Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 10(13): e33664, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040413

RESUMEN

Glucose, a key component of traditional Japanese fermented foods, is derived from rice starch via saccharification by hydrolytic enzymes produced by Aspergillus oryzae. The δ 13C value of glucose reflects that of its rice source. However, the influence of saccharification parameters (glucose concentration, degradation temperature, and reaction time) on glucose δ 13C values is unclear. Here, we investigated the influence of saccharification on the δ 13C value of glucose. Our experiments showed a significant difference in the δ 1³C value of glucose (-27.0 ± 0.1 ‰) obtained from saccharification compared to the ingredient rice (-27.1 ± 0.1 ‰) and remaining solid residue (-27.1 ± 0.1 ‰); however, it did not differ significantly from those of rice koji (-27.0 ± 0.1 ‰) and steamed rice (-27.1 ± 0.1 ‰), despite all values being within 0.1 ‰. Notably, glucose concentration, degradation temperature, and reaction time did not significantly affect glucose δ 13C values. These findings demonstrate the remarkable preservation of glucose δ 13C values. The δ 13C values remain aligned with the original δ 13C value of the rice, even with up to 60 % degradation during A. oryzae saccharification. This persistence of the δ 13C value throughout the process offers a potential tool for authenticating the origin of rice-fermented beverages based on the δ 13C value of their glucose component.

2.
Plant Physiol Biochem ; 214: 108948, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39043057

RESUMEN

The eutrophication of water, such as excessive nitrogen and phosphorus, are closely associated with the outbreak of red tide. However, the response of dissolved inorganic phosphorus (DIP) to red tide remained unclear in water. In this study, three species of diatoms capable of causing red tides were cultured in simulated seawater with different concentrations of DIP. The changes of biomass, chlorophyll a concentration and the carbon stable isotope composition of microalgae, the DIP concentration and pH of the culture medium were compared among the experimental groups. In addition, correlation verification was used to test the correlation between the change of DIP concentration and other indicators. The results showed that in the experimental period, the DIP concentration of each experimental group decreased significantly first, and the concentration dropped to less than 40% of the initial level. After that, the pH of the medium, the biomass, chlorophyll a concentration and carbon stable isotope composition of the microalgae showed varying degrees of increase, and then stabilized or decreased. These also marked the outbreak of red tide. Moreover, the correlation test showed that there was a correlation between them and the change of DIP concentration. Therefore, by exploring the relationship between the change of DIP concentration in water and the occurrence of red tide, this study provides a possible direction for the current prediction of red tide, and provides a basis for further investigation of the occurrence mechanism of red tide.


Asunto(s)
Biomasa , Clorofila A , Fósforo , Fósforo/metabolismo , Fósforo/análisis , Clorofila A/metabolismo , Concentración de Iones de Hidrógeno , Diatomeas/metabolismo , Floraciones de Algas Nocivas , Agua de Mar/química , Clorofila/metabolismo , Agua , Isótopos de Carbono/análisis , Microalgas/metabolismo
3.
Ying Yong Sheng Tai Xue Bao ; 35(4): 877-885, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884222

RESUMEN

The natural abundance of stable carbon and nitrogen isotopes (δ13C and δ15N) in leaves can provide comprehensive information on the physiological and ecological processes of plants and has been widely used in ecological research. However, recent studies on leaf δ13C and δ15N have focused mainly on woody species, few studies have been conducted on herbs in different vegetation types, and their differences and driving factors are still unclear. In this study, we focused on the herbs in subalpine coniferous forests, alpine shrublands, and alpine mea-dows on the eastern Qinghai-Tibet Plateau, and investigated the differences in leaf δ13C and δ15N of herbs and the driving factors. The results showed that there were significant differences in leaf δ13C and δ15N values of herbs among different vegetation types, with the highest δ13C and δ15N values in alpine meadows, followed by alpine shrublands, and the lowest in subalpine coniferous forests. Using variation partitioning analysis, we revealed that differences in leaf δ13C and δ15N of herbs among various vegetation types were driven by both leaf functional traits and climate factors, with the contribution of leaf functional traits being relatively higher than that of climate factors. Hierarchical partitioning results indicated that mean annual temperature (MAT), chlorophyll content index, leaf nitrogen content per unit area (Narea), and leaf mass per area were the main drivers of leaf δ13C variations of herbs across different vegetation types, while the relative importance of Narea and MAT for variation in leaf δ15N of herbs was much higher than those other variables. There was a strong coupling relationship between leaf δ13C and δ15N as indicated by the result of the ordinary least squares regression. Our findings could provide new insights into understanding the key drivers of leaf δ13C and δ15N variations in herbs across different vegetation types.


Asunto(s)
Isótopos de Carbono , Ecosistema , Isótopos de Nitrógeno , Hojas de la Planta , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Isótopos de Nitrógeno/análisis , Isótopos de Carbono/análisis , Tibet , China , Bosques , Altitud , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Árboles/química , Tracheophyta/crecimiento & desarrollo , Tracheophyta/química , Tracheophyta/metabolismo , Pradera , Poaceae/crecimiento & desarrollo , Poaceae/química , Poaceae/metabolismo
4.
Ying Yong Sheng Tai Xue Bao ; 35(4): 867-876, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884221

RESUMEN

To investigate the correlation between carbon and oxygen isotope compositions of plant cellulose and climatic factors as well as plant physiological indices on the southeastern margin of the Qinghai-Tibet Plateau, we examined plant species in eight sampling sites with similar latitudes and different longitudes in this region. Through the characteristics of δ13C and δ18O values, fractionation values (Δ13C and Δ18O) in leaf cellulose, we discussed water use efficiency (WUE) and the environmental factors, the variation of carbon and oxygen isotopes in the southeastern margin of the Qinghai-Tibet Plateau with elevation and longitude, and revealed the indication degrees of isotopic signals to different environments and vegetation physiology. By using the semi-quantitative model of carbon and oxygen dual isotopes, we investigated the physiological adaptation mechanisms of plants to varying environmental conditions. The results demonstrated that both Δ13C and Δ18O of cellulose decreased with increasing elevation and longitude, and Δ13C was more influenced by longitude, while Δ18O was more susceptible to elevation variation. Additionally, Δ13C and Δ18O were significantly and positively correlated with temperature (TEM), precipitation (PRE), potential evapotranspiration (PET), and relative humidity (RH). PRE was the dominant meteorological factor driving the variation of Δ13C, while RH was the dominant meteorological factor influencing Δ18O variation. In contrast to Δ13C, WUE showed a stronger correlation with elevation than with longitude, which increased as elevation and longitude increased. According to the carbon-oxygen model, plant stomatal conductance (gs) and photosynthetic capacity (Amax) decreased with increasing precipitation and relative humidity, while the values increased with increasing elevation and longitude. The combined analysis of carbon and oxygen isotopes of organic matters would yield additional environmental and gas exchange information for studies on climate tracing and vegetation physiology studies on the southeastern margin of the Qinghai-Tibet Plateau.


Asunto(s)
Isótopos de Carbono , Ecosistema , Isótopos de Oxígeno , Isótopos de Oxígeno/análisis , China , Isótopos de Carbono/análisis , Clima , Altitud , Plantas/metabolismo , Plantas/clasificación , Fenómenos Fisiológicos de las Plantas , Tibet , Celulosa/metabolismo , Celulosa/análisis
5.
Plants (Basel) ; 13(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674576

RESUMEN

In recent years, recurrent droughts have significantly affected spring barley production, reducing the quantity and quality of grain. This study aims to identify genotype-specific traits and the drought resilience of six different Hordeum vulgare L. (spring barley) genotypes, while also examining the potential of potassium application and fungal endophyte Serendipita indica inoculation to mitigate the negative effects of dry periods during the growing season. Field experiments were conducted over a three-year period from 2020 to 2022, measuring physiological, growth, and yield parameters. To get insight into the physiological state of the plants, we measured the soluble sugars content and the ratio of stable carbon isotopes in the flag leaf tissue, which reflects conditions during its formation. The dominant factors that influenced the measured parameters were the genotypes and seasons, as well as their interaction, rather than other experimental factors. The results showed that the Spitfire and Accordine varieties were the best performing in both the 2020 and 2021 seasons, as indicated by their yield. However, in the drier 2022 season, the yield of these two varieties decreased significantly (to 55% for Spitfire and to 69% for Accordine of their yield in 2021), while for the arid-region genotypes, it remained at the same level as the previous year. This study sheds light on the potential of various genotypes to withstand periods of drought and the effectiveness of using potassium application and S. indica inoculation as mitigation approaches.

6.
Plant Physiol Biochem ; 209: 108530, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520966

RESUMEN

Marine microalgae are an essential component of marine plankton and critical primary producers, playing a vital role in marine ecosystems. The seawater carbonate system is a dynamic equilibrium system, and changes in any component can alter the carbonate balance. In CO2-concentrating mechanisms (CCMs), carbonic anhydrase (CA) regulates CO2 concentration by catalyzing the interconversion between CO2 and HCO3-. Therefore, limiting the activity of extracellular carbonic anhydrase (exCA) alters the rate at which carbonate equilibrium is reached and further affects the carbon assimilation process in microalgae. In this study, two different microalgae, Phaeodactylum tricornutum and Nannochloropsis oceanica, were selected to investigate the effects of changes in the carbonate system on photosynthetic carbon assimilation in microalgae by inhibiting exCA activity with acetazolamide (AZ). Inhibition of exCA activity reduces specific growth rates and photosynthetic efficiency of microalgae. The total alkalinity, HCO3- concentration, and CO2 concentration of the cultures increased with the decrease of pH, but the changes of the ribulose 1,5- bisphosphate carboxylase/oxygenase (Rubisco) activities of the two microalgae were different. In addition, the two microalgae possessed different lipid and carbohydrate synthesis strategies, but both restricted triacylglycerol (TAG) synthesis. Meanwhile, the microalgal cells had to utilize more 13CO2 when HCO3- and CO2 conversion rates were limited and restricted. This led to the continuous accumulation of 13C in fatty acids and the elevation of δ13CFAs. In conclusion, our study provides a new perspective on the role of microalgae in correlating carbonate changes with photosynthetic carbon assimilation strategies under mechanistic constraints on inorganic carbon utilization.


Asunto(s)
Anhidrasas Carbónicas , Microalgas , Carbono , Isótopos de Carbono , Dióxido de Carbono , Ecosistema , Anhidrasas Carbónicas/metabolismo , Carbonatos , Fotosíntesis/fisiología
7.
J Insect Physiol ; 154: 104617, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331091

RESUMEN

In nectivorous pollinators, timing and pattern of allocation of consumed nectar affects fitness traits and foraging behavior. Differences in male and female behaviors can influence these allocation strategies. These physiological patterns are not well studied in Lepidoptera, despite them being important pollinators. In this study we investigate crop-emptying rate and nectar allocation in Manduca sexta (Sphingidae), and how sex and flight influence these physiological patterns. After a single feeding event, moths were dissected at fixed time intervals to measure crop volume and analyze sugar allocation to flight muscle and fat body. Then we compared sedentary and flown moths to test how activity may alter these patterns. Sedentary males and females emptied their crops six hours after a feeding event. Both males and females preferentially allocated these consumed sugars to fat body over flight muscle. Moths began to allocate to the fat body during crop-emptying and retained these nutrients long-term (four and a half days after a feeding event). Males allocated consumed sugar to flight muscles sooner and retained these allocated nutrients in the flight muscle longer than did females. Flight initiated increased crop-emptying in females, but had no effect on males. Flight did not significantly affect allocation to flight muscle or fat body in either sex. This study showed that there are inherent differences in male and female nectar sugar allocation strategies, but that male and female differences in crop-emptying rate are context dependent on flight activity. These differences in physiology may be linked to distinct ways males and females maximize their own fitness.


Asunto(s)
Manduca , Mariposas Nocturnas , Masculino , Femenino , Animales , Néctar de las Plantas , Mariposas Nocturnas/fisiología , Manduca/fisiología , Conducta Alimentaria/fisiología , Azúcares , Flores
8.
Life (Basel) ; 14(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38255743

RESUMEN

Olive trees have a unique reproductive pattern marked by biennial fruiting. This study examined the repercussions of alternate fruit bearing on the water relations of olive trees and the associated ecophysiological mechanisms. The experiment spanned two consecutive years: the "ON" year, characterized by a high crop load, and the "OFF" year, marked by minimal fruit production. Key ecophysiological parameters, including sap flow, stomatal conductance, and photosynthetic rate, were monitored in both years. Pre-dawn water potential was measured using continuous stem psychrometers and the pressure chamber technique. Biochemical analyses focused on non-structural carbohydrate concentrations (starch, sucrose, and mannitol) and olive leaves' carbon-stable isotope ratio (δ13C). Results revealed a higher leaf gas exchange rate during the "ON" year, leading to an average 29.3% increase in water consumption and a 40.78% rise in the photosynthetic rate. Higher water usage during the "ON" year resulted in significantly lower (43.22% on average) leaf water potential. Sucrose and starch concentrations were also increased in the "ON" year, while there were no significant differences in mannitol concentration. Regarding the carbon-stable isotope ratio, leaves from the "OFF" year exhibited significantly higher δ13C values, suggesting a higher resistance to the CO2 pathway from the atmosphere to carboxylation sites compared to the "ON" year plants.

9.
Front Plant Sci ; 14: 1225436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107006

RESUMEN

The characteristics of C:N:P stoichiometry, nonstructural carbohydrate (NSC) content, and C stable isotopes and their relationships affect plant responses to environmental changes and are critical to understanding the ecosystem carbon and water cycles. We investigated the water use strategies and physiological changes of two pioneer tree species (Pinus armandii and Pinus yunnanensis) in response to seasonal drought in subtropical China. The seasonal variation in needle δ13C values, C:N:P stoichiometry, and NSC contents of the two tree species were studied in 25-year-old plantation in central Yunnan Province. The needle δ13C values of both species were highest in summer. Soluble sugars, starch and NSC content of the two tree species decreased from spring to winter, while there was no significant difference in the seasonal variation of soluble sugars/starch in P. armandii needles, the maximum soluble sugars/starch in P. yunnanensis needles was in autumn. In addition, the C, N, and P contents of the needles and the C:N and C:P ratios of the two species showed different seasonal fluctuations, whereas the N:P ratio decreased with the season. The C:N:P stoichiometry and NSC content of the needles showed significant correlations, whereas the needle δ13C was weakly correlated with C:N:P stoichiometry and NSC content. Phenotypic plasticity analysis and principal component analysis revealed that the needle nutrient characteristics (NSC and P contents and N:P ratio) and needle δ13C values were critical indicators of physiological adaptation strategies of P. armandii and P. yunnanensis for coping with seasonal variation. These results increase our understanding of the water-use characteristics of the two pioneer tree species and the dynamic balance between the NSC, C, N, and P contents of the needles.

10.
Appl Environ Microbiol ; 89(5): e0187022, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37093010

RESUMEN

Modern microbial mats are potential analogues for Proterozoic ecosystems, yet only a few studies have characterized mats under low-oxygen conditions that are relevant to Proterozoic environments. Here, we use protein-stable isotope fingerprinting (P-SIF) to determine the protein carbon isotope (δ13C) values of autotrophic, heterotrophic, and mixotrophic organisms in a benthic microbial mat from the low-oxygen Middle Island Sinkhole, Lake Huron, USA (MIS). We also measure the δ13C values of the sugar moieties of exopolysaccharides (EPS) within the mat to explore the relationships between cyanobacterial exudates and heterotrophic anabolic carbon uptake. Our results show that Cyanobacteria (autotrophs) are 13C-depleted, relative to sulfate-reducing bacteria (heterotrophs), and 13C-enriched, relative to sulfur oxidizing bacteria (autotrophs or mixotrophs). We also find that the pentose moieties of EPS are systematically enriched in 13C, relative to the hexose moieties of EPS. We hypothesize that these isotopic patterns reflect cyanobacterial metabolic pathways, particularly phosphoketolase, that are relatively more active in low-oxygen mat environments, rather than oxygenated mat environments. This results in isotopically more heterogeneous C sources in low-oxygen mats. While this might partially explain the isotopic variability observed in Proterozoic mat facies, further work is necessary to systematically characterize the isotopic fractionations that are associated with the synthesis of cyanobacterial exudates. IMPORTANCE The δ13C compositions of heterotrophic microorganisms are dictated by the δ13C compositions of their organic carbon sources. In both modern and ancient photosynthetic microbial mats, photosynthetic exudates are the most likely source of organic carbon for heterotrophs. We measured the δ13C values of autotrophic, heterotrophic, and mixotrophic bacteria as well as the δ13C value of the most abundant photosynthetic exudate (exopolysaccharide) in a modern analogue for a Proterozoic environment. Given these data, future studies will be better equipped to estimate the most likely carbon source for heterotrophs in both modern environments as well as in Proterozoic environments preserved in the rock record.


Asunto(s)
Carbono , Cianobacterias , Carbono/metabolismo , Ecosistema , Isótopos de Carbono/metabolismo , Cianobacterias/metabolismo , Oxígeno/metabolismo
11.
Microorganisms ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36838215

RESUMEN

Bottom sediments at methane discharge sites of the Laptev Sea shelf were investigated. The rates of microbial methanogenesis and methane oxidation were measured, and the communities responsible for these processes were analyzed. Methane content in the sediments varied from 0.9 to 37 µmol CH4 dm-3. Methane carbon isotopic composition (δ13C-CH4) varied from -98.9 to -77.6‱, indicating its biogenic origin. The rates of hydrogenotrophic methanogenesis were low (0.4-5.0 nmol dm-3 day-1). Methane oxidation rates varied from 0.4 to 1.2 µmol dm-3 day-1 at the seep stations. Four lineages of anaerobic methanotrophic archaea (ANME) (1, 2a-2b, 2c, and 3) were found in the deeper sediments at the seep stations along with sulfate-reducing Desulfobacteriota. The ANME-2a-2b clade was predominant among ANME. Aerobic ammonium-oxidizing Crenarchaeota (family Nitrosopumilaceae) predominated in the upper sediments along with heterotrophic Actinobacteriota and Bacteroidota, and mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae). Members of the genera Sulfurovum and Sulfurimonas occurred in the sediments of the seep stations. Mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae) occurred in the sediments of all stations. The microbial community composition was similar to that of methane seep sediments from geographically remote areas of the global ocean.

12.
Nutrients ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296992

RESUMEN

Previous studies suggest that amino acid carbon stable isotope ratios (CIRAAs) may serve as biomarkers of added sugar (AS) intake, but this has not been tested in a demographically diverse population. We conducted a 15-day feeding study of U.S. adults, recruited across sex, age, and BMI groups. Participants consumed personalized diets that resembled habitual intake, assessed using two consecutive 7-day food records. We measured serum (n = 99) CIRAAs collected at the end of the feeding period and determined correlations with diet. We used forward selection to model AS intake using participant characteristics and 15 CIRAAs. This model was internally validated using bootstrap optimism correction. Median (25th, 75th percentile) AS intake was 65.2 g/day (44.7, 81.4) and 9.5% (7.2%, 12.4%) of energy. The CIR of alanine had the highest, although modest, correlation with AS intake (r = 0.32, p = 0.001). Serum CIRAAs were more highly correlated with animal food intakes, especially the ratio of animal to total protein. The AS model included sex, body weight and 6 CIRAAs. This model had modest explanatory power (multiple R2 = 0.38), and the optimism-corrected R2 was lower (R2 = 0.15). Further investigations in populations with wider ranges of AS intake are warranted.


Asunto(s)
Aminoácidos , Dieta , Animales , Humanos , Isótopos de Carbono , Biomarcadores , Alanina , Azúcares , Conducta Alimentaria , Ingestión de Energía
13.
Artículo en Inglés | MEDLINE | ID: mdl-36231549

RESUMEN

Seawater and fish were collected from nearshore (Pearl River Estuarine, PRE) and offshore (middle of the South China Sea, MSCS) regions of the South China Sea (SCS) to determine the heavy metals (HMs) pollution status and biomagnification characteristics. Results show that Cu in PRE seawater was moderately contaminated. Overall pollution risk of seawater were PRE (3.32) > MSCS (0.56), whereas that of fish was MSCS (0.88) > PRE (0.42). δ13C and δ15N exhibited distinguished characteristics for PRE and MSCS fish, indicating the diverse energy sources, nitrogen sources, and food web structures of nearshore and offshore regions. Cu was biomagnified whereas Pb and Ni were biodiluted in offshore fish. Hg presented significant biomagnification in both of nearshore and offshore fish. Finally, the target hazard quotient of Hg (1.41) in MSCS fish exceeded the standard limit, which was posed by high Hg concentration and consumption rate of offshore fish.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Animales , Bioacumulación , China , Monitoreo del Ambiente , Peces , Plomo , Metales Pesados/análisis , Nitrógeno , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
14.
Front Plant Sci ; 13: 909603, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968133

RESUMEN

Intrinsic water use efficiency (iWUE) is a critical eco-physiological function allowing plants to adapt to water- and nutrient-limited habitats in arid and semi-arid regions. However, the distribution of iWUE in coexisting species along aridity gradients and its controlling factors are unknown. We established two transects along an aridity gradient in the grasslands of Losses Plateau (LP) and Inner Mongolia Plateau (MP) to elucidate the patterns and underlying mechanisms of iWUE distribution in coexisting species along aridity gradient. We determined leaf carbon (δ13C) and oxygen (δ18O) stable isotopes, functional traits related to carbon fixation, and limiting resources. Bulk leaf δ13C and δ18O were used as proxies for time-integrated iWUE and stomatal conductance (gs) during the growing season. Our results showed that variability in iWUE within transect was primarily controlled by species, sampling sites and an interactive effect between species and sampling sites. Mean values of iWUE (iWUEMean) increased and coefficient of variation (CV) in iWUE (iWUECV) decreased with an increase in aridity, demonstrating that increases in aridity lead to conservative and convergent water use strategies. Patterns of iWUEMean and iWUECV were controlled primarily by the ratio of soil organic carbon to total nitrogen in LP and soil moisture in MP. This revealed that the most limited resource drove the distribution patterns of iWUE along aridity gradients. Interspecific variation in iWUE within transect was positively correlated with Δ18O, indicating that interspecific variation in iWUE was primarily regulated by gs. Furthermore, relationship between iWUE and multi-dimensional functional trait spectrum indicated that species evolved species-specific strategies to adapt to a harsh habitat by partitioning limiting resources. Overall, these findings highlighted the interactive effects of limiting resources and leaf functional traits on plant adaptation strategies for iWUE, and emphasized the importance of considering biological processes in dissecting the underlying mechanisms of plant adaptation strategies at large regional scales.

15.
Sci Total Environ ; 844: 157044, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35779722

RESUMEN

Particulate organic carbon and nitrogen (POC, PN, collectively particulate organic matter, POM) and the stable isotopic signature of POC (δ13CPOC) are important to delineate its sources and recycling in shelf water. The present study provides insights into the factors responsible for spatial and interannual variability in POM and δ13CPOC values along the western Indian shelf waters (8° N -21° N) during the southwest (SW) monsoon (August) 2017 and 2018. The dominance of phytoplankton-derived POM with a negligible terrestrial influence was evident from the positive correlation between POC and TChla contents, ratios of C: N, and δ13CPOC signatures. Prominent upwelling signatures [cold nutrient-rich water, higher POM, total Chlorophylla (TChla), and δ13CPOC values] were noted in the south (8-12° N), whereas low nutrient warm waters (lower values of POM, TChla, and δ13CPOC) were prevalent in the north (13-21° N). Phytoplankton biomass was significantly higher and matured in 2017 due to an early and stronger upwelling in the south. In 2018, delayed and weak upwelling (evident from Ekman offshore transport and pumping velocity) resulted in the late development of phytoplankton bloom and lower POM. Furthermore, considerably lower nutrient supply within the mixed layers in 2018 compared to 2017 was partially attributed to the enhanced spatial expansion of low salinity waters closer to the surface. In the north, in 2018, higher wind speeds enhanced vertical mixing resulting in increased nutrient supply and TChla compared to 2017. We conclude that monsoon wind speed in the northern shelf and strength as well as the timing of the upwelling, including freshwater flux in the south, can be the key factors in modulating the interannual variability in POM distribution and δ13CPOC signature in the western Indian Shelf waters.


Asunto(s)
Monitoreo del Ambiente , Material Particulado , Carbono , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Fitoplancton , Agua
16.
Glob Chang Biol ; 28(16): 4923-4934, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35490304

RESUMEN

Increases in terrestrial water-use efficiency (WUE) have been reported in many studies, pointing to potential changes in physiological forcing of global carbon and hydrological cycles. However, gains in WUE are of uncertain magnitude over longer (i.e. >10 years) periods of time largely owing to difficulties in accounting for structural and physiological acclimation. 13 C signatures (i.e. δ13 C) of plant organic matter have long been used to estimate WUE at temporal scales ranging from days to centuries. Mesophyll conductance is a key uncertainty in estimated WUE owing to its influence on diffusion of CO2 to sites of carboxylation. Here we apply new knowledge of mesophyll conductance to 464 δ13 C chronologies in tree-rings of 143 species spanning global biomes. Adjusted for mesophyll conductance, gains in WUE during the 20th century (0.15 ppm year-1 ) were considerably smaller than those estimated from conventional modelling (0.26 ppm year-1 ). Across the globe, mean sensitivity of WUE to atmospheric CO2 was 0.15 ppm ppm-1 . Ratios of internal-to-atmospheric CO2 (on a mole fraction basis; ci /ca ) in leaves were mostly constant over time but differed among biomes and plant taxa-highlighting the significance of both plant structure and physiology. Together with synchronized responses in stomatal and mesophyll conductance, our results suggest that ratios of chloroplastic-to-atmospheric CO2 (cc /ca ) are constrained over time. We conclude that forest WUE may have not increased as much as previously suggested and that projections of future climate forcing via CO2 fertilization may need to be adjusted accordingly.


Asunto(s)
Dióxido de Carbono , Agua , Bosques , Fotosíntesis/fisiología , Hojas de la Planta/fisiología
17.
Molecules ; 27(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35408709

RESUMEN

Fatty acids (FAs) metabolism in animals represents an important field of study since they influence the quality and the properties of the meat. The aim of this study is to assess the possibility to discriminate the diets of cows in different animal compartments and to study the fate of dietary FAs in the bovine organism, using carbon isotopic ratios. Five FAs, both essential (linoleic and linolenic) and non-essential (palmitic, stearic, and oleic) in four compartments (feed, rumen, liver, meat) of animals fed two different diets (based on either C3 or C4 plants) were considered. For all compartments, the carbon isotopic ratio (δ13C) of all FAs (with few exceptions) resulted significantly lower in cows fed on C3 than C4 plants, figuring as a powerful tool to discriminate between different diets. Moreover, chemical reactions taking place in each animal compartment result in fraction processes affecting the δ13C values. The δ13CFAs tendentially increase from feed to meat in group C3. On the other hand, the δ13CFAs generally increase from rumen to liver in group C4, while δ13CFAs of rumen and meat are mostly not statistically different. Different trends in the δ13CFAs of the two groups suggested different FAs fates depending on the diet.


Asunto(s)
Dieta , Rumen , Alimentación Animal/análisis , Animales , Isótopos de Carbono/metabolismo , Bovinos , Dieta/veterinaria , Ácidos Grasos/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Rumen/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-35457395

RESUMEN

PAHs in a sediment core covering ~120 years from Daya Bay in South China Sea were extracted using Soxhlet and high performance thin layer chromatography, and the compound-specific δ13C were analyzed using gas chromatography-combustion-isotopic ratio mass spectrometry. The concentrations of PAHs ranged from 99.3 to 676 ng g-1, with high molecular weight PAHs as a key component. PAHs' compound-specific δ13C ranged from -35.02‱ to -16.14‱. The patterns of 16 PAHs, molecular ratios, and compound specific δ13C compositions indicate important pyrolytic and petrogenic sources: PAHs derived predominantly from pyrogenic sources (including coal and wood incomplete combustion) before the 1960s, while after the 1960s, they derived predominantly from mixed pyrogenic and petrogenic sources (including automotive exhaust emissions, oil spills, and coal and wood incomplete combustion). Our results can provide important insights into organic pollution emissions influenced by human activities and the urbanization of Daya Bay.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Bahías , China , Carbón Mineral/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
19.
Food Chem ; 369: 130854, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450515

RESUMEN

The carbon stable isotopic composition, as indicated by the δ13C value, of wine ethanol is inherited from berry sugars, but little is known about the variation in sugar δ13C values of Japanese grapes relative to overseas grapes. This study found a large variation in sugar δ13C values of Chardonnay grapes grown in Japan (-27.2 ± 0.9‰, mean ± standard deviation, n = 33), with sugar δ13C values depending on the δ13C values and content of monosaccharides. After complete fermentation, the carbon isotope discrimination between berry sugars and wine ethanol was 1.5 ± 0.1‰. Ethanol δ13C values and carbon isotope discrimination enabled prediction of sugar δ13C values in the original must. Imported wines had higher sugar δ13C values than those of wines made from Japanese grapes, suggesting drier overseas viticulture conditions. The determination of sugar δ13C values in grape berries provides valuable information for viticulture and wine authentication.


Asunto(s)
Vitis , Vino , Carbono , Isótopos de Carbono/análisis , Frutas/química , Azúcares/análisis , Vino/análisis
20.
Environ Pollut ; 293: 118601, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34848286

RESUMEN

Riverine carbon (C) composition and export are closely related to changes in the coastal environment and climate. Excessive C inputs from rivers to seas and their subsequent decomposition could result in harmful algal blooms and ecosystem degradation in the coastal sea. In this study, we explored the C transportation and composition in the 24 major rivers of the Bohai Sea (BS) Rim based on the investigation of dissolved organic carbon (DOC), carbon stable isotopes (δ13CDOC) and chromophoric dissolved organic matter (CDOM). The results showed that the riverine DOC concentrations were high (10.6 ± 6.04 mg/L) in the BS Rim compared with the DOC levels in the main rivers in Eastern China (4.98 ± 2.45 mg/L). The δ13CDOC ranged from -28.29‰ to -25.32‰ in the rivers of the BS Rim, suggesting that the DOC mainly originated from riverine plankton, soil organic matter mainly induced by C3 plants, and sewage. The excitation-emission matrix fluorescence spectroscopy of the CDOM indicated that a soluble, microbial by product-like material accounted for the largest proportion (approximately 40%) of CDOM in these rivers and that CDOM mainly originated from autochthonous riverine sources with high protein-like components. The rivers in the BS Rim transported approximately 0.55 Tg C of DOC to the BS each year, with more than 70% of reactive C based on the CDOM composition. The DOC yields in terms of unit drainage area transported from the small rivers to the BS were higher compared to those of the larger rivers in the world, which indicated that the small rivers in the Bohai Rim could be an important source of the C in the BS. This study would enrich our understanding of environmental evolution in coastal areas with numerous small rivers.


Asunto(s)
Materia Orgánica Disuelta , Ecosistema , Monitoreo del Ambiente , Ríos , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA