Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37763896

RESUMEN

To ameliorate the deficient output flow performance of the piezoelectric pumps with cantilever valves, a dual-inlet pump with a simple valves system is proposed. On the basis of explaining the structure design of the prototype, the working principle of the prototype is explained, and the output flow is theoretically analyzed. Then, the manufacturing process of the prototype is introduced. The general operating frequency of the pump was obtained by combining the finite element analysis of the piezoelectric actuator under dry and wet modes with the mechanical vibration test, and a series of measured flow rates were compared and improved through valve stiffness optimization and pump chamber height adjustment in the subsequent control experiment. The proposed piezoelectric pump achieves a maximum flow rate of 33.18 mL/min at a 180 Vp-p voltage with the driving frequency of 100 Hz, which may bring new inspiration for the application of small intelligent pumps in the field of microfluidics.

2.
Micromachines (Basel) ; 14(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36837957

RESUMEN

This paper describes the design and characteristics of a three-chamber electromagnetic-driven peristaltic micropump based on 3D-printing technology. The micropump is composed of an NdFeB permanent magnet, a polydimethylsiloxane (PDMS) film, a 3D-printing pump body, bolts, electromagnets and a cantilever valve. Through simulation analysis and experiments using a single chamber and three chambers, valved and valveless, as well as different starting modes, the results were optimized. Finally, it is concluded that the performance of the three-chamber valved model is optimal under synchronous starting conditions. The measurement results show that the maximum output flow and back pressure of the 5 V, 0.3 A drive source are 2407.2 µL/min and 1127 Pa, respectively. The maximum specific flow and back pressure of the micropump system are 534.9 µL/min∙W and 250.4 Pa/W, respectively.

3.
Micromachines (Basel) ; 11(10)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993189

RESUMEN

This study analyzed the characteristics of a small reciprocating pump with a cantilever valve driven by a piezo actuator. Three types of valves were fabricated to investigate the effect of the valve stiffness on the pump performance and to measure the variation in the flow rate according to the frequency. The flow rate increased with the driving frequency until a certain frequency was reached, and then it started to decrease. The rise in the pressure of the pump was found to increase as the stiffness decreased. The pump performance could be clearly distinguished according to the stiffness of the valve. The observation of the valve movements revealed that the valve opening time did not change regardless of the operating frequency, but it changed with the valve stiffness. The delay in time for the outlet valve increased significantly with an increase in the frequency. It seems that the overlap of the opening time of the inlet valve and the outlet valve plays an important role in pump performance. Therefore, it is advisable to use different designs for the inlet and outlet valves, where the shape and stiffness of the valve are adjusted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA