RESUMEN
The conversion of biomass waste into high-value nanomaterials such as carbon dots might represent a great advancement towards a circular economy system. Biomass wastes are an excellent choice as carbon precursors because of their wide availability, abundance, chemical composition, and eco-friendly nature. Moreover, their use as a raw material might decrease the total cost of the synthesis processes and reduce the environmental impacts. In addition, the complex composition of biomass leads to carbon dots with abundant functional groups, which in turn enhances water dispersibility and photoluminescence properties. In this manner, the effective transformation of biomass wastes into carbon dots reduces environmental pollution through the inadequate management of waste while producing carbon dots with enhanced performances. Therefore, this review describes biomass wastes as potential candidates for the synthesis of carbon dots through different synthesis methods. In addition, we have analyzed the great potential of biomass-derived carbon dots (CDs) for the degradation and detection of emerging pharmaceutical pollutants by promoting a circular economy approach. Finally, we identified current challenges to propose possible research directions for the large-scale and sustainable synthesis of high-quality biomass-derived CDs.
Asunto(s)
Carbono , Nanoestructuras , Carbono/química , Contaminación Ambiental , Biomasa , Preparaciones FarmacéuticasRESUMEN
Waste derived from the textile industry can contain a wide variety of pollutants of organic and inorganic natures, such as dyes (e.g., acid, basic, reactive, mordant dyes) and toxic metals (e.g., lead, chromium, cadmium). The presence of pollutants at high concentrations in textile waste makes them relevant sources of pollution in the environment. To solve this problem, various technologies have been developed for the removal of pollutants from these matrices. Thus, adsorption emerges as an efficient alternative for textile waste remediation, providing advantages as simplicity of operation, economy, possibility of using different adsorbent materials, and developing on-line systems that allow the reuse of the adsorbent during several adsorption/desorption cycles. This review will initially propose an introduction to the adsorption world, its fundamentals, and aspects related to kinetics, equilibrium, and thermodynamics. The possible mechanisms through which a pollutant can be retained on an adsorbent will be explained. The analytical techniques that offer valuable information to characterize the solid phases as well as each adsorbate/adsorbent system will be also commented. The most common synthesis techniques to obtain carbon nano-adsorbents have been also presented. In addition, the latest advances about the use of these adsorbents for the removal of pollutants from textile waste will be presented and discussed. The contributions reported in this manuscript demonstrated the use of highly efficient carbon-based nano-adsorbents for the removal of both organic and inorganic pollutants, reaching removal percentages from 65 to 100%.
Asunto(s)
Contaminantes Ambientales , Nanoestructuras , Contaminantes Químicos del Agua , Aguas Residuales , Carbono , Contaminantes Químicos del Agua/análisis , Colorantes , Adsorción , Industria TextilRESUMEN
Although carbon-based nanomaterials (CNMs) toxicity has already been demonstrated in some animal models, little is known about the impact of carbon nanofibers (CNFs) on aquatic vertebrates. Thus, we aimed to evaluate the possible effects of long-term exposure of zebrafish (Danio rerio) juveniles (90 days) to CNFs in predicted environmentally relevant concentrations (10 ng/L and 10 µg/L). Our data revealed that exposure to CNFs did not affect the growth and development of the animals, in addition to not having induced locomotor alterations or anxiety-like behavior. On the other hand, we observed that zebrafish exposed to CNFs showed a response deficit to the vibratory stimulus test, alteration in the density of neuromasts recorded in the final ventral region, as well as an increase in thiobarbituric acid reactive substances levels and a reduction in total antioxidant activity, nitric oxide, and acetylcholinesterase activity in the brain. Such data were directly associated with a higher concentration of total organic carbon in the brain, which suggests the bioaccumulation of CNFs. Furthermore, exposure to CNFs induced a picture suggestive of genomic instability, inferred by the increased frequency of nuclear abnormalities and DNA damage in circulating erythrocytes. Although the individual analyses of the biomarkers did not point to a concentration-dependent effect, the principal component analysis (PCA) and the Integrated Biomarker Response Index (IBRv2) indicate a more prominent effect induced by the higher CNFs concentration (10 µg/L). Therefore, our study confirms the impact of CNFs in the studied model (D. rerio) and sheds light on the ecotoxicological risks of these nanomaterials to freshwater fish. Based on the ecotoxicological screening provided by our study, new horizons are opened for investigations into the mechanisms of action of CNFs, which will help understand the magnitude of the impact of these materials on aquatic biota.
Asunto(s)
Nanofibras , Contaminantes Químicos del Agua , Animales , Pez Cebra , Carbono , Acetilcolinesterasa , Ecotoxicología , Contaminantes Químicos del Agua/toxicidadRESUMEN
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
RESUMEN
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants formed mainly by the incomplete combustion of organic matter, such as oil, gas and coal. The presence of PAHs can cause irreparable damage to the environment and living beings, which has generated a global concern with the short and long term risks that the emission of these pollutants can cause. Many technologies have been developed in the last decades aiming at the identification and treatment of these compounds, mainly, the PAHs from wastewater. This review features an overview of studies on the main methods of PAHs remediation from wastewater, highlighting the adsorption processes, through the application of different adsorbent nanomaterials, with a main focus on graphene-based nanomaterials, synthesized by conventional and green routes. Batch and fixed-bed adsorptive processes were evaluated, as well as, the mechanisms associated with such processes, based on kinetic, equilibrium and thermodynamic studies. Based on the studies analyzed in this review, green nanomaterials showed higher efficiency in removing PAHs than the conventional nanomaterials. As perspectives for future research, the use of green nanomaterials has shown to be sustainable and promising for PAHs remediation, so that further studies are needed to overcome the possible challenges and limitations of green synthesis methodologies.
Asunto(s)
Grafito , Nanoestructuras , Hidrocarburos Policíclicos Aromáticos , Adsorción , Hidrocarburos Policíclicos Aromáticos/análisis , Aguas ResidualesRESUMEN
Although the toxicity of carbon-based nanomaterials has already been demonstrated in several studies, their transfer in the food chain and impact on the upper trophic level remain unexplored. Thus, based on the experimental food chain "Eisenia fetida â Danio rerio â Oreochromis niloticus", the current study tested the hypothesis that carbon nanofibers (CNFs) accumulated in animals are transferred to the upper trophic level and cause mutagenic and cytotoxic changes. E. fetida individuals were exposed to CNFs and offered to D. rerio, which were later used to feed O. niloticus. The quantification of total organic carbon provided evidence of CNFs accumulation at all evaluated trophic levels. Such accumulation was associated with higher frequency of erythrocyte nuclear abnormalities such as constricted erythrocyte nuclei, vacuole, blebbed, kidney-shaped and micronucleated erythrocytes in Nile tilapia exposed to CNFs via food chain. The cytotoxic effect was inferred based on the smaller size of the erythrocyte nuclei and on the lower "nuclear/cytoplasmic" area ratio in tilapia exposed to CNFs via food chain. Our study provided pioneering evidence about CNFs accumulation at trophic levels of the experimental chain, as well as about the mutagenic and cytotoxic effect of these materials on O. niloticus.
Asunto(s)
Cíclidos , Nanofibras , Oligoquetos , Animales , Carbono , Humanos , Pez CebraRESUMEN
Carbon-based materials have been considered very promising for the technological industry due to their unique physical and chemical properties, namely: ability to reduce production costs and to improve the efficiency of several products. However, there is little information on what is the level of exposure that leads to adverse effects and what kind of effects is expected in aquatic biota. Thus, the aim of the present study was to evaluate the toxicity of carbon nanofibers (CNFs) in dragonfly larvae (Aphylla williamsoni) based on predictive oxidative-stress biomarkers, antioxidant activity reduction and neurotoxicity. After ephemeral models' exposure to CNFs (48 h; at 500 µg/L), data have shown that these pollutants did not change larvae's nutritional status given the concentration of total soluble carbohydrates, total proteins and triglycerides in them. However, the levels of both nitric oxide and substances reactive to thiobarbituric acid (lipid peroxidation indicators) have increased and the antioxidant activity based on total thiol levels and on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (%) has reduced, and it suggests REDOX imbalance induction by CNFs. In addition, larvae exposed to these pollutants showed significant acetylcholinesterase activity reduction in comparison to the control group. Thus, the present study has brought further knowledge about how carbon-based materials can affect benthic macroinvertebrates and emphasized their ecotoxicological potential in freshwater environments.
Asunto(s)
Nanofibras , Odonata , Acetilcolinesterasa , Animales , Carbono , LarvaRESUMEN
BACKGROUND: The conventional approaches to assess the potential cytotoxic effects of nanomaterials (NMs) mainly rely on in vitro biochemical assays. These assays are strongly dependent on the properties of the nanomaterials, for example; specific surface area (SSA), size, surface defects, and surface charge, and the host response. The NMs properties can also interfere with the reagents of the biochemical and optical assays leading to skewed interpretations and ambiguous results related to the NMs toxicity. Here, we proposed a structured approach for cytotoxicity assessment complemented with cells' mechanical responses represented as the variations of elastic Young's modulus in conjunction with conventional biochemical tests. Monitoring the mechanical properties responses at various times allowed understanding the effects of NMs to the filamentous actin cytoskeleton. The elastic Young's modulus was estimated from the force volume maps using an atomic force microscope (AFM). RESULTS: Our results show a significant decrease on Young's modulus, ~ 20%, in cells exposed to low concentrations of graphene flakes (GF), ~ 10% decrease for cells exposed to low concentrations of multiwalled carbon nanotubes (MWCNTs) than the control cells. These considerable changes were directly correlated to the disruption of the cytoskeleton actin fibers. The length of the actin fibers in cells exposed to GF was 50% shorter than the fibers of the cells exposed to MWCNT. Applying both conventional biochemical approach and cells mechanics, we were able to detect differences in the actin networks induced by MWCNT inside the cells and GF outside the cell's membrane. These results contrast with the conventional live/dead assay where we obtained viabilities greater than 80% after 24 h; while the elasticity dramatically decreased suggesting a fast-metabolic stress generation. CONCLUSIONS: We confirmed the production of radical oxygen species (ROS) on cells exposed to CBNs, which is related to the disruption of the cytoskeleton. Altogether, the changes in mechanical properties and the length of F-actin fibers confirmed that disruption of the F-actin cytoskeleton is a major consequence of cellular toxicity. We evidenced the importance of not just nanomaterials properties but also the effect of the location to assess the cytotoxic effects of nanomaterials.