Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Stem Cell Reports ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39151431

RESUMEN

Human immune system (HIS) mice generated using human CD34+ hematopoietic stem cells serve as a pivotal model for the in vivo evaluation of immunotherapies for humans. Yet, HIS mice possess certain limitations. Rats, due to their size and comprehensive immune system, hold promise for translational experiments. Here, we describe an efficacious method for long-term immune humanization, through intrahepatic injection of hCD34+ cells in newborn immunodeficient rats expressing human SIRPα. In contrast to HIS mice and similar to humans, HIS rats showed in blood a predominance of T cells, followed by B cells. Immune humanization was also high in central and secondary lymphoid organs. HIS rats treated with the anti-human CD3 antibody were depleted of human T cells, and human cytokines were detected in sera. We describe for the first time a method to efficiently generate HIS rats. HIS rats have the potential to be a useful model for translational immunology.

2.
Front Immunol ; 15: 1426418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211052

RESUMEN

Stem-like CD8+ T cells (TSL) are a subset of immune cells with superior persistence and antitumor immunity. They are TCF1+ PD-1+ and important for the expansion of tumor specific CD8+ T cells in response to checkpoint blockade immunotherapy. In acute infections, naïve CD8+ T cells differentiate into effector and memory CD8+ T cells; in cancer and chronic infections, persistent antigen stimulation can lead to T cell exhaustion. Recent studies have highlighted the dichotomy between late dysfunctional (or exhausted) T cells (TLD) that are TCF1- PD-1+ and self-renewing TCF1+ PD-1+ TSL from which they derive. TCF1+ TSL cells are considered to have stem cell-like properties akin to memory T cell populations and can give rise to cytotoxic effector and transitory T cell phenotypes (TTE) which mediate tumor control. In this review, we will discuss recent advances made in research on the formation and expansion of TSL, as well as distinct niches required for their differentiation and maintenance in the setting of cancer. We will also discuss potential strategies to generate these cells, with clinical implications for stemness enhancement in vaccine design, immune checkpoint blockade (ICB), and adoptive T cell therapies.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T CD8-positivos/inmunología , Animales , Diferenciación Celular/inmunología , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
3.
Cells ; 13(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38994972

RESUMEN

Understanding tumor-host immune interactions and the mechanisms of lung cancer response to immunotherapy is crucial. Current preclinical models used to study this often fall short of capturing the complexities of human lung cancer and lead to inconclusive results. To bridge the gap, we introduce two new murine monoclonal lung cancer cell lines for use in immunocompetent orthotopic models. We demonstrate how our cell lines exhibit immunohistochemical protein expression (TTF-1, NapA, PD-L1) and common driver mutations (KRAS, p53, and p110α) seen in human lung adenocarcinoma patients, and how our orthotopic models respond to combination immunotherapy in vivo in a way that closely mirrors current clinical outcomes. These new lung adenocarcinoma cell lines provide an invaluable, clinically relevant platform for investigating the intricate dynamics between tumor and the immune system, and thus potentially contributes to a deeper understanding of immunotherapeutic approaches to lung cancer treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Animales , Inmunoterapia/métodos , Humanos , Línea Celular Tumoral , Ratones , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Modelos Animales de Enfermedad , Femenino
4.
Adv Healthc Mater ; : e2400779, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030879

RESUMEN

Acquired drug resistance in glioblastoma (GBM) presents a major clinical challenge and is a key factor contributing to abysmal prognosis, with less than 15 months median overall survival. Aggressive chemotherapy with the frontline therapeutic, temozolomide (TMZ), ultimately fails to kill residual highly invasive tumor cells after surgical resection and radiotherapy. Here, a 3D engineered model of acquired TMZ resistance is reported using two isogenically matched sets of GBM cell lines encapsulated in gelatin methacrylol hydrogels. Response of TMZ-resistant versus TMZ-sensitive GBM cell lines within the gelatin-based extracellular matrix platform is benchmarked and drug response at physiologically relevant TMZ concentrations is further validated. The changes in drug sensitivity, cell invasion, and matrix-remodeling cytokine production are shown as the result of acquired TMZ resistance. This platform lays the foundation for future investigations targeting key elements of the GBM tumor microenvironment to combat GBM's devastating impact by advancing the understanding of GBM progression and treatment response to guide the development of novel treatment strategies.

5.
Acta Pharm Sin B ; 14(7): 2901-2926, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027258

RESUMEN

Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.

6.
Proc Natl Acad Sci U S A ; 121(28): e2322917121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959035

RESUMEN

Functional analysis in mouse models is necessary to establish the involvement of a set of genetic variations in tumor development. A modeling platform to facilitate and cost-effectively analyze the role of multiple genes in carcinogenesis would be valuable. Here, we present an innovative strategy for lung mutagenesis using CRISPR/Cas9 ribonucleoproteins delivered via cationic polymers. This approach allows the simultaneous inactivation of multiple genes. We validate the effectiveness of this system by targeting a group of tumor suppressor genes, specifically Rb1, Rbl1, Pten, and Trp53, which were chosen for their potential to cause lung tumors, namely small cell lung carcinoma (SCLC). Tumors with histologic and transcriptomic features of human SCLC emerged after intratracheal administration of CRISPR/polymer nanoparticles. These tumors carried loss-of-function mutations in all four tumor suppressor genes at the targeted positions. These findings were reproduced in two different pure genetic backgrounds. We provide a proof of principle for simplified modeling of lung tumorigenesis to facilitate functional testing of potential cancer-related genes.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias Pulmonares , Mutagénesis , Fosfohidrolasa PTEN , Carcinoma Pulmonar de Células Pequeñas , Proteína p53 Supresora de Tumor , Animales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Fosfohidrolasa PTEN/genética , Proteína p53 Supresora de Tumor/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Humanos , Modelos Animales de Enfermedad , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Edición Génica/métodos
7.
Adv Sci (Weinh) ; : e2309976, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973256

RESUMEN

Efficient and site-specific delivery of therapeutics drugs remains a critical challenge in cancer treatment. Traditional drug nanocarriers such as antibody-drug conjugates are not generally accessible due to their high cost and can lead to serious side effects including life-threatening allergic reactions. Here, these problems are overcome via the engineering of supramolecular agents that are manufactured with an innovative double imprinting approach. The developed molecularly imprinted nanoparticles (nanoMIPs) are targeted toward a linear epitope of estrogen receptor alfa (ERα) and loaded with the chemotherapeutic drug doxorubicin. These nanoMIPs are cost-effective and rival the affinity of commercial antibodies for ERα. Upon specific binding of the materials to ERα, which is overexpressed in most breast cancers (BCs), nuclear drug delivery is achieved via receptor-mediated endocytosis. Consequentially, significantly enhanced cytotoxicity is elicited in BC cell lines overexpressing ERα, paving the way for precision treatment of BC. Proof-of-concept for the clinical use of the nanoMIPs is provided by evaluating their drug efficacy in sophisticated three-dimensional (3D) cancer models, which capture the complexity of the tumor microenvironment in vivo without requiring animal models. Thus, these findings highlight the potential of nanoMIPs as a promising class of novel drug compounds for use in cancer treatment.

8.
Phys Med Biol ; 69(16)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39053508

RESUMEN

Objective.To investigate different dosimetric aspects of90Y-IsoPet™ intratumoral therapy in canine soft tissue sarcomas, model the spatial spread of the gel post-injection, evaluate absorbed dose to clinical target volumes, and assess dose distributions and treatment efficacy.Approach.Six canine cases treated with90Y-IsoPet™ for soft tissue sarcoma at the Veterinary Health Center, University of Missouri are analyzed in this retrospective study. The dogs received intratumoral IsoPet™ injections, following a grid pattern to achieve a near-uniform dose distribution in the clinical target volume. Two dosimetry methods were performed retrospectively using the Monte Carlo toolkit OpenTOPAS: imaging-based dosimetry obtained from post-injection PET/CT scans, and stylized phantom-based dosimetry modeled from the planned injection points to the gross tumor volume. For the latter, a Gaussian parameter with variable sigma was introduced to reflect the spatial spread of IsoPet™. The two methods were compared using dose-volume histograms (DVHs) and dose homogeneity, allowing an approximation of the closest sigma for the spatial spread of the gel post-injection. In addition, we compared Monte Carlo-based dosimetry with voxel S-value (VSV)-based dosimetry to investigate the dosimetric differences.Main results.Imaging-based dosimetry showed differences between Monte Carlo and VSV calculations in tumor high-density areas with higher self-absorption. Stylized phantom-based dosimetry indicated a more homogeneous target dose with increasing sigma. The sigma approximation of the90Y-IsoPet™ post-injection gel spread resulted in a median sigma of approximately 0.44 mm across all cases to reproduce the dose heterogeneity observed in Monte Carlo calculations.Significance.The results indicate that dose modeling based on planned injection points can serve as a first-order approximation for the delivered dose in90Y-IsoPet™ therapy for canine soft tissue sarcomas. The dosimetry evaluation highlights the non-uniformity of absorbed doses despite the gel spread, emphasizing the importance of considering tumor dose heterogeneity in treatment evaluation. Our findings suggest that using Monte Carlo for dose calculation seems more suitable for this type of tumor where high-density areas might play an important role in dosimetry.


Asunto(s)
Método de Montecarlo , Radiometría , Perros , Animales , Dosificación Radioterapéutica , Radioisótopos de Itrio/uso terapéutico , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fantasmas de Imagen , Sarcoma/radioterapia , Sarcoma/veterinaria
9.
EBioMedicine ; 106: 105240, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986249

RESUMEN

BACKGROUND: Humanized tumour models could be particularly valuable for cancer immunotherapy research, as they may better reflect human-specific aspects of the interfaces between tumour and immune system of human cancer. However, endogenous antitumour immunity in humanized models is still largely undefined. METHODS: We established an autologous humanized mouse tumour model by using NSG mice reconstituted with human immune cells from hematopoietic progenitors and tumours generated from transformed autologous human B cells. We demonstrate growth of solid lymphoid tumours after subcutaneous implantation, infiltration by endogenous human immune cells and immunocompetence of the model. FINDINGS: We found human T cell subsets described in human cancer, including progenitor exhausted (Tpex), terminally exhausted (Tex-term) and tissue-resident (TRM) cells in tumour-bearing humanized mice with accumulation of Tex-term and TRM in the tumour. In addition, we identified tumour-reactive CD8+ T cells through expression of CD137. This subpopulation of de novo arising human CD137+ CD8+ T cells displayed a highly proliferative, fully activated effector and exhausted-like phenotype with enhanced expression of activation and exhaustion markers like PD-1, CD39, CD160, TIM-3, TIGIT and TOX, the senescence marker CD57 (B3GAT1) and cytolytic effector molecules such as PRF1, GZMH and NKG7. Moreover, these CD137+ CD8+ T cells exhibited tumour-specific clonal expansion and presented signature overlap with tumour-reactive CD8+ T cells described in human cancer. We demonstrate superior anticancer activity of this activated and exhausted-like human CD8+ T cell subset by adoptive transfer experiments using recipients bearing autologous human tumours. Mice adoptively transferred with CD137+ CD8+ T cells showed reduced tumour growth and higher CD8+ T cell tumour infiltration, correlating with control of human tumours. INTERPRETATION: We established an immunocompetent humanized tumour model, providing a tool for immunotherapy research and defined effective anticancer activity of human effector CD8+ T cells with an activated and exhausted-like phenotype, supporting clinical exploration of such cells in adoptive T cell therapies. FUNDING: Swiss Cancer Research foundation.


Asunto(s)
Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Animales , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones , Fenotipo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Neoplasias/metabolismo , Activación de Linfocitos/inmunología , Línea Celular Tumoral , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Inmunofenotipificación
10.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891809

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), characterized by hypovascularity, hypoxia, and desmoplastic stroma is one of the deadliest malignancies in humans, with a 5-year survival rate of only 7%. The anatomical location of the pancreas and lack of symptoms in patients with early onset of disease accounts for late diagnosis. Consequently, 85% of patients present with non-resectable, locally advanced, or advanced metastatic disease at diagnosis and rely on alternative therapies such as chemotherapy, immunotherapy, and others. The response to these therapies highly depends on the stage of disease at the start of therapy. It is, therefore, vital to consider the stages of PDAC models in preclinical studies when testing new therapeutics and treatment modalities. We report a standardized induction of cell-based orthotopic pancreatic cancer models in mice and the identification of vital features of their progression by ultrasound imaging and histological analysis of the level of pancreatic stellate cells, mature fibroblasts, and collagen. The results highlight that early-stage primary tumors are secluded in the pancreas and advance towards infiltrating the omentum at week 5-7 post implantation of the BxPC-3 and Panc-1 models investigated. Late stages show extensive growth, the infiltration of the omentum and/or stomach wall, metastases, augmented fibroblasts, and collagen levels. The findings can serve as suggestions for defining growth parameter-based stages of orthotopic pancreatic cancer models for the preclinical testing of drug efficacy in the future.


Asunto(s)
Carcinoma Ductal Pancreático , Modelos Animales de Enfermedad , Neoplasias Pancreáticas , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Ratones , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Humanos , Línea Celular Tumoral
11.
Front Bioeng Biotechnol ; 12: 1393413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860135

RESUMEN

Introduction: The dynamics of circulating tumor cells (CTCs) within blood vessels play a pivotal role in predicting metastatic spreading of cancer within the body. However, the limited understanding and method to quantitatively investigate the influence of vascular architecture on CTC dynamics hinders our ability to predict metastatic process effectively. To address this limitation, the present study was conducted to investigate the influence of blood vessel tortuosity on the behaviour of CTCs, focusing specifically on establishing methods and examining the role of shear stress in CTC-vessel wall interactions and its subsequent impact on metastasis. Methods: We computationally simulated CTC behaviour under various shear stress conditions induced by vessel tortuosity. Our computational model, based on the lattice Boltzmann method (LBM) and a coarse-grained spectrin-link membrane model, efficiently simulates blood plasma dynamics and CTC deformability. The model incorporates fluid-structure interactions and receptor-ligand interactions crucial for CTC adhesion using the immersed boundary method (IBM). Results: Our findings reveal that uniform shear stress in straight vessels leads to predictable CTC-vessel interactions, whereas in curved vessels, asymmetrical flow patterns and altered shear stress create distinct adhesion dynamics, potentially influencing CTC extravasation. Quantitative analysis shows a 25% decrease in the wall shear stress in low-shear regions and a 58.5% increase in the high-shear region. We observed high-shear regions in curved vessels to be potential sites for increased CTC adhesion and extravasation, facilitated by elevated endothelial expression of adhesion molecules. This phenomenon correlates with the increased number of adhesion bonds, which rises to approximately 40 in high-shear regions, compared to around 12 for straight vessels and approximately 5-6 in low-shear regions. The findings also indicate an optimal cellular stiffness necessary for successful CTC extravasation in curved vessels. Discussion: By the quantitative assessment of the risk of CTC extravasation as a function of vessel tortuosity, our study offers a novel tool for the prediction of metastasis risk to support the development of personalized therapeutic interventions based on individual vascular characteristics and tumor cell properties.

13.
Biomed Pharmacother ; 176: 116825, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820971

RESUMEN

Considering the limited efficacy of current therapies in lung, colorectal, and pancreatic cancers, innovative combination treatments with diverse mechanisms of action are needed to improve patients' outcomes. Chitinase-3 like-1 protein (CHI3L1) emerges as a versatile factor with significant implications in various diseases, particularly cancers, fostering an immunosuppressive tumor microenvironment for cancer progression. Therefore, pre-clinical validation is imperative to fully realize its potential in cancer treatment. We developed phage display-derived fully human monoclonal CHI3L1 neutralizing antibodies (nAbs) and verified the nAbs-antigen binding affinity and specificity in lung, pancreatic and colorectal cancer cell lines. Tumor growth signals, proliferation and migration ability were all reduced by CHI3L1 nAbs in vitro. Orthotopic or subcutaneous tumor mice model and humanized mouse model were established for characterizing the anti-tumor properties of two CHI3L1 nAb leads. Importantly, CHI3L1 nAbs not only inhibited tumor growth but also mitigated fibrosis, angiogenesis, and restored immunostimulatory functions of immune cells in pancreatic, lung, and colorectal tumor mice models. Mechanistically, CHI3L1 nAbs directly suppressed the activation of pancreatic stellate cells and the transformation of macrophages into myofibroblasts, thereby attenuating fibrosis. These findings strongly support the therapeutic potential of CHI3L1 nAbs in overcoming clinical challenges, including the failure of gemcitabine in pancreatic cancer.


Asunto(s)
Anticuerpos Monoclonales , Proliferación Celular , Proteína 1 Similar a Quitinasa-3 , Neoplasias Colorrectales , Fibrosis , Neoplasias Pulmonares , Neovascularización Patológica , Neoplasias Pancreáticas , Animales , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína 1 Similar a Quitinasa-3/antagonistas & inhibidores , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Ratones , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Anticuerpos Monoclonales/farmacología , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Anticuerpos Neutralizantes/farmacología , Antineoplásicos Inmunológicos/farmacología , Angiogénesis
14.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703767

RESUMEN

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Medicina de Precisión , Receptor de Muerte Celular Programada 1 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/inmunología , Medicina de Precisión/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Dispositivos Laboratorio en un Chip , Inmunoterapia/métodos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Línea Celular Tumoral
15.
Adv Biol (Weinh) ; 8(6): e2300487, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581078

RESUMEN

Various cancer models have been developed to aid the understanding of the underlying mechanisms of tumor development and evaluate the effectiveness of various anticancer drugs in preclinical studies. These models accurately reproduce the critical stages of tumor initiation and development to mimic the tumor microenvironment better. Using these models for target validation, tumor response evaluation, resistance modeling, and toxicity comprehension can significantly enhance the drug development process. Herein, various in vivo or animal models are presented, typically consisting of several mice and in vitro models ranging in complexity from transwell models to spheroids and CRISPR-Cas9 technologies. While in vitro models have been used for decades and dominate the early stages of drug development, they are still limited primary to simplistic tests based on testing on a single cell type cultivated in Petri dishes. Recent advancements in developing new cancer therapies necessitate the generation of complicated animal models that accurately mimic the tumor's complexity and microenvironment. Mice make effective tumor models as they are affordable, have a short reproductive cycle, exhibit rapid tumor growth, and are simple to manipulate genetically. Human cancer mouse models are crucial to understanding the neoplastic process and basic and clinical research improvements. The following review summarizes different in vitro and in vivo metastasis models, their advantages and disadvantages, and their ability to serve as a model for cancer research.


Asunto(s)
Neoplasias , Animales , Humanos , Neoplasias/patología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Ratones , Microambiente Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
16.
Drug Deliv Transl Res ; 14(8): 2216-2241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38619704

RESUMEN

As the conversion rate of preclinical studies for cancer treatment is low, user-friendly models that mimic the pathological microenvironment and drug intake with high throughput are scarce. Animal models are key, but an alternative to reduce their use would be valuable. Vascularized tumor-on-chip models combine great versatility with scalable throughput and are easy to use. Several strategies to integrate both tumor and vascular compartments have been developed, but few have been used to assess drug delivery. Permeability, intra/extravasation, and free drug circulation are often evaluated, but imperfectly recapitulate the processes at stake. Indeed, tumor targeting and chemoresistance bypass must be investigated to design promising cancer therapeutics. In vitro models that would help the development of drug delivery systems (DDS) are thus needed. They would allow selecting good candidates before animal studies based on rational criteria such as drug accumulation, diffusion in the tumor, and potency, as well as absence of side damage. In this review, we focus on vascularized tumor models. First, we detail their fabrication, and especially the materials, cell types, and coculture used. Then, the different strategies of vascularization are described along with their classical applications in intra/extravasation or free drug assessment. Finally, current trends in DDS for cancer are discussed with an overview of the current efforts in the domain.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias , Humanos , Animales , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos
17.
Adv Drug Deliv Rev ; 208: 115295, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38527625

RESUMEN

Melanoma, the deadliest form of skin cancer, poses a significant clinical challenge for the development of effective treatments. Conventional in vivo animal studies have shown limited translational relevance to humans, raising strength to pre-clinical models for melanoma research. This review provides an in-depth analysis of alternative pre-clinical models including in vitro and ex vivo platforms such as reconstructed skin, spheroids, organoids, organotypic models, skin-on-a-chip, and bioprinting. Through a comprehensive analysis, the specific attributes, advantages, and limitations of each model are elucidated. It discusses the points related to the uniqueness advantages, from capturing complex interactions between melanoma cells and their microenvironment to enabling high-throughput drug screening and personalized medicine approaches. This review is structured covering firstly the roadmap to identify the co-occurrence of discovering new melanoma treatments and the development of its models, secondly it covers a comparative between the most used models followed by a section discussing each of them: the in vitro and ex vivo models. It intends to serve as an asset for researchers of melanoma field and clinicians involved in melanoma therapy, offering insights into the diverse preclinical models available for optimizing their integration into the translational pipeline.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Humanos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Organoides , Ensayos Analíticos de Alto Rendimiento , Microambiente Tumoral
18.
Front Bioeng Biotechnol ; 12: 1320729, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410164

RESUMEN

Three-dimensional (3D) cell culture using tumor spheroids provides a crucial platform for replicating tissue microenvironments. However, effective gene modulation via nanoparticle-based transfection remains a challenge, often facing delivery hurdles. Gold nanoparticles (AuNPs) with their tailored synthesis and biocompatibility, have shown promising results in two-dimensional (2D) cultures, nevertheless, they still require a comprehensive evaluation before they can reach its full potential on 3D models. While 2D cultures offer simplicity and affordability, they lack physiological fidelity. In contrast, 3D spheroids better capture in vivo conditions, enabling the study of cell interactions and nutrient distribution. These models are essential for investigating cancer behavior, drug responses, and developmental processes. Nevertheless, transitioning from 2D to 3D models demands an understanding of altered internalization mechanisms and microenvironmental influences. This study assessed ASO-AuNP conjugates for silencing the c-MYC oncogene in 2D cultures and 3D tumor spheroids, revealing distinctions in gene silencing efficiency and highlighting the microenvironment's impact on AuNP-mediated gene modulation. Herein, we demonstrate that increasing the number of AuNPs per cell by 2.6 times, when transitioning from a 2D cell model to a 3D spheroid, allows to attain similar silencing efficiencies. Such insights advance the development of targeted gene therapies within intricate tissue-like contexts.

19.
J Xenobiot ; 14(1): 96-109, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38249103

RESUMEN

Chemical agents can cause cancer in animals by damaging their DNA, mutating their genes, and modifying their epigenetic signatures. Carcinogen-induced preclinical cancer models are useful for understanding carcinogen-induced human cancers, as they can reproduce the diversity and complexity of tumor types, as well as the interactions with the host environment. However, these models also have some drawbacks that limit their applicability and validity. For instance, some chemicals may be more effective or toxic in animals than in humans, and the tumors may differ in their genetics and phenotypes. Some chemicals may also affect normal cells and tissues, such as by causing oxidative stress, inflammation, and cell death, which may alter the tumor behavior and response to therapy. Furthermore, some chemicals may have variable effects depending on the exposure conditions, such as dose, route, and duration, as well as the animal characteristics, such as genetics and hormones. Therefore, these models should be carefully chosen, validated, and standardized, and the results should be cautiously interpreted and compared with other models. This review covers the main features of chemically induced cancer models, such as genetic and epigenetic changes, tumor environment, angiogenesis, invasion and metastasis, and immune response. We also address the pros and cons of these models and the current and future challenges for their improvement. This review offers a comprehensive overview of the state of the art of carcinogen-induced cancer models and provides new perspectives for cancer research.

20.
Mol Oncol ; 18(4): 793-796, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282579

RESUMEN

When we think about cancer, the link to development might not immediately spring to mind. Yet, many foundational concepts in cancer biology trace their roots back to developmental processes. Several defining traits of cancer were indeed initially observed and studied within developing embryos. As our comprehension of embryonic mechanisms deepens, it not only illuminates how and why cancer cells hijack these processes but also spearheads the emergence of innovative technologies for modeling and comprehending tumor biology. Among these technologies are stem cell-based models, made feasible through our grasp of fundamental mechanisms related to embryonic development. The intersection between cancer and stem cell research is evolving into a tangible synergy that extends beyond the concepts of cancer stem cells and cell-of-origin, offering novel tools to unravel the mechanisms of cancer initiation and progression.


Asunto(s)
Neoplasias , Células Madre Neoplásicas , Femenino , Embarazo , Humanos , Diferenciación Celular , Desarrollo Embrionario , Biología Evolutiva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA