Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1369563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170700

RESUMEN

With the advancing comprehension of immunology, an increasing number of immunotherapies are being explored and implemented in the field of cancer treatment. The cGAS-STING pathway, a crucial element of the innate immune response, has been identified as pivotal in cancer immunotherapy. We evaluated the antitumor effects of Schisandra chinensis lignan component Schisandrin C (SC) in 4T1 and MC38 tumor-bearing mice, and studied the enhancing effects of SC on the cGAS-STING pathway and antitumor immunity through RNA sequencing, qRT-PCR, and flow cytometry. Our findings revealed that SC significantly inhibited tumor growth in models of both breast and colon cancer. This suppression of tumor growth was attributed to the activation of type I IFN response and the augmented presence of T cells and NK cells within the tumor. Additionally, SC markedly promoted the cGAS-STING pathway activation induced by cisplatin. In comparison to cisplatin monotherapy, the combined treatment of SC and cisplatin exhibited a greater inhibitory effect on tumor growth. The amplified chemotherapeutic efficacy was associated with an enhanced type I IFN response and strengthened antitumor immunity. SC was shown to reduce tumor growth and increase chemotherapy sensitivity by enhancing the type I IFN response activation and boosting antitumor immunity, which enriched the research into the antitumor immunity of S. chinensis and laid a theoretical basis for its application in combating breast and colon cancer.

2.
Sci Total Environ ; : 175681, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173756

RESUMEN

Manganese (Mn) is an environmental pollutant, and overexposure can cause neurodegenerative disorders similar to Alzheimer's disease and Parkinson's disease that are characterized by ß-amyloid (Aß) overexpression, Tau hyperphosphorylation and neuroinflammation. However, the mechanisms of Mn neurotoxicity are not clearly defined. In our study, a knockout mouse model of Mn exposure combined with gut flora-induced neurotoxicity was constructed to investigate the effect of gut flora on Mn neurotoxicity. The results showed that the levels of Tau, p-Tau and Aß in the hippocampus of C57BL/6 mice were greater than those in the hippocampus of control mice after 5 weeks of continuous exposure to manganese chloride (Mn content of 200 mg/L). Transplanted normal and healthy fecal microbiota from mice significantly downregulated Tau, p-Tau and Aß expression and ameliorated brain pathology. Moreover, Mn exposure activated the cGAS-STING pathway and altered the cecal microbiota profile, characterized by an increase in Clostridiales, Pseudoflavonifractor, Ligilactobacillus and Desulfovibrio, and a decrease in Anaerotruncus, Eubacterium_ruminantium_group, Fusimonas and Firmicutes, While fecal microbiome transplantation (FMT) treatment inhibited this pathway and restored the microbiota profile. FMT alleviated Mn exposure-induced neurotoxicity by inhibiting activation of the NLRP3 inflammasome triggered by overactivation of the cGAS-STING pathway. Deletion of the cGAS and STING genes and FMT altered the gut microbiota composition and its predictive function. Phenotypic prediction revealed that FMT markedly decreased the abundances of anaerobic and stress-tolerant bacteria and significantly increased the abundances of facultative anaerobic bacteria and biofilm-forming bacteria after blocking the cGAS-STING pathway compared to the Mn-exposed group. FMT from normal and healthy mice ameliorated the neurotoxicity of Mn exposure, possibly through alterations in the composition and function of the microbiome associated with the cGAS-STING/NLRP3 pathway. This study provides a prospective direction for future research on the mechanism of Mn neurotoxicity.

3.
Eur J Pharm Biopharm ; : 114467, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173934

RESUMEN

Activating the cGAS-STING pathway of circulating tumor cell clusters (CTC clusters) represents a promising strategy to mitigate metastases. To fully exploit the potential of cholesterol-regulating agents in activating CTCs' STING levels, we developed a nanoparticle (NP) composed of metal complex lipid (MCL). This design includes MCL-miriplatin to increase NP stiffness and loads lomitapide (lomi) modulating cholesterol levels, resulting in the creation of PLTs@Pt-lipid@lomi NPs. MCL-miriplatin not only enhances lomi's eliciting efficacy on STING pathway but also increases NPs' stiffness, thus a vital factor affecting the penetration into CTC clusters to further boost lomi's ability. Demonstrated by cy5 tracking experiments, PLTs@Pt-lipid@lomi NPs quickly attach to cancer cell via platelet membrane anchorage, penetrate deep into the spheres, and reach the subcellular endoplasmic reticulum where lomi regulates cholesterol. Additionally, these NPs have been shown to track CTCs in the bloodstream, a capability not demonstrated by the free drug. PLTs@Pt-lipid@lomi NPs more efficiently activate the STING pathway and reduce CTC stemness compared to free lomi. Ultimately, PLTs@Pt-lipid@lomi NPs reduce metastasis in a post-surgery animal model. While cholesterol-regulating agents are limited in efficacy when being repositioned as immunomodulatory agents, this MCL-composing NP strategy demonstrates the potential to effectively deliver these agents to target CTC clusters.

4.
ACS Nano ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148423

RESUMEN

The activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) has been recognized as one of the most promising immunotherapeutic strategies to induce innate antitumor immune responses. However, it is far from effective to just activate the cGAS-STING pathway, owing to abundant immunosuppressive cells that infiltrate the tumor microenvironment (TME) to impair antitumor immunity. Here, we present the smart design of biodegradable Mn-doped mesoporous silica (MM) nanoparticles with metal-organic framework (MOF) gating and hyaluronic acid (HA)-modified erythrocyte membrane (eM) camouflaging to coload cisplatin (CDDP) and SR-717 (a STING agonist) for long-circulating tumor-tropism synergistic chemo-metalloimmunotherapy by cascade cGAS-STING activation. Once internalized by tumor cells, the acidity/redox-responsive gated MOF rapidly disintegrates to release SR-717 and exposes the dual-responsive MM to decompose with CDDP release, thus inducing damage to double-stranded DNA (dsDNA) in cancer cells. As tumor-specific antigens, these dsDNA fragments released from tumor cells can trigger cGAS-STING activation and enhance dendritic cell (DC) maturation and cytotoxic T cell (CTL) infiltration, thus giving rise to excellent therapeutic effects for efficient tumor regression. Overall, this custom-designed biodegradable long-circulating nanoagonist represents a paradigm of nanotechnology in realizing the synergistic cooperation of chemotherapy and metalloimmunotherapy based on cascade cGAS-STING activation for future oncological applications.

5.
J Ethnopharmacol ; : 118661, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159837

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY: The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS: We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting, and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicine in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, dicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS: Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39165276

RESUMEN

Background: Shenqi Fuzheng Injection (SQFZ) is a traditional Chinese medicine injection consists of extracts of Codonopsis pilosula and Astragalus mongholicus. Combining SQFZ with conventional chemotherapy may improve the therapeutic efficacy and reduce side-effects of chemotherapy. However, the mechanisms of SQFZ reducing cisplatin-induced kidney injury are still unclear. Methods: The main compounds of SQFZ were identified via UPLC-Q-TOF-MS technique. Using multiple databases to predict potential targets for SQFZ. We established a breast cancer model by injecting 4T1 cells into mice. Tumor growth and body weight were observed. Serum blood urea nitrogen (BUN), creatinine (CRE), and glutathione (GSH) levels were measured. The extent of their kidney injury was measured by hematoxylin-eosin staining (HE). Cell apoptosis was identified using Hoechst33258 staining, flow cytometry and TUNEL. We evaluated H2AX and stimulator of interferon genes (STING) expression by immunohistochemistry (IHC), and assessed apoptosis-associated proteins by Western blotting analysis. We also evaluated mitochondrial function. The secretion of the inflammatory cytokines in serum was observed using ELISA assay. The effect of the STING pathway in HK-2 renal tubular epithelial cells exposed to cisplatin alone or combined with SQFZ. Results: The potential targets of SQFZ on kidney injury mainly related to inflammatory responses, oxidation and antioxidant, apoptosis as well as IFN signaling pathway. Cisplatin significantly reduced animal weight, while there were no changes in the combination SQFZ and cisplatin. SQFZ counteracted cisplatin-induced BUN and CRE elevation. SQFZ ameliorated the oxidative stress induced by cisplatin. It diminished cisplatin-induced apoptosis and mitochondrial DNA damage and reversed cisplatin-induced cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/STING signaling pathway activation. It also improved the mitochondrial dysfunction induced by cisplatin. Conclusions: The results of the present study suggested that SQFZ effectively reduced cisplatin-induced kidney injury by inhibiting cGAS/STING signaling pathway.

7.
Adv Sci (Weinh) ; : e2403347, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120546

RESUMEN

The highly immunosuppressive tumor microenvironment (TME) restricts the efficient activation of immune responses. To restore the surveillance of the immune system for robust activation, vast efforts are devoted to normalizing the TME. Here, a manganese-doped layered double hydroxide (Mn-LDH) is developed for potent anti-tumor immunity by reversing TME. Mn-LDH is synthesized via a one-step hydrothermal method. In addition to the inherent proton neutralization capacity of LDH, the introduction of manganese oxide endows LDH with an additional ability to produce oxygen. Mn-LDH effectively releases Mn2+ and Mg2+ upon exposure to TME with high levels of H+ and H2O2, which activates synthase-stimulator of interferon genes pathway and maintains the cytotoxicity of CD8+ T cells respectively, achieving a cascade-like role in innate and adaptive immunity. The locally administered Mn-LDH facilitated a "hot" network consisting of mature dendritic cells, M1-phenotype macrophages, as well as cytotoxic and helper T cells, significantly inhibiting the growth of primary and distal tumors. Moreover, the photothermal conversion capacity of Mn-LDH sparks more robust therapeutic effects in large established tumor models with a single administration and irradiation. Overall, this study guides the rational design of TME-modulating immunotherapeutics for robust immune activation, providing a clinical candidate for next-generation cancer immunotherapy.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39119624

RESUMEN

Prostate cancer presents as a challenging disease, as it is often characterized as an immunologically "cold" tumor, leading to suboptimal outcomes with current immunotherapeutic approaches in clinical settings. Photodynamic therapy (PDT) harnesses reactive oxygen species generated by photosensitizers (PSs) to disrupt the intracellular redox equilibrium. This process induces DNA damage in both the mitochondria and nucleus, activating the process of immunogenic cell death (ICD) and the cGAS-STING pathway. Ultimately, this cascade of events leads to the initiation of antitumor immune responses. Nevertheless, existing PSs face challenges, including suboptimal tumor targeting, aggregation-induced quenching, and insufficient oxygen levels in the tumor regions. To this end, a versatile bionic nanoplatform has been designed for the simultaneous delivery of the aggregation-induced emission PS TPAQ-Py-PF6 and paclitaxel (PTX). The cell membrane camouflage of the nanoplatform leads to its remarkable abilities in tumor targeting and cellular internalization. Upon laser irradiation, the utilization of TPAQ-Py-PF6 in conjunction with PTX showcases a notable and enhanced synergistic antitumor impact. Additionally, the nanoplatform has the capability of initiating the cGAS-STING pathway, leading to the generation of cytokines. The presence of damage-associated molecular patterns induced by ICD collaborates with these aforementioned cytokines lead to the recruitment and facilitation of dendritic cell maturation. Consequently, this elicits a systemic immune response against tumors. In summary, this promising strategy highlights the use of a multifunctional biomimetic nanoplatform, combining chemotherapy, PDT, and immunotherapy to enhance the effectiveness of antitumor treatment.

9.
Chin Med ; 19(1): 107, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148120

RESUMEN

BACKGROUND: An important signaling pathway connecting illness and natural immunity is the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, but aberrant activation of this pathway is associated with the development of autoimmune and inflammatory diseases. Hence, targeted inhibition of the activation of the cGAS-STING pathway is potentially valuable in the treatment of disease. The primary active component of Salvia miltiorrhiza is total tanshinone (TTN). Research has indicated that TTN possesses noteworthy anti-inflammatory properties. However, the protective mechanism of TTN against acute liver injury (ALI) and autoimmune diseases is unknown. METHODS: A model of aberrant activation of the cGAS-STING pathway was established in various cells and treated with TTN, and the expression of cGAS-STING pathway-related proteins, type I interferon, interferon stimulated genes and inflammatory factors was assessed by western blotting, real-time qPCR. Immunofluorescence analysis of the effect of TTN on the entry of associated proteins into the nucleus following aberrant activation of the cGAS-STING pathway. The effect of TTN on STING oligomerisation was investigated using 2'-3'-cyclic GMP-AMP (2',3'-cGAMP) to induce STING oligomerisation. Western blotting was used to examine the impact of TTN on the interactions of STING, tank-binding kinase 1 (TBK1), and interferon regulatory factor 3 (IRF3) after HA or Flag-labelled plasmids were transfected into HEK-293 T cells. A dimethylxanthenone-4-acetic acid (DMXAA) -induced activation model of the cGAS-STING pathway in mice was established to study the effect of TTN on aberrant activation of the cGAS-STING pathway in vivo. On the other hand, an animal model of lipopolysaccharide/D-galactosamine (LPS/D-GaIN)-induced ALI and an autoimmune disease model induced by trex1 knockout were established to study the effects of TTN on inflammatory and autoimmune diseases mediated by the cGAS-STING pathway in vivo. RESULTS: In several models of aberrant activation of the cGAS-STING pathway, TTN significantly inhibited the phosphorylation of STING and IRF3, thereby suppressing the expression of type I interferon, interferon-stimulated genes and inflammatory factors. Additionally, TTN prevented P65 and IRF3 from entering the nucleus after the cGAS-STING signalling pathway was abnormally activated. Subsequent research indicated that TTN was not involved in the oligomerization of STING or the integration of STING-TBK1 and TBK1-IRF3. However, TTN was found to have a substantial effect on the binding process between STING and IRF3. On the other hand, DMXAA-induced STING activation and activation of downstream signalling in vivo are inhibited by TTN. Furthermore, TTN exhibits positive treatment effects on autoimmune diseases caused by deficiency of trex1 and LPS/D-GaIN-induced ALI. CONCLUSION: Our research indicates that TTN effectively treats ALI and autoimmune illnesses mediated by the cGAS-STING pathway by inhibiting the abnormal activation of this pathway.

10.
Front Aging Neurosci ; 16: 1429005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149145

RESUMEN

The cGAS-STING pathway is a pivotal element of the innate immune system, recognizing cytosolic DNA to initiate the production of type I interferons and pro-inflammatory cytokines. This study investigates the alterations of the cGAS-STING signaling components in the cortex and hippocampus of mice aged 24 and 108 weeks. In the cortex of old mice, an increase in the dsDNA sensor protein cGAS and its product 2'3'-cGAMP was observed, without corresponding activation of downstream signaling, suggesting an uncoupling of cGAS activity from STING activation. This phenomenon may be attributed to increased dsDNA concentrations in the EC neurons, potentially arising from nuclear DNA damage. Contrastingly, the hippocampus did not exhibit increased cGAS activity with aging, but there was a notable elevation in STING levels, particularly in microglia, neurons and astrocytes. This increase in STING did not correlate with enhanced IRF3 activation, indicating that brain inflammation induced by the cGAS-STING pathway may manifest extremely late in the aging process. Furthermore, we highlight the role of autophagy and its interplay with the cGAS-STING pathway, with evidence of autophagy dysfunction in aged hippocampal neurons leading to STING accumulation. These findings underscore the complexity of the cGAS-STING pathway's involvement in brain aging, with regional variations in activity and potential implications for neurodegenerative diseases.

11.
ACS Nano ; 18(33): 21855-21872, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39109520

RESUMEN

Malignant pleural effusions (MPEs) are hard to treat, and their onset usually signals terminal cancer. Immunotherapies hold promise but must overcome the immunosuppressive MPE microenvironment. Herein, we treat MPEs via synergistically combining two emerging cancer therapy modalities: enzyme-dynamic therapy (EDT) and metalloimmunotherapy. To do so, a nanoplatform termed "A-R-SOME" was developed which comprises MPE-targeted M1 type extracellular vesicles (EVs) loaded with (1) a manganese-based superoxide dismutase (SOD) enzyme, (2) stimulator of interferon genes (STING) agonist diABZI-2, and (3) signal transducer and an activator of transcription 3 (STAT3) small interfering RNA. Endogenous reactive oxygen species within tumors induced immunogenic cell death by EDT, along with STING activation by both Mn and diABZI-2, and suppression of the STAT3 pathway. Systemically administered A-R-SOME alleviated the MPE immunosuppressive microenvironment, triggered antitumor systemic immunity, and long-term immune memory, leading to the complete eradication of MPE and pleural tumors with 100% survival rate in an aggressive murine model. A-R-SOME-induced immune effects were also observed in human patient-derived MPE, pointing toward the translation potential of A-R-SOME as an experimental malignancy treatment.


Asunto(s)
Vesículas Extracelulares , Inmunoterapia , Derrame Pleural Maligno , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animales , Humanos , Ratones , Superóxido Dismutasa/metabolismo , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , ARN Interferente Pequeño/genética , Femenino , Factor de Transcripción STAT3/metabolismo , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral
12.
ACS Nano ; 18(33): 22153-22171, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39118372

RESUMEN

cGAS/STING pathway, which is highly related to tumor hypoxia, is considered as a potential target for remodeling the immunosuppressive microenvironment of solid tumors. Metal ions, such as Mn2+, activate the cGAS/STING pathway, but their efficacy in cancer therapy is limited by insufficient effect on immunogenic tumor cell death of a single ion. Here, we evaluate the association between tumor hypoxia and cGAS/STING inhibition and report a polymetallic-immunotherapy strategy based on large mesoporous trimetal-based nanozyme (AuPdRh) coordinated with Mn2+ (Mn2+@AuPdRh) to activate cGAS/STING signaling for robust adaptive antitumor immunity. Specifically, the inherent CAT-like activity of this polymetallic Mn2+@AuPdRh nanozyme decomposes the endogenous H2O2 into O2 to relieve tumor hypoxia induced suppression of cGAS/STING signaling. Moreover, the Mn2+@AuPdRh nanozyme displays a potent near-infrared-II photothermal effect and strong POD-mimic activity; and the generated hyperthermia and •OH radicals synergistically trigger immunogenic cell death in tumors, releasing abundant dsDNA, while the delivered Mn2+ augments the sensitivity of cGAS to dsDNA and activates the cGAS-STING pathway, thereby triggering downstream immunostimulatory signals to kill primary and distant metastatic tumors. Our study demonstrates the potential of metal-based nanozyme for STING-mediated tumor polymetallic-immunotherapy and may inspire the development of more effective strategies for cancer immunotherapy.


Asunto(s)
Inmunoterapia , Rayos Infrarrojos , Proteínas de la Membrana , Animales , Ratones , Proteínas de la Membrana/metabolismo , Manganeso/química , Manganeso/farmacología , Nucleotidiltransferasas/metabolismo , Porosidad , Transducción de Señal/efectos de los fármacos , Humanos , Hipoxia Tumoral/efectos de los fármacos , Oro/química , Oro/farmacología , Línea Celular Tumoral , Paladio/química , Paladio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Femenino
13.
Immunol Rev ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158380

RESUMEN

DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.

14.
MedComm (2020) ; 5(9): e695, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39161800

RESUMEN

Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.

15.
Mol Neurobiol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110392

RESUMEN

Postoperative cognitive dysfunction (POCD), a common complication following anesthesia and surgery, is influenced by hippocampal neuroinflammation and microglial activation. Mitophagy, a process regulating inflammatory responses by limiting the accumulation of damaged mitochondria, plays a significant role. This study aimed to determine whether regulating microglial mitophagy and the cGAS-STING pathway could alleviate cognitive decline after surgery. Exploratory laparotomy was performed to establish a POCD model using mice. Western blotting, immunofluorescence staining, transmission electron microscopy, and mt-Keima assays were used to examine microglial mitophagy and the cGAS-STING pathway. Quantitative polymerase chain reaction (qPCR) was used to detect inflammatory mediators and cytosolic mitochondrial DNA (mtDNA) levels in BV2 cells. Exploratory laparotomy triggered mitophagy and enhanced the cGAS-STING pathway in mice hippocampi. Pharmacological treatment reduced microglial activation, neuroinflammation, and cognitive impairment after surgery. Mitophagy suppressed the cGAS-STING pathway in mice hippocampi. In vitro, microglia-induced inflammation was mediated by mitophagy and the cGAS-STING pathway. Small interfering RNA (siRNA) of PINK1 hindered mitophagy activation and facilitated the cytosolic release of mtDNA, resulting in the initiation of the cGAS-STING pathway and innate immune response. Microglial mitophagy inhibited inflammatory responses via the mtDNA-cGAS-STING pathway inducing microglial mitophagy and inhibiting the mtDNA-cGAS-STING pathway may be an effective therapeutic approach for patients with POCD.

16.
Biochim Biophys Acta Mol Basis Dis ; : 167457, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134287

RESUMEN

DNA virus infection is a significant cause of morbidity and mortality in patients with multiple myeloma (MM). Monocyte dysfunction in MM patients plays a central role in infectious complications, but the precise molecular mechanism underlying the reduced resistance of monocytes to viruses in MM patients remains to be elucidated. Here, we found that MM cells were able to transfer microRNAs (miRNAs) to host monocytes/macrophages via MM cell-derived exosomes, resulting in the inhibition of innate antiviral immune responses. The screening of miRNAs enriched in exosomes derived from the bone marrow (BM) of MM patients revealed five miRNAs that negatively regulate the cGAS-STING antiviral immune response. Notably, silencing these miRNAs with antagomiRs in MM-bearing C57BL/KaLwRijHsd mice markedly reduced viral replication. These findings identify a novel mechanism whereby MM cells possess the capacity to inhibit the innate immune response of the host, thereby rendering patients susceptible to viral infection. Consequently, targeting the aberrant expression patterns of characteristic miRNAs in MM patients is a promising avenue for therapeutic intervention. Considering the miRNA score and relevant clinical factors, we formulated a practical and efficient model for the optimal assessment of susceptibility to DNA viral infection in patients with MM.

17.
Angew Chem Int Ed Engl ; : e202411498, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143745

RESUMEN

New generation of nanomaterials with organelle-level precision provide significant promise for targeted attacks on mitochondria, exhibiting remarkable therapeutic potency. Here, we report a novel amphiphilic phenolic polymer (PF) for the mitochondria-targeted photodynamic therapy (PDT), which can trigger excessive mitochondrial DNA (mtDNA) damages by the synergistic action of oxidative stress and furan-mediated DNA cross-linking. Moreover, the phenolic units on PF enable further self-assembly with Mn2+ via metal-phenolic coordination to form metal-phenolic nanomaterial (PFM). We focus on the synergistic activation of the cGAS-STING pathway by Mn2+ and tumor-derived mtDNA in tumor-associated macrophages (TAMs), and subsequently repolarizing M2-like TAMs to M1 phenotype. We highlight that PFM facilitates the cGAS-STING-dependent immunity at the organelle level for potent antitumor efficacy.

18.
ACS Nano ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140567

RESUMEN

Cancer immunotherapy has emerged as a promising approach to cancer treatment in recent years. The physical and chemical properties of nanocarriers are critical factors that regulate the immune activation of antigen-presenting cells (APCs) in the tumor microenvironment (TME). Herein, we extensively investigated the behavior of liposome nanoparticles (Lipo-NPs) with different elasticities, focusing on their interaction with immune cells and their transport mechanisms from tumors to tumor-draining lymph nodes (tdLNs). Successfully preparing Lipo-NPs with distinct elastic properties, their varied behaviors were observed, concerning immune cell interaction. Soft Lipo-NPs exhibited an affinity to cell membranes, while those with medium elasticity facilitated the cargo delivery to macrophages through membrane fusion. Conversely, hard Lipo-NPs enter macrophages via classical cellular uptake pathways. Additionally, it was noted that softer Lipo-NPs displayed superior transport to tdLNs in vivo, attributed to their deformable nature with lower elasticity. As a result, the medium elastic Lipo-NPs with agonists (cGAMP), by activating the STING pathway and enhancing transport to tdLNs, promoted abundant infiltration of tumor-infiltrating lymphocytes (TILs), leading to notable antitumor effects and extended survival in a melanoma mouse model. Furthermore, this study highlighted the potential synergistic effect of medium elasticity Lipo-NPs with immune checkpoint blockade (ICB) therapy in preventing tumor immune evasion. These findings hold promise for guiding immune-targeted delivery systems in cancer immunotherapy, particularly in vaccine design for tdLNs targeting and eradicating metastasis within tdLNs.

19.
J Control Release ; 374: 127-139, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39122216

RESUMEN

The immunosuppressive tumor microenvironment (TME) in solid tumors often impedes the efficacy of immunotherapy. Bacterial outer membrane vesicles (OMVs), as a promising cancer vaccine that can potently stimulate immune responses, have garnered interest as a potential platform for cancer therapy. However, the low yield of OMVs limits their utilization. To address this limitation, we developed a novel approach to synthesize OMV-like multifunctional synthetic bacterial vesicles (SBVs) by pretreating bacteria with ampicillin and lysing them through sonication. Compared to OMVs, the yield of SBVs increased by 40 times. Additionally, the unique synthesis process of SBVs allows for the encapsulation of bacterial intracellular contents, endowing SBVs with the capability of delivering catalase (CAT) for tumor hypoxia relief and activating the host cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway. To overcome the toxicity of lipopolysaccharide (LPS) on the SBVs surface, we decorated SBVs with a biocompatible polydopamine (PDA) shell, which allowed TME reprogramming using SBVs to be conducted without adverse side effects. Additionally, the photosensitizer indocyanine green (ICG) was loaded into the PDA shell to induce immunogenic cell death and further improve the efficacy of immunotherapy. In summary, the SBVs-based therapeutic platform SBV@PDA/ICG (SBV@P/I) can synergistically elicit safe and potent tumor-specific antitumor responses through combined immunotherapy and phototherapy.

20.
Exp Hematol Oncol ; 13(1): 77, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103908

RESUMEN

BACKGROUND: Radiotherapy can modulate systemic antitumor immunity, while immune status in the tumor microenvironment also influences the efficacy of radiotherapy, but relevant molecular mechanisms are poorly understood in lung adenocarcinoma (LUAD). METHODS: In this study, we innovatively proposed a radiotherapy response classification for LUAD, and discovered ESYT3 served as a tumor suppressor and radioimmune response sensitizer. ESYT3 expression was measured both in radioresistant and radiosensitive LUAD tissues and cells. The influence of ESYT3 on radiotherapy sensitivity and resistance was then investigated. Interaction between ESYT3 and STING was evaluated through multiple immunofluorescent staining and coimmunoprecipitation, and downstream molecules were further analyzed. In vivo models were constructed to assess the combination treatment efficacy of ESYT3 overexpression with radiotherapy. RESULTS: We found that radioresistant subtype presented immunosuppressive state and activation of DNA damage repair pathways than radiosensitive subtype. ESYT3 expression was remarkably attenuated both in radioresistant LUAD tissues and cells. Clinically, low ESYT3 expression was linked with radioresistance. Overexpression of ESYT3 enabled to alleviate radioresistance, and sensitize LUAD cells to DNA damage induced by irradiation. Mechanically, ESYT3 directly interacted with STING, and activated cGAS-STING signaling, subsequently increasing the generation of type I IFNs as well as downstream chemokines CCL5 and CXCL10, thus improving radioimmune responses. The combination treatment of ESYT3 overexpression with radiotherapy had a synergistic anticancer effect in vitro and in vivo. CONCLUSIONS: In summary, low ESYT3 expression confers resistance to radiotherapy in LUAD, and its overexpression can improve radioimmune responses through activating cGAS-STING-dependent pathway, thus providing an alternative combination therapeutic strategy for LUAD patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA