Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.134
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38965165

RESUMEN

PURPOSE: Cardiac perfusion MRI is vital for disease diagnosis, treatment planning, and risk stratification, with anomalies serving as markers of underlying ischemic pathologies. AI-assisted methods and tools enable accurate and efficient left ventricular (LV) myocardium segmentation on all DCE-MRI timeframes, offering a solution to the challenges posed by the multidimensional nature of the data. This study aims to develop and assess an automated method for LV myocardial segmentation on DCE-MRI data of a local hospital. METHODS: The study consists of retrospective DCE-MRI data from 55 subjects acquired at the local hospital using a 1.5 T MRI scanner. The dataset included subjects with and without cardiac abnormalities. The timepoint for the reference frame (post-contrast LV myocardium) was identified using standard deviation across the temporal sequences. Iterative image registration of other temporal images with respect to this reference image was performed using Maxwell's demons algorithm. The registered stack was fed to the model built using the U-Net framework for predicting the LV myocardium at all timeframes of DCE-MRI. RESULTS: The mean and standard deviation of the dice similarity coefficient (DSC) for myocardial segmentation using pre-trained network Net_cine is 0.78 ± 0.04, and for the fine-tuned network Net_dyn which predicts mask on all timeframes individually, it is 0.78 ± 0.03. The DSC for Net_dyn ranged from 0.71 to 0.93. The average DSC achieved for the reference frame is 0.82 ± 0.06. CONCLUSION: The study proposed a fast and fully automated AI-assisted method to segment LV myocardium on all timeframes of DCE-MRI data. The method is robust, and its performance is independent of the intra-temporal sequence registration and can easily accommodate timeframes with potential registration errors.

2.
Radiol Cardiothorac Imaging ; 6(4): e230338, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39023374

RESUMEN

Purpose To investigate whether infarct-to-remote myocardial contrast can be optimized by replacing generic fitting algorithms used to obtain native T1 maps with a data-driven machine learning pixel-wise approach in chronic reperfused infarct in a canine model. Materials and Methods A controlled large animal model (24 canines, equal male and female animals) of chronic myocardial infarction with histologic evidence of heterogeneous infarct tissue composition was studied. Unsupervised clustering techniques using self-organizing maps and t-distributed stochastic neighbor embedding were used to analyze and visualize native T1-weighted pixel-intensity patterns. Deep neural network models were trained to map pixel-intensity patterns from native T1-weighted image series to corresponding pixels on late gadolinium enhancement (LGE) images, yielding visually enhanced noncontrast maps, a process referred to as data-driven native mapping (DNM). Pearson correlation coefficients and Bland-Altman analyses were used to compare findings from the DNM approach against standard T1 maps. Results Native T1-weighted images exhibited distinct pixel-intensity patterns between infarcted and remote territories. Granular pattern visualization revealed higher infarct-to-remote cluster separability with LGE labeling as compared with native T1 maps. Apparent contrast-to-noise ratio from DNM (mean, 15.01 ± 2.88 [SD]) was significantly different from native T1 maps (5.64 ± 1.58; P < .001) but similar to LGE contrast-to-noise ratio (15.51 ± 2.43; P = .40). Infarcted areas based on LGE were more strongly correlated with DNM compared with native T1 maps (R2 = 0.71 for native T1 maps vs LGE; R2 = 0.85 for DNM vs LGE; P < .001). Conclusion Native T1-weighted pixels carry information that can be extracted with the proposed DNM approach to maximize image contrast between infarct and remote territories for enhanced visualization of chronic infarct territories. Keywords: Chronic Myocardial Infarction, Cardiac MRI, Data-Driven Native Contrast Mapping Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Medios de Contraste , Infarto del Miocardio , Animales , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Femenino , Masculino , Perros , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética/métodos , Enfermedad Crónica , Reproducibilidad de los Resultados , Algoritmos
3.
Radiol Case Rep ; 19(9): 3613-3617, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38983305

RESUMEN

Magnetic resonance imaging is a novel imaging technique for guiding electrophysiology based ablation operations for atrial flutter and typical atrial fibrillation. When compared to standard electrophysiology ablation, this innovative method allows for better outcomes. Intra-procedural imaging is important for following the catheter in real time throughout the ablation operation while also seeing cardiac architecture and determining whether the ablation is being completed appropriately utilizing oedema sequences. At the same time, intra-procedural imaging allows immediate visualization of any complications of the procedure. We describe a case of a 67 year old male underwent an isthmus-cavo-tricuspid magnetic resonance-guided thermoablation procedure for atrial flutter episodes. During the procedure we noted an atypical focal thinning of the right atrial wall at the isthmus cava-tricuspidal zone. The post-procedural Black Blood T2 STIR showed an area of hyperintensity at the hepatic dome and glissonian capsule, which was consistent with intraparenchymal hepatic oedema, in close proximity to the atrial finding. Given the opportunity to direct monitoring of adjacent tissues, we aim to highlight with our case the ability of magnetic resonance-guided cardiac ablation to immediately detect peri-procedural complications in the ablative treatment of atrial fibrillation.

4.
Front Cardiovasc Med ; 11: 1378333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984354

RESUMEN

Background: Primary cardiac tumors remain exceptionally rare, characterized by a poor prognosis. Among them, sarcomas originating in the pulmonary arteries constitute the most infrequent subgroup within primary cardiac sarcomas. Case summary: This report presents the case of a 76-year-old female experiencing a recurrence of an undifferentiated pleomorphic intracardiac pulmonary artery sarcoma located in the right ventricular outflow tract, manifesting 8 years after initial remission. Successful outcomes were attained through a combination of surgical resection, state-of-the-art radiotherapy, and chemotherapy. This comprehensive approach proved essential for optimizing both survival and quality of life. Discussion: The unexpectedly prolonged recurrence-free survival observed in this case underscores the effectiveness of the comprehensive multimodal treatment approach outlined in the existing literature. This highlights the pivotal role of a multidisciplinary strategy in addressing primary cardiac sarcomas, particularly those arising in the pulmonary arteries.

5.
Pediatr Cardiol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033244

RESUMEN

Ebstein Anomaly (EA) is a malformation of the right heart, but there is data to suggest that the left ventricle (LV) can suffer from intrinsic structural and functional abnormalities which affect surgical outcomes. The LV in patients with EA is hypertrabeculated with abnormalities in LV function and strain. In this retrospective single-center study, patients with EA who underwent pre-operative cardiac MRI (CMR) between the periods of 2014-2024 were included along with a group of healthy-age-matched controls. Left ventricular and right ventricular volume, function and strain analyses were performed on standard SSFP imaging. LV noncompacted: compacted (NC/C) ratio and the displacement index of the tricuspid valve were measured. Forty-seven EA patients were included with mean age of 21.0 ± 17.6 years. Seventeen EA patients (36%) had mild pre-operative LV dysfunction on CMR and 1 (2.1%) had moderate LV dysfunction. Out of these 18 patients with LV dysfunction, only 2 were detected to have dysfunction on Echocardiogram. The global circumferential and longitudinal strain were significantly lower in the reduced LVEF group compared to those with preserved LVEF (- 14.8% vs. - 17%, p = 0.02 and - 11.9% vs. - 15.0%; p = 0.05; respectively) on CMR. A single EA patient met criteria for LVNC with a maximal NC/C ratio > 2.3. There was no statistically significant difference in NC/C ratio in the EA population (1.4 ± 0.6) vs. controls (1.1 ± 0.2), p = 0.17. There was an inverse correlation of LV ejection fraction with right ventricular end-diastolic volume and displacement index. All patients underwent the Da Silva Cone procedure at our center. Patients with preoperative LV dysfunction had longer duration of epinephrine use in the immediate postoperative period (33.7 ± 21.4 vs 10.2 ± 25.6 h, p = 0.02) and longer length of hospital stay (6.3 ± 3.2 vs 4.4 ± 1.2 days, p = 0.01). This is the largest study to date to evaluate preoperative LV structure and function in EA patients by CMR. In this cohort of 47 patients, preoperative LV dysfunction is fairly common and CMR has high sensitivity in detecting LV dysfunction as compared to Echo. True LV non-compaction was rare in this cohort. The presence of LV dysfunction is relevant to perioperative management and further study with larger cohorts and longer follow up are necessary.

6.
BMC Geriatr ; 24(1): 572, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961397

RESUMEN

INTRODUCTION: Aging is associated with a progressive decline in the capacity for physical activity. The objective of the current study was to evaluate the effect of an intermittent hyperbaric oxygen therapy (HBOT) protocol on maximal physical performance and cardiac perfusion in sedentary older adults. METHODS: A randomized controlled clinical trial randomized 63 adults (> 64yrs) either to HBOT (n = 30) or control arms (n = 33) for three months. Primary endpoint included the maximal oxygen consumption (VO2Max) and VO2Max/Kg, on an E100 cycle ergometer. Secondary endpoints included cardiac perfusion, evaluated by magnetic resonance imaging and pulmonary function. The HBOT protocol comprised of 60 sessions administered on a daily basis, for 12 consecutive weeks, breathing 100% oxygen at 2 absolute atmospheres (ATA) for 90 min with 5-minute air breaks every 20 min. RESULTS: Following HBOT, improvements were observed in VO2Max/kg, with a significant increase of 1.91 ± 3.29 ml/kg/min indicated by a net effect size of 0.455 (p = 0.0034). Additionally, oxygen consumption measured at the first ventilatory threshold (VO2VT1) showed a significant increase by 160.03 ± 155.35 ml/min (p < 0.001) with a net effect size of 0.617. Furthermore, both cardiac blood flow (MBF) and cardiac blood volume (MBV) exhibited significant increases when compared to the control group. The net effect size for MBF was large at 0.797 (p = 0.008), while the net effect size for MBV was even larger at 0.896 (p = 0.009). CONCLUSION: The findings of the study indicate that HBOT has the potential to improve physical performance in aging adults. The enhancements observed encompass improvements in key factors including VO2Max, and VO2VT1. An important mechanism contributing to these improvements is the heightened cardiac perfusion induced by HBOT. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT02790541 (registration date 06/06/2016).


Asunto(s)
Oxigenoterapia Hiperbárica , Consumo de Oxígeno , Humanos , Masculino , Femenino , Anciano , Oxigenoterapia Hiperbárica/métodos , Consumo de Oxígeno/fisiología , Persona de Mediana Edad , Ejercicio Físico/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-39012402

RESUMEN

The prognostic implications of late gadolinium-enhanced (LGE) magnetic resonance imaging (MRI) in the context of cardiac sarcoidosis (CS) have attracted considerable attention. Nevertheless, a subset of studies has undistinguished confirmed and suspected CS cases, thereby engendering interpretative ambiguities. In this meta-analysis, we evaluated the differences in cardiac MRI findings and their prognostic utility between confirmed and suspected CS. A literature search was conducted using PubMed, Web of Science, and Cochrane libraries to compare the findings of cardiac MRI and its prognostic value in CS and suspected CS. A meta-analysis was performed to compare the prevalence of LGE MRI, odds ratios, and hazard ratios for predicting cardiac events in both groups. A total of 21 studies encompassing 24 different populations were included in the meta-analysis (CS: 393 cases, suspected CS: 2151 cases). CS had a higher frequency of LGE of the left ventricle (87.2% vs. 36.4%, p < 0.0001) and right ventricle (62.1% vs. 23.8%, p = 0.04) than suspected CS. In patients with suspected CS, the presence of left ventricular LGE was associated with higher all-cause mortality [odds ratio: 5.70 (95%CI: 2.51-12.93), p < 0.0001, I2 = 8%, p for heterogeneity = 0.37] and ventricular arrhythmia [odds ratio: 15.51 (95%CI: 5.65-42.55), p < 0.0001, I2 = 0, p for heterogeneity = 0.94]. In contrast, in CS, not the presence but extent of left ventricular LGE was a significant predictor of outcome (hazard ratio = 1.83 per 10% increase of %LGE (95%CI: 1.43-2.34, p < 0.001, I2 = 15, p for heterogeneity = 0.31). The presence of left ventricular LGE was a strong prognostic factor in suspected sarcoidosis. However, the extremely high prevalence of left ventricular LGE in confirmed CS suggests that the quantitative assessment of LGE is useful for prognostic estimation.

8.
Curr Probl Cardiol ; 49(9): 102733, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955249

RESUMEN

Cardiac amyloidosis, characterized by amyloid fibril deposition in the myocardium, leads to restrictive cardiomyopathy and heart failure. This review explores recent advancements in imaging techniques for diagnosing and managing cardiac amyloidosis, highlighting their clinical applications, strengths, and limitations. Echocardiography remains a primary, non-invasive imaging modality but lacks specificity. Cardiac MRI (CMR), with Late Gadolinium Enhancement (LGE) and T1 mapping, offers superior tissue characterization, though at higher costs and limited availability. Scintigraphy with Tc-99m-PYP reliably diagnoses transthyretin (TTR) amyloidosis but is less effective for light chain (AL) amyloidosis, necessitating complementary diagnostics. Amyloid-specific PET tracers, such as florbetapir and flutemetamol, provide precise imaging and quantitative assessment for both TTR and AL amyloidosis. Challenges include differentiating between TTR and AL amyloidosis, early disease detection, and standardizing imaging protocols. Future research should focus on developing novel tracers, integrating multimodality imaging, and leveraging AI to enhance diagnostic accuracy and personalized treatment. Advancements in imaging have improved cardiac amyloidosis management. A multimodal approach, incorporating echocardiography, CMR, scintigraphy, and PET tracers, offers comprehensive assessment. Continued innovation in tracers and AI applications promises further enhancements in diagnosis, early detection, and patient outcomes.

11.
Radiol Cardiothorac Imaging ; 6(3): e230247, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900026

RESUMEN

Purpose To use unsupervised machine learning to identify phenotypic clusters with increased risk of arrhythmic mitral valve prolapse (MVP). Materials and Methods This retrospective study included patients with MVP without hemodynamically significant mitral regurgitation or left ventricular (LV) dysfunction undergoing late gadolinium enhancement (LGE) cardiac MRI between October 2007 and June 2020 in 15 European tertiary centers. The study end point was a composite of sustained ventricular tachycardia, (aborted) sudden cardiac death, or unexplained syncope. Unsupervised data-driven hierarchical k-mean algorithm was utilized to identify phenotypic clusters. The association between clusters and the study end point was assessed by Cox proportional hazards model. Results A total of 474 patients (mean age, 47 years ± 16 [SD]; 244 female, 230 male) with two phenotypic clusters were identified. Patients in cluster 2 (199 of 474, 42%) had more severe mitral valve degeneration (ie, bileaflet MVP and leaflet displacement), left and right heart chamber remodeling, and myocardial fibrosis as assessed with LGE cardiac MRI than those in cluster 1. Demographic and clinical features (ie, symptoms, arrhythmias at Holter monitoring) had negligible contribution in differentiating the two clusters. Compared with cluster 1, the risk of developing the study end point over a median follow-up of 39 months was significantly higher in cluster 2 patients (hazard ratio: 3.79 [95% CI: 1.19, 12.12], P = .02) after adjustment for LGE extent. Conclusion Among patients with MVP without significant mitral regurgitation or LV dysfunction, unsupervised machine learning enabled the identification of two phenotypic clusters with distinct arrhythmic outcomes based primarily on cardiac MRI features. These results encourage the use of in-depth imaging-based phenotyping for implementing arrhythmic risk prediction in MVP. Keywords: MR Imaging, Cardiac, Cardiac MRI, Mitral Valve Prolapse, Cluster Analysis, Ventricular Arrhythmia, Sudden Cardiac Death, Unsupervised Machine Learning Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Prolapso de la Válvula Mitral , Fenotipo , Aprendizaje Automático no Supervisado , Humanos , Prolapso de la Válvula Mitral/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sistema de Registros , Imagen por Resonancia Cinemagnética/métodos , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/fisiopatología , Adulto , Imagen por Resonancia Magnética
12.
Front Cardiovasc Med ; 11: 1380630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919544

RESUMEN

Background: Left ventricular (LV) wall motion assessment is an important adjunct in addition to perfusion defects in assessing ischemic changes. This study aims to investigate the feasibility and utility of performing feature tracking (FT) in pediatric patients with coronary anomalies undergoing dobutamine stress CMR to assess wall motion abnormalities (WMA) and perfusion defects. Method: This is a retrospective study where 10 patients with an inducible first-pass perfusion (FPP) defect and 10 without were selected. Global LV circumferential strain/strain rate (GCS/GCSR) was measured at rest and at peak stress (systole and diastole) using a commercially available feature tracking software. Peak GCS and GCSR were compared to indexed wall motion score (WMSI) between groups with and without FPP defect and in subjects with and without WMA. Results: The median age of patients was 13.5 years (Q1, 11 years; Q3, 15 years). Five subjects had qualitatively WMA at peak stress. A moderate correlation of GCS with WMSI at peak stress (0.48, p = 0.026) and a significant difference between GCS at rest and stress in patients with no inducible WMA (p = 0.007) were seen. No significant difference was noted in GCS between rest and stress in patients with WMA (p = 0.13). There was a larger absolute GCS/GCSR at peak stress in subjects with no inducible FPP defect or WMA. Conclusion: Smaller absolute GCS and a lack of significant change in GCS at peak stress in those with inducible WMA or perfusion defect are suggestive of compromised LV deformation in subjects with inducible WMA. Given these findings, GCS derived from CMR-FT may be used to objectively assess WMA in pediatric patients undergoing stress CMR.

13.
Cureus ; 16(5): e61142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933642

RESUMEN

Left ventricular non-compaction cardiomyopathy (LVNC), or non-compaction cardiomyopathy (NCCM), is defined by pronounced left ventricular trabeculations and deep intertrabecular recesses connecting with the ventricular cavity. Patients with NCCM can be asymptomatic or have severe complications, including heart failure, arrhythmias, thromboembolism, and sudden cardiac death. Our case discusses a patient with shortness of breath who was found to have a newly decreased ejection fraction. The workup revealed non-ischemic cardiomyopathy and cardiac MRI showed hyper-trabeculations consistent with NCCM. The patient was started on oral anticoagulation and guideline-directed medical therapy (GDMT) and discharged with an event monitor. NCCM stands as a relatively rare and enigmatic condition, often veiled in ambiguity. The absence of standardized diagnostic and management protocols further complicates its clinical landscape. While echocardiography is the primary diagnostic tool, its tendency for under-diagnosis poses a significant challenge. Conversely, advanced imaging modalities like cardiac MRI may lead to instances of overdiagnosis. Treatment approaches are non-specific, incorporating GDMT, anticoagulation, implantable cardioverter-defibrillator placement, and genetic testing paired with counseling. Prioritizing genetic research is crucial to uncover tailored therapeutic interventions. Establishing consensus guidelines and refining diagnostic accuracy are pivotal steps toward mitigating the risks associated with under and over-diagnosis.

15.
J Pers Med ; 14(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38929877

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of premature death and disability globally, leading to significant increases in healthcare costs and economic strains. Artificial intelligence (AI) is emerging as a crucial technology in this context, promising to have a significant impact on the management of CVDs. A wide range of methods can be used to develop effective models for medical applications, encompassing everything from predicting and diagnosing diseases to determining the most suitable treatment for individual patients. This literature review synthesizes findings from multiple studies that apply AI technologies such as machine learning algorithms and neural networks to electrocardiograms, echocardiography, coronary angiography, computed tomography, and cardiac magnetic resonance imaging. A narrative review of 127 articles identified 31 papers that were directly relevant to the research, encompassing a broad spectrum of AI applications in cardiology. These applications included AI models for ECG, echocardiography, coronary angiography, computed tomography, and cardiac MRI aimed at diagnosing various cardiovascular diseases such as coronary artery disease, hypertrophic cardiomyopathy, arrhythmias, pulmonary embolism, and valvulopathies. The papers also explored new methods for cardiovascular risk assessment, automated measurements, and optimizing treatment strategies, demonstrating the benefits of AI technologies in cardiology. In conclusion, the integration of artificial intelligence (AI) in cardiology promises substantial advancements in diagnosing and treating cardiovascular diseases.

17.
Front Cardiovasc Med ; 11: 1371810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873265

RESUMEN

Background: Cardiac systolic dysfunction is a poor prognostic marker in light-chain (AL) cardiomyopathy, a primary interstitial disorder; however, its pathogenesis is poorly understood. Purpose: This study aims to analyze the effects of extracellular volume (ECV) expansion, a surrogate marker of amyloid burden on myocardial blood flow (MBF), myocardial work efficiency (MWE), and left ventricular (LV) systolic dysfunction in AL amyloidosis. Methods: Subjects with biopsy-proven AL amyloidosis were prospectively enrolled (April 2016-June 2021; Clinicaltrials.gov ID NCT02641145) and underwent cardiac magnetic resonance imaging (MRI) to quantify rest MBF by perfusion imaging, LV ejection fraction (LVEF) by cine MRI, and ECV by pre- and post-contrast T1 mapping. The MWE was estimated as external cardiac work from the stroke volume and mean arterial pressure normalized to the LV myocardial mass. Results: Rest MBF in 92 subjects (62 ± 8 years, 52 men) with AL amyloidosis averaged 0.87 ± 0.21 ml/min/g and correlated with MWE (r = 0.42; p < 0.001). Rest MBF was similarly low in subjects with sustained hematologic remission after successful AL amyloidosis therapy (n = 21), as in those with recently diagnosed AL amyloidosis. Both MBF and MWE decreased by ECV tertile (p < 0.01 for linear trends). The association of ECV with MWE comprised a direct effect (84% of the total effect; p < 0.001) on MWE from adverse interstitial remodeling assessed by ECV and an indirect effect (16% of the total effect; p < 0.001) mediated by MBF. There was a significant base-to-apex gradient of rest MBF in subjects with higher amyloid burden. Conclusions: In AL amyloidosis, both MBF and MWE decrease as cardiac amyloid burden and ECV expansion increase. Both structural and vascular changes from ECV expansion and myocardial amyloid burden appear to contribute to lower MWE.

18.
Radiol Cardiothorac Imaging ; 6(3): e230154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842453

RESUMEN

Purpose To perform a systematic review and meta-analysis to assess the effect of enzyme replacement therapy on cardiac MRI parameters in patients with Fabry disease. Materials and Methods A systematic literature search was conducted from January 1, 2000, through January 1, 2024, in PubMed, ClinicalTrials.gov, Embase, and Cochrane Library databases. Study outcomes were changes in the following parameters: (a) left ventricular wall mass (LVM), measured in grams; (b) LVM indexed to body mass index, measured in grams per meters squared; (c) maximum left ventricular wall thickness (MLVWT), measured in millimeters; (d) late gadolinium enhancement (LGE) extent, measured in percentage of LVM; and (e) native T1 mapping, measured in milliseconds. A random-effects meta-analysis of the pooled mean differences between baseline and follow-up parameters was conducted. The study protocol was registered in PROSPERO (CRD42022336223). Results The final analysis included 11 studies of a total of 445 patients with Fabry disease (mean age ± SD, 41 years ± 11; 277 male, 168 female). Between baseline and follow-up cardiac MRI, the following did not change: T1 mapping (mean difference, 6 msec [95% CI: -2, 15]; two studies, 70 patients, I2 = 88%) and LVM indexed (mean difference, -1 g/m2 [95% CI: -6, 3]; four studies, 290 patients, I2 = 81%). The following measures minimally decreased: LVM (mean difference, -18 g [95% CI: -33, -3]; seven studies, 107 patients, I2 = 96%) and MLVWT (mean difference, -1 mm [95% CI: -2, -0.02]; six studies, 151 patients, I2 = 90%). LGE extent increased (mean difference, 1% [95% CI: 1, 1]; three studies, 114 patients, I2 = 85%). Conclusion In patients with Fabry disease, enzyme replacement therapy was associated with stabilization of LVM, MLVWT, and T1 mapping values, whereas LGE extent mildly increased. Keywords: Fabry Disease, Enzyme Replacement Therapy (ERT), Cardiac MRI, Late Gadolinium Enhancement (LGE) Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Terapia de Reemplazo Enzimático , Enfermedad de Fabry , Imagen por Resonancia Magnética , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/diagnóstico por imagen , Enfermedad de Fabry/patología , Humanos , Terapia de Reemplazo Enzimático/métodos , Imagen por Resonancia Magnética/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología
19.
Radiol Cardiothorac Imaging ; 6(3): e230252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842454

RESUMEN

Purpose To assess the correlation between noninvasive cardiac MRI-derived parameters with pressure-volume (PV) loop data and evaluate changes in left ventricular function after myocardial infarction (MI). Materials and Methods Sixteen adult female swine were induced with MI, with six swine used as controls and 10 receiving platelet-derived growth factor-AB (PDGF-AB). Load-independent measures of cardiac function, including slopes of end-systolic pressure-volume relationship (ESPVR) and preload recruitable stroke work (PRSW), were obtained on day 28 after MI. Cardiac MRI was performed on day 2 and day 28 after infarct. Global longitudinal strain (GLS) and global circumferential strain (GCS) were measured. Ventriculo-arterial coupling (VAC) was derived from PV loop and cardiac MRI data. Pearson correlation analysis was performed. Results GCS (r = 0.60, P = .01), left ventricular ejection fraction (LVEF) (r = 0.60, P = .01), and cardiac MRI-derived VAC (r = 0.61, P = .01) had a significant linear relationship with ESPVR. GCS (r = 0.75, P < .001) had the strongest significant linear relationship with PRSW, followed by LVEF (r = 0.67, P = .005) and cardiac MRI-derived VAC (r = 0.60, P = .01). GLS was not significantly correlated with ESPVR or PRSW. There was a linear correlation (r = 0.82, P < .001) between VAC derived from cardiac MRI and from PV loop data. GCS (-3.5% ± 2.3 vs 0.5% ± 1.4, P = .007) and cardiac MRI-derived VAC (-0.6 ± 0.6 vs 0.3 ± 0.3, P = .001) significantly improved in the animals treated with PDGF-AB 28 days after MI compared with controls. Conclusion Cardiac MRI-derived parameters of MI correlated with invasive PV measures, with GCS showing the strongest correlation. Cardiac MRI-derived measures also demonstrated utility in assessing therapeutic benefit using PDGF-AB. Keywords: Cardiac MRI, Myocardial Infarction, Pressure Volume Loop, Strain Imaging, Ventriculo-arterial Coupling Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Modelos Animales de Enfermedad , Infarto del Miocardio , Animales , Femenino , Porcinos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología , Imagen por Resonancia Magnética/métodos , Función Ventricular Izquierda/fisiología , Volumen Sistólico/fisiología , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Imagen por Resonancia Cinemagnética/métodos
20.
Magn Reson Med ; 92(4): 1511-1524, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38872384

RESUMEN

PURPOSE: To develop and validate a highly efficient motion compensated free-breathing isotropic resolution 3D whole-heart joint T1/T2 mapping sequence with anatomical water/fat imaging at 0.55 T. METHODS: The proposed sequence takes advantage of shorter T1 at 0.55 T to acquire three interleaved water/fat volumes with inversion-recovery preparation, no preparation, and T2 preparation, respectively. Image navigators were used to facilitate nonrigid motion-compensated image reconstruction. T1 and T2 maps were jointly calculated by a dictionary matching method. Validations were performed with simulation, phantom, and in vivo experiments on 10 healthy volunteers and 1 patient. The performance of the proposed sequence was compared with conventional 2D mapping sequences including modified Look-Locker inversion recovery and T2-prepared balanced steady-SSFP sequence. RESULTS: The proposed sequence has a good T1 and T2 encoding sensitivity in simulation, and excellent agreement with spin-echo reference T1 and T2 values was observed in a standardized T1/T2 phantom (R2 = 0.99). In vivo experiments provided good-quality co-registered 3D whole-heart T1 and T2 maps with 2-mm isotropic resolution in a short scan time of about 7 min. For healthy volunteers, left-ventricle T1 mean and SD measured by the proposed sequence were both comparable with those of modified Look-Locker inversion recovery (640 ± 35 vs. 630 ± 25 ms [p = 0.44] and 49.9 ± 9.3 vs. 54.4 ± 20.5 ms [p = 0.42]), whereas left-ventricle T2 mean and SD measured by the proposed sequence were both slightly lower than those of T2-prepared balanced SSFP (53.8 ± 5.5 vs. 58.6 ± 3.3 ms [p < 0.01] and 5.2 ± 0.9 vs. 6.1 ± 0.8 ms [p = 0.03]). Myocardial T1 and T2 in the patient measured by the proposed sequence were in good agreement with conventional 2D sequences and late gadolinium enhancement. CONCLUSION: The proposed sequence simultaneously acquires 3D whole-heart T1 and T2 mapping with anatomical water/fat imaging at 0.55 T in a fast and efficient 7-min scan. Further investigation in patients with cardiovascular disease is now warranted.


Asunto(s)
Tejido Adiposo , Imagenología Tridimensional , Fantasmas de Imagen , Humanos , Imagenología Tridimensional/métodos , Masculino , Tejido Adiposo/diagnóstico por imagen , Adulto , Corazón/diagnóstico por imagen , Reproducibilidad de los Resultados , Algoritmos , Femenino , Imagen por Resonancia Magnética/métodos , Respiración , Agua Corporal/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Voluntarios Sanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA