Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sensors (Basel) ; 20(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198200

RESUMEN

The focusing property of an ellipsoidal monocapillary has been characterized using the ptychography method with a 405 nm laser beam. The recovered wavefront gives a 12.5×10.4µm2 focus. The reconstructed phase profile of the focused beam can be used to estimate the height error of the capillary surface. The obtained height error shows a Gaussian distribution with a standard deviation of 1.3 µm. This approach can be used as a quantitative tool for evaluating the inner functional surfaces of reflective optics, complementary to conventional metrology methods.

2.
J Xray Sci Technol ; 26(2): 263-272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29154311

RESUMEN

BACKGROUND: Mono-capillary optics have been applied to increase the performance of X-ray instruments. However, performance of a mono-capillary optic strongly depends on the shape accuracy, which is determined by the diameters of the inner hollow of the capillary along the axial direction. OBJECTIVE: To precisely determine the inner diameter of the capillary optic used in X-ray imaging technique, which aims to replace the conventional method using a visible microscope. METHODS: High spatial resolution X-ray images of the mono-capillary optic were obtained by a synchrotron radiation beamline. The inner diameter of the mono-capillary optic was measured and analyzed by the pixel values of the X-ray image. RESULT: Edge enhancement effect was quite useful in determining the inner diameter, and the accuracy of the diameter determination was less than 1.32 µm. Many images obtained by scanning the mono-capillary optic along the axial direction were combined, and the axial profile, consisting of diameters along the axial direction, was obtained from the combined image. The X-ray imaging method could provide an accurate measurement with slope error of±19 µrad. CONCLUSIONS: Applying X-ray imaging technique to determine the inner diameter of a mono-capillary optic can contribute to increasing fabrication accuracy of the mono-capillary optic through a feedback process between the fabrication and measurement of its diameter.


Asunto(s)
Óptica y Fotónica/instrumentación , Radiografía/instrumentación , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Rayos X
3.
J Synchrotron Radiat ; 23(1): 274-80, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26698074

RESUMEN

The lack of models describing the propagation of X-rays in waveguides and the interference mechanism between incident and reflected radiation waves hamper the understanding and the control of wave propagation phenomena occurring in many real systems. Here, experimental spectra collected at the exit of microchannel plates (MCPs) under the total X-ray reflection condition are presented. The results are discussed in the framework of a theoretical model in which the wave propagation is enhanced by the presence of a transition layer at the surface. The angular distributions of the propagating radiation at the exit of these MCPs with microchannels of ∼3 µm diameter will also be presented and discussed. These spectra show contributions associated with the reflection of the primary monochromatic beam and with the fluorescence radiation originating from the excitation of atoms composing the surface of the microchannel. The soft X-ray fluorescence spectra collected at the exit of microcapillaries were analyzed in the framework of a wave approximation while diffraction contributions observed at the exit of these hollow X-ray waveguides have been calculated using the Fraunhofer diffraction model for waves in the far-field domain. Data collected at the Si L-edge show that in glassy MCPs the fluorescence radiation can be detected only when the energy of the primary monochromatic radiation is above the absorption edge for grazing angles higher than half of the critical angle of the total reflection phenomenon. Experimental data and simulations of the propagating radiation represent a clear experimental confirmation of the channeling phenomenon of the excited fluorescence radiation inside a medium and point out that a high transmission can be obtained in waveguide optics for parameters relevant to X-ray imaging.

4.
Korean J Radiol ; 10(6): 604-12, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19885317

RESUMEN

OBJECTIVE: To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. MATERIALS AND METHODS: We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an X-ray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. RESULTS: The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-microm thickness. With a thicker molybdenum filter (100 microm thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-microm thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. CONCLUSION: A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue.


Asunto(s)
Mamografía/instrumentación , Óptica y Fotónica/instrumentación , Intensificación de Imagen Radiográfica/instrumentación , Diseño de Equipo , Humanos , Molibdeno , Fantasmas de Imagen , Rodio
5.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-123976

RESUMEN

OBJECTIVE: To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. MATERIALS AND METHODS: We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an X-ray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. RESULTS: The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-micrometer thickness. With a thicker molybdenum filter (100 micrometer thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-micrometer thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. CONCLUSION: A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue.


Asunto(s)
Humanos , Diseño de Equipo , Mamografía/instrumentación , Molibdeno , Óptica y Fotónica/instrumentación , Fantasmas de Imagen , Intensificación de Imagen Radiográfica/instrumentación , Rodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA