Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.296
Filtrar
1.
Phytother Res ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300823

RESUMEN

Cancer incidence has increased globally and has become the leading cause of death in the majority of countries. Many cancers have altered energy metabolism pathways, such as increased glucose uptake and glycolysis, as well as decreased oxidative phosphorylation. This is known as the Warburg effect, where cancer cells become more reliant on glucose to generate energy and produce lactate as an end product, even when oxygen is present. These are attributed to the overexpression of key glycolytic enzymes, glucose transporters, and related signaling pathways that occur in cancer cells. Therefore, overcoming metabolic alterations in cancer cells has recently become a target for therapeutic approaches. Natural products have played a key role in drug discovery, especially for cancer and infectious diseases. In this review, we are going to focus on terpenoids, which are gradually gaining popularity among drug researchers due to their reported anti-cancer effects via cell cycle arrest, induction of apoptosis, reduction of proliferation, and metastasis. This review summarizes the potential of 13 terpenoid compounds as anti-glycolytic inhibitors in different cancer models, primarily by inhibiting the glucose uptake and the generation of lactate, as well as by downregulating enzymes associated to glycolysis. As a conclusion, disruption of cancer cell glycolysis may be responsible for the anti-cancer activity of terpenoids.

2.
J Enzyme Inhib Med Chem ; 39(1): 2406025, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39316378

RESUMEN

Class IIa histone deacetylases (HDACs) have been linked to tumorigenesis in various cancers. Previously, we designed phenylhydroxamic acid LH4f as a potent class IIa HDAC inhibitor. However, it also unselectively inhibited class I and class IIb HDACs. To enhance the compound's selectivity towards class IIa HDACs, the ortho-phenyl group from the selective HDAC7 inhibitor 1 is incorporated into ortho position of the phenylhydroxamic acid in LH4f. Compared to LH4f, most resulting compounds displayed substantially improved selectivity towards the class IIa HDACs. Notably, compound 7 g exhibited the strongest HDAC9 inhibition with an IC50 value of 40 nM. Molecular modelling further identified the key interactions of compound 7 g bound to HDAC9. Compound 7 g significantly inhibited several human cancer cells, induced apoptosis, modulated caspase-related proteins as well as p38, and caused DNA damage. These findings suggest the potential of class IIa HDAC inhibitors as lead compounds for the development of cancer therapeutics.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Ácidos Hidroxámicos , Fenotiazinas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Relación Estructura-Actividad , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/síntesis química , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Fenotiazinas/farmacología , Fenotiazinas/química , Fenotiazinas/síntesis química , Apoptosis/efectos de los fármacos , Modelos Moleculares , Línea Celular Tumoral
3.
Tissue Cell ; 91: 102561, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39303439

RESUMEN

This study aimed to investigate effect of Periplaneta americana extract CII-3 (CII-3) in senescence of SKOV3 cells. Proliferation, colony forming and cell senescence of SKOV3 cells were determined. ROS production was evaluated by flow cytometry. Transcription of telomerase (TERT), p38 MAPK and p53 gene and protein expression of p-p38 MAPK and p-p53, were identified. CII-3 at different concentrations significantly inhibited SKOV3 proliferation, and 80 µg/ml demonstrated the highest inhibitory effect. CII-3 significantly blocked cell cycle in G0/G1 phase (P<0.01) and reduced colony forming efficiency (P<0.001) of SKOV3 cells compared to those in Control group. CII-3 significantly increased SA-ß-Gal positive staining SKOV3 cells (P<0.001) and reduced mitochondrial membrane potential (P<0.01) compared to those in Control group. CII-3 markedly decreased TERT gene transcription of SKOV3 cells compared to that in Control group (P<0.001). CII-3 also triggered significantly higher ROS levels in SKOV3 cells compared to that in Control group (P<0.001). CII-3 significantly increased p-p38 MAPK (P<0.001), p-p53 (P<0.001) and p21 (P<0.001) expressions of SKOV3 cells compared to those in Control group. In conclusion, CII-3 triggered cell senescence of SKOV3 cells through activating ROS-p38 MAPK-p53 signaling pathway. This study would provide a promising strategy for inhibiting cancer cell proliferation by including cell senescence.

4.
Biometals ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39306617

RESUMEN

Anthraquinones (AQs) are very effective chemotherapeutic agent, however their fundamental shortcoming is high cardiotoxicity caused by reactive oxygen species (ROS). Therefore, development of improved antitumor drugs with enhanced efficacy but reduced side effects remains a high priority. In the present study we evaluated the cytotoxicity and ROS generation activity of chelate complex of redox-active anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione (Q1) with iron and copper ions. Cytotoxicity study was performed using the lung cancer cell line A549 and breast cancer cell line MDA-MB-231. Q1 and Cu-Q1 complex demonstrate high activity in these experiments, but Fe-Q1 complex inactive. The ROS generation activity has been studied by EPR spin trapping technique using A549, MDA-MB-231 cell lines, and T lymphoblast cell line MOLT-4. It was shown that Q1 is able to penetrate into these cells and participate in redox reactions with the formation of a semiquinone radical. Fe(III) chelate complex formation results in much slower kinetics of ROS generation compared with pure Q1, which could be connected with a lower penetration through the cell membrane.

5.
Future Med Chem ; : 1-16, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297548

RESUMEN

Aim: Certain cancer cells depend on oxidative phosphorylation for survival; thus, inhibiting this process may be a promising treatment strategy. This study explored the structure-activity relationships of the mitochondrial inhibitor N-ethylene glycol-comprising alkyl thiophene-3-carboxamide 3.Methods & results: We synthesized and evaluated 13 analogs (5a-m) with different ethylene glycol units, heterocycles and connecting groups for their growth-inhibitory effects on A549 non-small cell lung cancer cells. We found that increasing the number of ethylene glycol units significantly enhanced inhibitory activity. Some analogs activated adenosine monophosphate-activated protein kinase, similar to 3. Notably, analog 5e, which contains tetraethylene glycol units, significantly inhibited tumor growth in vivo.Conclusion: Analog 5 may be a potential therapeutic agent for non-small cell lung cancer treatment.


[Box: see text].

6.
J Agric Food Chem ; 72(38): 20918-20929, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39262347

RESUMEN

Royal jelly (RJ) is a natural food product with nutritional value and anticancer activity. However, their effects on gastric cancer are unclear. Here, we show that treatment with 5-320 µg/mL of RJ, ethanol extract (RJEE), and protein hydrolyzate (RJPH) decreased the viability of MKN-28 gastric cancer cells, with a half-maximal inhibitory concentration of 123.22 µg/mL for RJEE. RJ, RJEE, and RJPH increase the lactate dehydrogenase release rate and change the morphology of the cells, resulting in cell shrinkage, nucleoplasm condensation, and the formation of apoptotic bodies. RJ and its functional components stagnated the cell cycle in the G0/G1 phase, accompanied by the accumulation of reactive oxygen species, decreased mitochondrial membrane potential, and increased expression levels of p53 and p21 proteins, caspase-3 activation, and apoptosis. Therefore, RJ, RJEE, and RJPH have potential inhibitory effects on the proliferation of gastric cancer cells.


Asunto(s)
Apoptosis , Proliferación Celular , Ácidos Grasos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ácidos Grasos/química , Ácidos Grasos/farmacología , Ácidos Grasos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Antineoplásicos/farmacología , Antineoplásicos/química , Caspasa 3/metabolismo , Caspasa 3/genética , Ciclo Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética
7.
Mikrochim Acta ; 191(10): 608, 2024 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292358

RESUMEN

Lab-on-chips supported by hydrogel matrices are excellent solutions for cell culture; thus, this literature review presents examples of scientific research in this area. Several works are presenting the properties of biocompatible hydrogels that mimic the cellular environment published recently. Hydrogels can also be treated as cell transporters or as a structural component of microfluidic devices. The rapidly growing scientific sector of hydrogel additive manufacturing is also described herein, with attention paid to the appropriate mechanical and biological properties of the inks used to extrude the material, specifically for biomedical purposes. The paper focuses on protocols employed for additive manufacturing, e.g., 3D printing parameters, calibration, ink preparation, crosslinking processes, etc. The authors also mention potential problems concerning manufacturing processes and offer example solutions. As the novel trend for hydrogels enriched with several biocompatible additives has recently risen, the article presents examples of the use of high-quality carbon nanotubes in hydrogel research enhancing biocompatibility, mechanical stability, and cell viability. Moving forward, the article points out the high applicability of the hydrogel-assisted microfluidic platforms used for cancer research, especially for photodynamic therapy (PDT). This innovative treatment strategy can be investigated directly on the chip, which was first proposed by Jedrych E. et al. in 2011. Summarizing, this literature review highlights recent developments in the additive manufacturing of microfluidic devices supported by hydrogels, toward reliable cell culture experiments with a view to PDT research. This paper gathers the current knowledge in these intriguing and fast-growing research paths.


Asunto(s)
Hidrogeles , Dispositivos Laboratorio en un Chip , Fotoquimioterapia , Humanos , Hidrogeles/química , Fotoquimioterapia/métodos , Ingeniería Celular/métodos , Animales , Impresión Tridimensional , Materiales Biocompatibles/química
8.
Lasers Med Sci ; 39(1): 238, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39307856

RESUMEN

Breast cancer remains a significant global health challenge, spurring ongoing investigations into innovative treatment approaches. Low-level laser therapy (LLLT) has emerged as a promising non-invasive therapeutic avenue of interest. This research delves into the impact of LLLT on the cytotoxicity of the MCF-7 breast cancer cell line, employing lasers emitting various wavelengths. The objective is to assess whether diverse LLLT wavelengths elicit disparate cytotoxic responses, shedding light on LLLT's potential as a targeted breast cancer treatment. MCF-7 cell cultures were subjected to lasers of varying wavelengths, including blue (473 nm), red (660 nm), and near-infrared (780 nm). Each wavelength was delivered at four different power levels: 10, 25, 45, and 65 mW, with exposure durations of 60, 300, 600, and 900 s. Cellular responses, encompassing factors such as cell viability, and cytotoxicity were assessed using WST-1 assays technique. Statistical analysis was performed to discern the wavelength-specific impacts of low-level laser therapy (LLLT) on MCF-7 cells. The study revealed that the blue laser had the least noticeable adverse impact on MCF-7 breast cancer cell lines, leading to the highest cell survival rate of 107.62% after 24 h. The most severe toxicity occurred when the laser was used at 45 mW for 900 s, resulting in cell viability ranging from 81.85% to 107.62%. As for cell viability after exposure to the red laser, the mildest harmful effect was observed at 45 mW power for 60 s, resulting in a cell survival rate of 147.62%. Conversely, the most significant toxic response occurred at 10 mW power for 60 s, resulting in a cell viability of 91.56%. In contrast, when employing infrared laser irradiation, the least substantial cytotoxic effect on MCF-7 cells was observed at 10 mW power for 600 s, resulting in the highest cell viability of 109.37% after 24 h. The most pronounced cytotoxic effect was observed by infrared laser (780 nm) at 25 mW power for 900 s, leading to the lowest viability of 32.53%.


Asunto(s)
Neoplasias de la Mama , Supervivencia Celular , Terapia por Luz de Baja Intensidad , Humanos , Terapia por Luz de Baja Intensidad/métodos , Terapia por Luz de Baja Intensidad/instrumentación , Células MCF-7 , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de la radiación , Femenino
9.
Proc Biol Sci ; 291(2031): 20241636, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39288800

RESUMEN

While most cancers are not transmissible, there are rare cases where cancer cells can spread between individuals and even across species, leading to epidemics. Despite their significance, the origins of such cancers remain elusive due to late detection in host populations. Using Hydra oligactis, which exhibits spontaneous tumour development that in some strains became vertically transmitted, this study presents the first experimental observation of the evolution of a transmissible tumour. Specifically, we assessed the initial vertical transmission rate of spontaneous tumours and explored the potential for optimizing this rate through artificial selection. One of the hydra strains, which evolved transmissible tumours over five generations, was characterized by analysis of cell type and bacteriome, and assessment of life-history traits. Our findings indicate that tumour transmission can be immediate for some strains and can be enhanced by selection. The resulting tumours are characterized by overproliferation of large interstitial stem cells and are not associated with a specific bacteriome. Furthermore, despite only five generations of transmission, these tumours induced notable alterations in host life-history traits, hinting at a compensatory response. This work, therefore, makes the first contribution to understanding the conditions of transmissible cancer emergence and their short-term consequences for the host.


Asunto(s)
Evolución Biológica , Hydra , Neoplasias , Animales , Hydra/microbiología
10.
Front Immunol ; 15: 1440623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318629

RESUMEN

Heparan sulfate proteoglycans (HSPGs) regulate a wide range of biological activities in both physiological and pathological conditions. Altered expression or deregulated function of HSPGs and their heparan sulfate (HS) chains significantly contribute to carcinogenesis as well and crucially depends on the functioning of the complex system of HS biosynthetic/modifying enzymes termed as "GAGosome". Here, we aimed at investigating the expression profile of the system in a cell culture model of stroma-epithelial crosstalk and searching for transcription factors potentially related to the regulation of expression of the genes involved. Coculture of BjTERT-fibroblasts with normal PNT2 human prostate epithelial cells resulted in significant downregulation (2-4-fold) of transcriptional activity of HS metabolism-involved genes (EXT1/2, NDST1/2, GLCE, HS2ST1, HS3ST1/2, HS6ST1/2, SULF1/2, HPSE) in both cell types, whereas coculture with prostate cancer cells (LNCaP, PC3, DU145) demonstrated no significant interchanges. Human Transcription Factor RT2 Profiler PCR array and manual RT-PCR verification supposed FOS, MYC, E2F, SRF, NR3C1 as potential candidates for regulation and/or coordination of HS biosynthesis. Taken together, transcriptional activity of HS biosynthetic system in normal fibroblasts and prostate epithelial cells during their coculture might be controlled by their intercellular communication, reflecting of adaptation of these cells to each other. The regulation is attenuated or abrogated if normal fibroblasts interact with prostate cancer cells making the cancer cells independent of the limiting effects of fibroblasts, thus contributing to possibility of unlimited growth and progression. Overall, these data demonstrate an ability of cell-cell interactions to affect transcriptional activity of HS biosynthesis-involved genes.


Asunto(s)
Técnicas de Cocultivo , Fibroblastos , Heparitina Sulfato , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Fibroblastos/metabolismo , Heparitina Sulfato/biosíntesis , Heparitina Sulfato/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Próstata/metabolismo , Próstata/patología , Comunicación Celular , Células Epiteliales/metabolismo
11.
Colloids Surf B Biointerfaces ; 245: 114214, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260275

RESUMEN

Study of cell migration in cancer is crucial to the comprehension of the processes and factors that govern tumor spread. Cancer cells migrate invading tissues, causing alterations in cell adhesion, cytoskeleton, and signaling pathways. Little is known about the physical attributes of cancer cells that change when interacting with microenvironments. In this work, the local topography of the ECM has been mimicked through micropillar array substrates. MDA-MB-231 and MCF-7 breast cancer cells, exhibiting high and low metastatic potential, respectively, were analyzed. Differences in morphology and migration of the cells were investigated by examining the cell spreading area, circularity, aspect ratio, migration speed, and migration path. This work encountered that none of the studied cell lines have preferential orientation migrating on uniform patterns. In contrast, cell migration on graded patterns shows preferential orientation along the longitudinal direction from sparser to denser zones which is significantly influenced by substrate stiffness and indicates that both cell lines can sense the spacing gradient and respond to this topographical cue. The migration speed of the breast cancer cell lines significantly decreases from the sparse to medium to dense zones, registering higher values for the MDA-MB-231.

12.
Heliyon ; 10(17): e37054, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286220

RESUMEN

Modern cancer diagnostics and treatment options have greatly improved survival rates; the illness remains a major cause of mortality worldwide. Current treatments for cancer, such as chemotherapy, are not cancer-specific and may cause harm to healthy cells; therefore, it is imperative that new drugs for cancer be developed that are both safe and effective. It has been found that lactic acid bacteria (LAB) have the potential to produce bacteriocins, which could potentially offer a promising alternative for cancer treatment. They have been shown in several studies to be effective against cancer cells while having no effect on healthy cells. More research is needed to fully understand the potential of LAB bacteriocins as anti-cancer medicines, to find the appropriate dose and delivery route, and to conduct clinical trials to evaluate the effectiveness and safety of the products in human patients, as is suggested by this work. Furthermore, LAB bacteriocins may evolve into a significant new class of anti-cancer drugs and food products. Patients with cancer may have a safe and effective alternative treatment option in the form of anti-cancer foods and drugs. Therefore, the aim of this study is to provide an in-depth analysis of the recent breakthroughs and potential future technical advancements of significant bacteriocins that are produced by LAB, how these bacteriocins function, and how these bacteriocins may be utilized as an anti-cancer agent. In addition, the current analysis emphasizes the significant constraints and boundaries that bacteriocins face when they are used as an anti-cancer factor.

13.
Mater Today Bio ; 28: 101220, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39290464

RESUMEN

Ovarian cancer (OC) is one of the leading causes of death from malignancy in women and lacks safe and efficient treatment. The novel biomaterial, recombinant humanized collagen type III (rhCOLIII), has been reported to have various biological functions, but its role in OC is unclear. This study aimed to reveal the function and mechanism of action of rhCOLIII in OC. We developed an injectable recombinant human collagen (rhCOL)-derived material with a molecular weight of 45 kDa, with a stable triple helix structure, high biocompatibility, water solubility and biosafety. The anti-tumor activity of rhCOLIII was comprehensively evaluated through in vitro and in vivo experiments. In vitro, our results showed that rhCOLIII inhibited the proliferation, migration, and invasion of ovarian cancer cells (OCCs), and induced apoptosis. In addition, rhCOLIII not only inhibited autophagy of OCCs but also increased the expression of MHC-1 molecule within OCCs. To further elucidate the mechanism of rhCOLIII in OC, we conducted joint analysis of RNA-Seq and proteomics, and found that rhCOLIII exerted anti-tumor function and autophagy inhibition by downregulating Glutathione S-transferase P1 (GSTP1). Furthermore, various rescue experiments were designed to demonstrate that rhCOLIII suppressed autophagy and proliferation of OCCs by mediating GSTP1. In vivo, we found that rhCOLIII could inhibit tumor growth and promote CD8+ T cell infiltration. Our results indicate that rhCOLIII has great anti-tumor potential activity in OC, and induces protective anti-tumor immunity by regulating autophagy through GSTP1. These findings illustrate the potential therapeutic prospects of rhCOLIII for OC treatment.

14.
Hum Exp Toxicol ; 43: 9603271241266106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39291655

RESUMEN

OBJECTIVE: This study aimed to explore the expression and biological functions of SIRT3 in colorectal cancer cells (HCT-116), the impacts of sulforaphane on the ferroptosis of HCT-116 cells and the involvement of the SIRT3/AMPK/mTOR axis in those effects. METHODS: SIRT3-overexpressing (OE) and SIRT3-knockout (KO) cell lines were treated with different concentrations of sulforaphane, RSL-3, and IKE. Cell viability, intracellular ROS, MDA, iron levels, as well as mRNA and protein expressions of target genes were measured. RESULTS: SIRT3 expression in HCT-116 cells was increased by ferroptosis inducers and decreased by ferroptosis inhibitors. SIRT3 overexpression reduced cell viability and increased intracellular levels of ROS, MDA, and iron, whereas SIRT3 knockdown achieved the opposite effects. SIRT3 overexpression suppressed SLC7A11 expression and promoted the activation of AMPK/mTOR pathway. Restoration of SLC7A11 expression blocked the effects of SIRT3 on ferroptosis induction and cell viability inhibition. SIRT3 effects on cell viability and ferroptosis were antagonized by inhibitors of AMPK or mTOR. Moreover, sulforaphane triggered the ferroptosis of HCT-116 cells by activating the SIRT3/AMPK/mTOR axis. CONCLUSIONS: SIRT3 triggered SLC7A11-mediated ferroptosis in HCT-116 cells, reducing cell viability by activating the AMPK/mTOR pathway, and sulforaphane targets it to inhibit colorectal cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias Colorrectales , Ferroptosis , Isotiocianatos , Transducción de Señal , Sirtuina 3 , Sulfóxidos , Serina-Treonina Quinasas TOR , Humanos , Isotiocianatos/farmacología , Sirtuina 3/metabolismo , Sirtuina 3/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ferroptosis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Células HCT116 , Anticarcinógenos/farmacología , Supervivencia Celular/efectos de los fármacos
15.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275063

RESUMEN

Many naturally occurring chemical metabolites with significant cytotoxic activities have been isolated from medicinal plants and have become the leading hotspot of anti-cancer research in recent years. Hyptis rhomboidea Mart. et Gal is used as a folk medicine in South China to treat or assist in the treatment of liver disease, ulcers, and edema. But its chemical constituents have not been fully investigated yet. This study aimed to assess the cytotoxicity of H. rhomboidea, which was chemically characterized by chromatography-mass spectrometry methods. The results showed that the 95% ethanol extract of H. rhomboidea has marked inhibitory effects on five human cancer cell lines (HL-60, A549, SMMC-7721, MDA-MB-231, and SW480), with IC50 values ranging from 15.8 to 40.0 µg/mL. A total of 64 compounds were identified by ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and gas chromatograph-mass spectroscopy (GC-MS) analysis of H. rhomboidea crude extract. Among them, kaempferol, quercetin, rosmarinic acid, squalene, and campesterol were found to be abundant and might be the major metabolites involved to its bioactivity. The cytotoxic characterization and metabolite profiling of H. rhomboidea displayed in this research provides scientific evidence to support its use as medicinal properties.


Asunto(s)
Antineoplásicos Fitogénicos , Hyptis , Extractos Vegetales , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Línea Celular Tumoral , Hyptis/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Cromatografía de Gases y Espectrometría de Masas , Metaboloma , Metabolómica/métodos , Cromatografía Líquida de Alta Presión , Supervivencia Celular/efectos de los fármacos
16.
Crit Rev Anal Chem ; : 1-26, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282996

RESUMEN

The emergence of calixarenes as versatile compounds in recent years marks a significant advancement in scientific research. In the area of analytical chemistry, calixarenes have garnered attention for their utility as selective chemosensors, enabling the sensitive and specific detection of metal ions through colorimetric and fluorimetric methods. Moreover, calixarenes have found applications in bioimaging, where they serve as effective probes for visualizing biological structures and processes with high resolution and sensitivity. Additionally, recent studies have explored the anticancer properties of calixarenes, unveiling their potential as therapeutic agents for cancer treatment. This comprehensive review explores recent advancements in calixarenes chemistry, emphasizing their significance in the colorimetric and fluorimetric detection of metal ions. Additionally, it highlights the mechanisms involved in chemosensor design, providing insights into the underlying principles driving their efficacy. Furthermore, the application of calixarenes in bioimaging, particularly for visualizing cellular structures and processes, is discussed, showing their potential in biomedical research and diagnostics. The anticancer activity of calixarenes and their derivatives is also explored, shedding light on their promising role as therapeutic agents. Through an extensive examination of recent literature, this review provides valuable insights into the multifaceted applications of calixarenes and offers perspectives for future research directions.

17.
Cancer Rep (Hoboken) ; 7(9): e70001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39229670

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the most common urinary tumor with the highest incidence rate and the second among the leading causes of death worldwide for adult males. In the worldwide cancer incidence rate, PCa is on the increase. The cancerous cells in the prostate and cells in the microenvironment surrounding the tumor communicate through signal transduction, which is crucial for the development and spread of PCa. RECENT FINDINGS: Exosomes are nanoscale vesicles released into body fluids by various cells that can aid intercellular communication by releasing nucleic acids and proteins. Exosomes published by different types of cells in the tumor microenvironment can have varying impacts on the proliferation and growth of tumor cells via various signaling pathways, modes of action, and secreted cytokines. CONCLUSION: The main purpose of this review is to describe the effects of different cell-derived exosomes in the tumor microenvironment of PCa on the progression of tumor cells, as well as to summarize and discuss the prospects for the application of exosomes in the treatment and diagnosis of PCa.


Asunto(s)
Exosomas , Neoplasias de la Próstata , Microambiente Tumoral , Humanos , Exosomas/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Masculino , Comunicación Celular , Transducción de Señal , Proliferación Celular , Animales
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125052, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39236568

RESUMEN

As a typical natural photosensitizer, hypocrellin B (HB) offers the advantages of high molar extinction coefficient, high phototoxicity, low dark toxicity, and fast metabolism in vivo. However, the lack of tumor specificity hinders its clinical applications. Herein, we designed and synthesized a glutathione (GSH) responsive photosensitizer based on HB. The 7 - nitro - 2,1,3 - benzoxadiazole (NBD) covalently connected to HB not only served as a fluorescence quenching group but also as a GSH activating group. The photosensitizer HB-NBD showed almost no fluorescence and singlet oxygen generation as a result of the photoinduced electron transfer between HB and NBD. The designed photosensitizer HB-NBD can be activated by GSH in solutions and cancer cells, and then obtain recuperative fluorescence and photosensitive activity.

19.
Cancers (Basel) ; 16(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39272964

RESUMEN

Cell division is crucial for the survival of living organisms. Human cells undergo three types of cell division: mitosis, meiosis, and amitosis. The former two types occur in somatic cells and germ cells, respectively. Amitosis involves nuclear budding and occurs in cells that exhibit abnormal nuclear morphology (e.g., polyploidy) with increased cell size. In the early 2000s, Kirsten Walen and Rengaswami Rajaraman and his associates independently reported that polyploid human cells are capable of producing progeny via amitotic cell division, and that a subset of emerging daughter cells proliferate rapidly, exhibit stem cell-like properties, and can contribute to tumorigenesis. Polyploid cells that arise in solid tumors/tumor-derived cell lines are referred to as polyploid giant cancer cells (PGCCs) and are known to contribute to therapy resistance and disease recurrence following anticancer treatment. This commentary provides an update on some of these intriguing discoveries as a tribute to Drs. Walen and Rajaraman.

20.
J Proteome Res ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255405

RESUMEN

Minor acidic glycans, such as sulfated and phosphorylated glycans, constitute only a small fraction of biological glycome, making their analysis a considerable challenge. In this study, we developed a technique to analyze minor acidic O-glycans in biological samples. First, efficient reaction conditions for the release of O-glycans from the proteins were determined. Next, a high-throughput method was established for the recovery of minor acidic glycans using NH2 spin columns. The performance of the established method was evaluated using mucin samples, and sulfated O-glycans were successfully detected in bovine submaxillary gland mucin and porcine stomach mucin. We also analyzed the minor acidic O-glycans in cultured cancer cells. In addition to trifucosylated sulfated O-glycans and disulfated O-glycans, sulfated O-glycans with KDN were detected in LS174T cells. The relative amount of sulfated glycans in LS174T cells was almost 10-fold higher than that in the other cells. Moreover, a large polylactosamine-type sulfated O-glycan with a molecular weight >3500 was detected in MKN45 cells. Interestingly, phosphorylated ribose, possibly bound to serine/threonine, was observed in all the cells used in this study. Thus, our established analytical method allows for the analysis of minor acidic O-glycans that cannot be detected using existing glycomics methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA