days. One hour after the last administration, the immobility time in forced swimming test and tail suspension test was recorded. The SD rats were randomly divided into the normal group, model group, fluoxetine (5 mg·kg-1) group, and high- and low-dose (1, 0.25 g·kg-1) TFSC groups. Following the exposure of rats to two different kinds of stimuli daily for inducing chronic unpredictable stress, they were administered with the corresponding drugs for 21 d. After the experiment, the levels of serum neurotransmitters and inflammatory factors in rats were detected by enzyme-linked immunosorbent assay (ELISA). The changes in hippocampal neurons of rats were observed by hematoxylin-eosin (HE) and Nissl staining. The mRNA expression levels of nuclear factor-κB (NF-κB) and tumor necrosis factor-α (TNF-α) in the hippocampus of rats were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), and the protein expression levels of cAMP-response element binding protein (CREB), phosphorylated CREB (p-CREB), and brain-derived neurotrophic factor (BDNF) in hippocampal tissues by Western blot. ResultCompared with the normal group, TFSC significantly shortened the immobility time of mice in tail suspension and swimming tests (P<0.05). Compared with the normal group, the model group exhibited reduced sucrose intake and wilderness activity (P<0.01), decreased 5-HT, DA, NE (P<0.05, P<0.01), MAO, IL-6, TNF-α (P<0.05, P<0.01), damaged neurons, increased mRNA levels of TNF-α and NF-κB (P<0.01), and down-regulated BDNF and CREB protein expression (P<0.05). Compared with the model group, TFSC significantly enhanced sucrose intake and wilderness activity of rats (P<0.05), increased the serum 5-HT, DA and NE (P<0.05, P<0.01), and decreased the serum MAO, IL-6, and TNF-α (P<0.05, P<0.01) as well as NF-κB and TNF-α mRNA expression (P<0.01), up-regulated the protein expression levels of BDNF and CREB (P<0.01), and improved the pathological symptoms of hippocampus. ConclusionTFSC improved the hippocampal neurons of rats via CREB/BDNF signaling pathway and reduced depressive pathological damage, thus relieving depression.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1014175

RESUMEN

Aim To explore the roles of miRNA-132 and its related proteins(Mecp2, CREB)in the mechanism of methamphetamine(MA)-induced neurotoxicity and dependence.Methods The rats were intraperitioneally injected(ip)with MA(10 mg·kg-1·d-1)to establish methamphetamine dependence model with different dependent time courses of 1 week, 2 weeks, and 4 weeks respectively.The miRNA-132 and Mecp2 mRNA were detected by RT-qPCR, and the Mecp2, p-Mecp2, CREB and p-CREB proteins were detected by Western blot in the tissues of frontal cortex and hippocampus.Results In the frontal cortex, the miRNA-132 and Mecp2 mRNA were up-regulated in MA-dependent groups(P<0.05 and P<0.01), while the Mecp2 protein were down-regulated(P<0.01).MA could promote the phosphorylation of Mecp2 protein in the frontal cortex(P<0.01).In hippocampus, the miRNA-132 was down-regulated in the MA-dependent groups, but Mecp2 mRNA was up-regulated(P<0.05).Mecp2 protein increased in MA-dependent 1 week group(P<0.05), and then recovered with the prolonged time of MA dependence, then decreased in MA-dependent 4 weeks groups(P<0.05)in hippocampus.The phosphorylation level of Mecp2 was significantly decreased in the 1 week group(P<0.01), and then increased in the 2 weeks group(P<0.01)in hippocampus.Conclusions MA could induce an abnormal expression of miRNA-132 in the frontal cortex and hippocampus, and miRNA-132 might inhibit the translation of Mecp2 mRNA and induce the decrease expression of Mecp2 protein in the frontal cortex.But in hippocampus, miRNA-132 does not show the correlation with the Mecp2 expression trend of the frontal cortex.And miRNA-132 regulation does not depend on the expression of Mecp2 in hippocampus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA