Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Dis ; 107(11): 3448-3456, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37081630

RESUMEN

Although fungal canker diseases constitute a limiting factor to orchard productivity and longevity, little is known about the effects of temperature on spore germination and mycelial growth of the fungal causal agents. Accordingly, the germination of spores and colony growth of Calosphaeria pulchella, Cytospora sorbicola, and Eutypa lata were evaluated after incubation on 2% water agar and 4% potato dextrose agar, respectively, at 5, 10, 15, 20, 25, 30, 35, and 40°C. Temperature optima for spore germination and mycelial growth were derived from nonlinear models fitted to germination rates and colony diameter data. The optimal temperatures for spore germination of Cal. pulchella were 28.5°C for ascospores and 29.2°C for conidia. The optimal temperatures for Cyt. sorbicola conidia and E. lata ascospore germination were 25.8 and 23.1°C, respectively. The germination of ascospores and conidia of Cal. pulchella at temperatures below 15°C required an incubation time of at least 72 h. Ascospores of E. lata and conidia of Cyt. sorbicola germinated at 10°C after 36 h. The optimal temperature for colony growth of Cal. pulchella was 24.6°C, whereas it was 21.7°C for both Cyt. sorbicola and E. lata. Our study indicates that temperature requirements for basic biological functions are higher for Cal. pulchella than for Cyt. sorbicola and E. lata. The overall higher temperatures of California relative to other cherry-producing regions in the United States or worldwide could explain the prevalence of Calosphaeria canker in the state. Conversely, Cyt. sorbicola and E. lata appear better adapted to cooler temperatures.


Asunto(s)
Prunus avium , Temperatura , Agar/farmacología , Germinación , Esporas Fúngicas
2.
Life (Basel) ; 12(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888073

RESUMEN

Wheat is the most extensively cultivated crop and occupies a central place in human nutrition providing 20% of the daily food calories. This study was conducted to find both T and ψ effects on wheat germination and the cardinal Ts value; a lab experiment was accomplished using HTT models. Cultivars were germinated under different accelerated aging periods (AAP, 0, 24, 48, and 72 h) at each of the following constant Ts of 15, 20, 25, 30, and 35 °C at each of the ψs of 0, -0.05, -0.1, -0.15, and -0.2 MPa. GR, GP, and other germination parameters (GI, GRI, CVG, SVI-I, SVI-II, GE, and MGT) were significantly determined by solute potential, temperature, and reciprocal action in both cultivars (p ≤ 0.01). Depending on the confidence interval of the model co-efficiently between cultivars, there was no significant difference. Hence, the average of cardinal Ts was 15, 20, and 35 °C for the Tb, To, and Tc, respectively, in the control condition (0 MPa). Hydro-time values declined when Ts was raised to To in cultivars, then remained constant at Ts ≥ To (2.4 MPah-1 in Pirsabak 15 and 0.96 MPah-1 in Shahkar). The slope of the relationship between ψb(50) and TTsupra with temperature when Ts is raised above To and reaches 0 at Tc. In conclusion, the assessed parameter values in this study can easily be used in simulation models of wheat germination to quantitatively characterize the physiological status of wheat seed populations at different Ts and ψs.

3.
Plants (Basel) ; 11(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35567143

RESUMEN

Temperature is the main factor that impacts germination and therefore the success of annual crops, such as chia (Salvia hispanica L.), whose seeds are known for their high nutritional value related to its oil. The effect of temperature on germination is related to cardinal-temperature concepts that describe the range of temperature over which seeds of a particular species can germinate. Therefore, in this study, in addition to calculated germinative parameters such as total germination and germination rate of S. hispanica seeds, the effectiveness of non-linear models for estimating the cardinal temperatures of chia seeds was also determined. We observed that germination of S. hispanica occurred in cold to moderate-high temperatures (10-35 °C), having an optimal range between 25 and 35 °C, with the highest GR and t50 at 30 °C. Temperatures higher than 35 °C significantly reduced germination. Output parameters of the different non-linear models showed that the response of chia germination to temperature was best explained by beta models (B). Cardinal temperatures calculated by the B1 model for chia germination were: 2.52 ± 6.82 °C for the base, 30.45 ± 0.32 °C for the optimum, and 48.58 ± 2.93 °C for the ceiling temperature.

4.
Life (Basel) ; 12(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35207497

RESUMEN

Barley (Hordeum vulgare L.) is a salt-tolerant crop with considerable economic value in salinity-affected arid and semiarid areas. In the laboratory experiment, the halothermal time (HaloTT) model was used to examine barley seed germination (SG) at six constant cardinal temperatures (Ts) of 15, 20, 25, 30, 35, and 40 °C under five different water potentials (ψs) of 0, -0.5, -1.5, -1.0, and -2.0 MPa. Results showed that at optimum moisture (0 MPa), the highest germination percentage (GP) was recorded at 20 °C and the lowest at 40 °C. Moreover, GP increased with the accelerated aging period (AAP) and significantly (p ≤ 0.05) decreased with high T. In addition, with a decrease of ψ from 0 to -0.5, -1, 1.5, and -2.0 MPa, GP decreased by 93.33, 76.67, 46.67, and 33.33%, respectively, in comparison with 0 MPa. The maximum halftime constant (θHalo) and coefficient of determination (R2) values were recorded at 20 °C and 30 °C, respectively. The optimum temperature (To) for barley is 20 °C, base Ψ of 50th percentile (Ψb (50)) is -0.23 Mpa, and standard deviation of Ψb (σΨb) is 0.21 MPa. The cardinal Ts for germination is 15 °C (Tb), 20 °C (To), and 40 °C (Tc). The GP, germination rate index (GRI), germination index (GI), coefficient of the velocity of germination (CVG), germination energy (GE), seed vigor index I and II (SVI-I & II), Timson germination index (GI), and root shoot ratio (RSR) were recorded maximum at 0 MPa at 20 °C and minimum at -2.0 MPa at 40 °C. Mean germination time (MGT) and time to 50% germination (T 50%) were maximum at -2 MPa at 40 °C, and minimum at 20 °C, respectively. In conclusion, the HaloTT model accurately predicted the germination time course of barley in response to T, Ψ, or NaCl. Therefore, barley can be regarded as a salt-tolerant plant and suitable for cultivation in arid and semi-arid regions due to its high resistance to salinity.

5.
Plants (Basel) ; 12(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616279

RESUMEN

Cedrela odorata is a native tree of economic importance, as its wood is highly demanded in the international market. In this work, the current and future distributions of C. odorata in Mexico under climate change scenarios were analyzed according to their optimal temperature ranges for seed germination. For the present distribution, 256 localities of the species' presence were obtained from the Global Biodiversity Information Facility (GBIF) database and modelled with MaxEnt. For the potential distribution, the National Center for Atmospheric Research model (CCSM4) was used under conservative and drastic scenarios (RCP2.6 and RCP8.5 Watts/m2, respectively) for the intermediate future (2050) and far future (2070). Potential distribution models were built from occurrence data within the optimum germination temperature range of the species. The potential distribution expanded by 5 and 7.8% in the intermediate and far future, respectively, compared with the current distribution. With the increase in temperature, adequate environmental conditions for the species distribution should be met in the central Mexican state of Guanajuato. The states of Chihuahua, Mexico, Morelos, Guerrero, and Durango presented a negative trend in potential distribution. Additionally, in the far future, the state of Chihuahua it is likely to not have adequate conditions for the presence of the species. For the prediction of the models, the precipitation variable during the driest month presented the greatest contribution. When the humidity is not limiting, the thermal climatic variables are the most important ones. Models based on its thermal niche for seed germination allowed for the identification of areas where temperature will positively affect seed germination, which will help maximize the establishment of plant populations and adaptation to different climate change scenarios.

6.
Plant Dis ; 106(4): 1143-1156, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34784748

RESUMEN

To document the distribution of potentially harmful Phytophthora spp. within Pennsylvania, the Pennsylvania Department of Agriculture collected 89 plant, 137 soil, and 48 water samples from 64 forested sites during 2018 to 2020. In total, 231 Phytophthora strains were isolated using baiting assays and identified based on morphological characteristics and sequences of nuclear and mitochondrial loci. Twenty-one Phytophthora spp. in nine clades and one unidentified species were present. Phytophthora abietivora, a recently described clade 7a species, was recovered from diseased tissue of 10 native broadleaved plants and twice from soil from 12 locations. P. abietivora is most likely endemic to Pennsylvania based on pathogenicity tests on six native plant species, intraspecific genetic diversity, wide distribution, and recoveries from Abies Mill. and Tsuga Carrière plantations dating back to 1989. Cardinal temperatures and morphological traits are provided for this species. Other taxa, in decreasing order of frequency, include P. chlamydospora, P. plurivora, P. pini, P. cinnamomi, P. xcambivora, P. irrigata, P. gonapodyides, P. cactorum, P. pseudosyringae, P. hydropathica, P. stricta, P. xstagnum, P. caryae, P. intercalaris, P. 'bitahaiensis', P. heveae, P. citrophthora, P. macilentosa, P. cryptogea, and P. riparia. Twelve species were associated with diseased plant tissues. This survey documented 53 new plant-Phytophthora associations and expanded the known distribution of some species.


Asunto(s)
Phytophthora , Quercus , Bosques , Pennsylvania , Plantas , Suelo , Estados Unidos
7.
Plants (Basel) ; 10(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34834741

RESUMEN

Swietenia macrophylla is an economically important tree species propagated by seeds that lose their viability in a short time, making seed germination a key stage for the species recruitment. The objective of this study was to determine the cardinal temperatures and thermal time for seed germination of S. macrophylla; and its potential distribution under different climate change scenarios. Seeds were placed in germination chambers at constant temperatures from 5 to 45 °C and their thermal responses modelled using a thermal time approach. In addition, the potential biogeographic distribution was projected according to the Community Climate System Model version 4 (CCSM4). Germination rate reached its maximum at 37.3 ± 1.3 °C (To); seed germination decreased to near zero at 52.7 ± 2.2 °C (ceiling temperature, Tc) and at 12.8 ± 2.4 °C (base temperature, Tb). The suboptimal thermal time θ150 needed for 50% germination was ca. 190 °Cd, which in the current scenario is accumulated in 20 days. The CCSM4 model estimates an increase of the potential distribution of the species of 12.3 to 18.3% compared to the current scenario. The temperature had an important effect on the physiological processes of the seeds. With the increase in temperature, the thermal needs for germination are completed in less time, so the species will not be affected in its distribution. Although the distribution of the species may not be affected, it is crucial to generate sustainable management strategies to ensure its long-term conservation.

8.
Int J Food Microbiol ; 349: 109241, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34022612

RESUMEN

A stochastic model that predicts the maximum specific growth rate (µmax) of Bacillus cereus sensu lato as a function of temperature was developed. The model integrates the intra-species variability by incorporating distributions of cardinal parameters (Tmin, Topt, Tmax) in the model. Growth rate data were generated for 22 strains, covering 5 major phylogenetic groups of B. cereus, and their cardinal temperatures identified. Published growth rate data were also incorporated in the model fitting, resulting in a set of 33 strains. Based on their cardinal temperatures, we identified clusters of Bacillus cereus strains that show similar response to temperature and these clusters were considered separately in the stochastic model. Interestingly, the µopt values for psychrotrophic strains were found to be significantly lower than those obtained for mesophilic strains. The model developed within this work takes into account some correlations existing between parameters (µopt, Tmin, Topt, Tmax). In particular, the relationship highlighted between the b-slope of the Ratkowsky model and Tmin (doi: https://doi.org/10.3389/fmicb.2017.01890) was adapted to the case of the popular Cardinal Temperature Model. This resulted in a reduced model in which µopt is replaced by a function of Tmin, Topt and 2 strain-independent parameters. A correlation between the Tmin parameter and the experimental minimal growth temperature was also highlighted and integrated in the model for improved predictions near the temperature growth limits. Compared to the classical approach, the model developed in this study leads to improved predictions for temperatures around Tmin and more realistic tails for the predicted distributions of µmax. It can be useful for describing the variability of the Bacillus cereus Group in Quantitative Microbial Risk Assessment (QMRA). An example of application of the stochastic model to Reconstituted Infant Formulae (RIF) was proposed.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Modelos Biológicos , Bacillus cereus/clasificación , Microbiología de Alimentos , Humanos , Fórmulas Infantiles/microbiología , Filogenia , Medición de Riesgo , Especificidad de la Especie , Procesos Estocásticos , Temperatura
9.
Phytopathology ; 111(11): 2002-2009, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33754808

RESUMEN

Pathogen life history traits influence epidemic development and pathogen adaptive ability to interact with their hosts in different environments. Reduced traits variation may compromise pathogen evolutionary potential, which is particularly important for introduced pathogens. Fusarium circinatum (cause of pine pitch canker) is an invasive fungal pathogen in Europe, with current distribution restricted to forest stands of Pinus radiata and Pinus pinaster in northern Spain and Portugal. This study aimed to quantify pathogenic traits of Spanish isolates of F. circinatum, with two of the strains representing the two dominant haplotypes in the Spanish population. Disease severity was measured on P. radiata, analyzing the influence of temperature and moisture duration on infection as well as the influence of temperature on spore germination, sporulation, and mycelial growth. Results indicated that the isolate representing the most common haplotype caused more severe disease on P. radiata at 25 and 30°C compared with the second most common haplotype but caused less severe disease at 15°C. Spore germination was higher for the most common haplotype, which produced more spores at 20 and 25°C. The isolate showed hyphal melanization at 5°C, which has been associated with survival and may be important because no resting structures have been described for F. circinatum. Our study determined that longer moisture periods during infection result in more severe disease from 7 to 24 h, regardless of the isolate virulence. This is the first study on virulence of the most abundant haplotypes of F. circinatum in Spain as affected by temperatures and moisture.


Asunto(s)
Fusarium , Rasgos de la Historia de Vida , Pinus , Fusarium/genética , Haplotipos , Enfermedades de las Plantas , España , Temperatura
10.
AoB Plants ; 11(6): plz066, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31777652

RESUMEN

Water availability is a critical driver of population dynamics in arid zones, and plant recruitment is typically episodic in response to rainfall. Understanding species' germination thresholds is key for conservation and restoration initiatives. Thus, we investigated the role of water availability in the germination traits of keystone species in an arid ecosystem with stochastic rainfall. We measured seed germination responses of five arid species, along gradients of temperature and water potential under controlled laboratory conditions. We then identified the cardinal temperatures and base water potentials for seed germination, and applied the hydrotime model to assess germination responses to water stress. Optimum temperatures for germination ranged from 15 to 31 °C under saturated conditions (0 MPa), and three species had low minimum temperatures for germination (<3 °C). A small proportion of seeds of all species germinated under dry conditions (Ψ ≤ -1 MPa), although base water potential for germination (Ψ b50) ranged from -0.61 to -0.79 MPa. Species adhered to one of two germination traits: (i) the risk-takers which require less moisture availability for germination, and which can germinate over a wider range of temperatures irrespective of water availability (Casuarina pauper and Maireana pyramidata), and (ii) the risk-avoiders which have greater moisture requirements, a preference for cold climate germination, and narrower temperature ranges for germination when water availability is low (Atriplex rhagodioides, Maireana sedifolia and Hakea leucoptera). High seed longevity under physiological stress in H. leucoptera, combined with a risk-avoiding strategy, allows bet-hedging. The hydrotime model predicted lower base water potentials for germination than observed by the data, further supporting our assertion that these species have particular adaptations to avoid germination during drought. This study provides insights into the complex physiological responses of seeds to environmental stress, and relates seed germination traits to community dynamics and restoration in arid zones.

11.
Ecol Evol ; 9(19): 10984-10999, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31641449

RESUMEN

This study aims to explore the effect of environmental factors (temperature, light, storage time) on germination response and dormancy patterns in eight Mediterranean native wildplants, belonging to the Euphorbia L. genus. In detail, we considered E. amygdaloides subsp. arbuscula, E. bivonae subsp. bivonae, E. ceratocarpa, E. characias, E. dendroides, E. melapetala, E. myrsinites, and E. rigida. We collected seeds from natural plant populations and performed germination assays in climatic chambers at seven constant temperatures (from 5 to 35°C, with 5°C increments), and four fluctuating temperature regimes (8/15, 8/20, 8/25, and 8/30°C, with a 12/12 hr thermoperiod). Germination assays were set up both in dark (D) and in light/dark conditions (L/D, 12/12 hr photoperiod), after short and long seed storage (SS around 30 days and LS around 150 days). For all these species, except E. amygdaloides subsp. arbuscula, results show that the final germinated proportions were improved by a long storage period (>150 days), which supports the existence of nondeep physiological dormancy. Optimal temperature levels ranged from 14.3 to 21.3°C and base temperatures ranged from 5.6 to 12.1°C, while ceiling temperatures from 25.6 to 34.7°C. For none of these species, germinations were favored by an alternating daily temperature regime, while in several instances, germinations were quicker and more complete in darkness, than in an alternating light/dark regime. In some instances, extreme temperature levels (5 and 30°C) induced dormancy and germinations did not resume when seeds were exposed at optimal temperature levels. Results are discussed in terms of the dynamics of emergences and how this might be affected by climate changes.

12.
Plant Biol (Stuttg) ; 21(3): 449-457, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29788554

RESUMEN

Under Mediterranean climates with dry-hot summers and cool-wet winters, many forbs with potential for habitat restoration are winter annuals, but there is little information about their germination. We performed laboratory germination experiments on 13 ruderal dicots native to Andalusia (southern Spain). We measured the germination of recently harvested seeds from natural populations across nine temperature treatments (from 5 to 35 °C, constant and alternate); two storage periods; and eight water stress treatments (from 0 to -1.0 MPa). We then calculated the hydrothermal thresholds for seed germination. Final germination ranged from 0-100% and results were mixed in response to temperature. Base temperature was below 6 °C, optimal temperature was around 14 °C and the ceiling temperature around 23 °C. For five species, 10 months of storage improved total germination, indicating a dormancy-breaking effect, but the other species did not respond or had their germination reduced. All species were relatively tolerant to water stress, with base water potential ranging from -0.8 to -1.8 MPa. Our results suggest that hydrothermal germination thresholds, rather than physiological dormancy, are the main drivers of germination phenology in annual forbs from Mediterranean semi-dry environments. The variation in germination responses of these forb species differs from winter annual grasses, but their seeds are all suitable for being stored before restoration.


Asunto(s)
Semillas/fisiología , Ecosistema , Germinación/fisiología , Temperatura , Agua/metabolismo
13.
J Therm Biol ; 76: 156-164, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30143290

RESUMEN

Thermal time models may describe and compare seed germination, providing information useful to explain species distribution. However, the capacity of such threshold models to describe germination of tropical native species has been less studied. We evaluated seed germination of a legume tree species (Peltophorum dubium), typical from South American seasonal forests, as described by two linear thermal time models: probit model and graphic model. Seeds were provided from four different provenances in a latitudinal gradient in Brazil, and their physical dormancy mechanically released before the trials. Graphic model and probit regression were used to determine thermal parameters (cardinal temperatures and thermal time requirement) on sub- and supra-optimal ranges for the different seed provenances. Germination rate mainly followed linear relationship with temperature, and regression lines of different germination fractions converged base temperature in the x-axis. Therefore, probit model assumed a single-value of base temperature in the sub-optimal range and a normal distribution of thermal time. Base temperature tended to be higher in the Northern provenance, Porto Velho, showing slower germination under cooler temperatures. Supra-optimal temperatures have shown similar thermal time requirements and different values for ceiling temperature, according to model predictions. No clear patterns have been found between seed provenances and thermal time requirement. Both probit and graphic models have provided reasonable predictions of germination times (t10 and t50), except under the coolest temperatures. Probit regression always described at least 70% of seed germination. Thermal time assumptions, linear models applicability and their limitations are discussed.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Germinación , Modelos Biológicos , Semillas/crecimiento & desarrollo , Brasil , Bosques , América del Sur , Temperatura , Factores de Tiempo , Clima Tropical
14.
Front Microbiol ; 8: 1890, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29033924

RESUMEN

The maximum specific growth rates of 12 strains, pair-wise belonging to six groups of Bacillus cereus sensu lato, were fitted against temperature by a reparametrized version of the model of Ratkowsky et al. (1983). This way, the interpretation of the new parameter set was similar to that of the cardinal-values-model of Rosso and Robinson (2001), both models including the minimum, optimum and maximum temperatures for growth as well as a fourth parameter scaling along the dependent variable. The modularity of the reparametrized version of the Ratkowsky model was utilized to show a so-far undetected relationship between this scaling parameter and the cardinal temperatures, which linked even distant (e.g., mesophilic and psychotropic) strains of B. cereus. We propose that the name "tertiary modeling" should be used for investigations like ours, as logically derived from the concepts of "primary" and "secondary" modeling. Such tertiary models may reveal biological relationships between kinetic parameters within a group of strains. It can also be used to create an overarching predictive model for mixed cultures, when different strains grow together but independently of each other.

15.
Plant Biol (Stuttg) ; 19(5): 673-682, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28612366

RESUMEN

We present a new seed dormancy classification scheme for the non-deep level of the class physiological dormancy (PD), which contains six types. Non-deep PD is divided into two sublevels: one for seeds that exhibit a dormancy continuum (types 1, 2 and 3) and the other for those that do not exhibit a dormancy continuum (types 4, 5 and 6). Analysis of previous studies showed that different types of non-deep PD also can be identified using a graphical method. Seeds with a dormancy (D) ↔ conditional dormancy (CD) ↔ non-dormancy (ND) cycle have a low germination percentage in the early stages of CD, and during dormancy loss the germination capacity increases. However, seeds with a CD/ND (i.e. D→CD↔ND) cycle germinate to a high percentage at a narrow range of temperatures in the early stages of CD. Cardinal temperatures for seeds with either a D/ND or a CD/ND cycle change during dormancy loss: the ceiling temperature increases in seeds with Type 1, the base temperature decreases in seeds with Type 2 and the base and ceiling temperatures decrease and increase, respectively, in seeds with Type 3. Criteria for distinguishing the six types of non-deep PD and models of the temperature functions of seeds with types 1, 2 and 3 with both types of dormancy cycles are presented. The relevancy of our results to modelling the timing of weed seedling emergence is briefly discussed.


Asunto(s)
Latencia en las Plantas/fisiología , Plantones/metabolismo , Plantones/fisiología , Semillas/metabolismo , Semillas/fisiología , Germinación/genética , Germinación/fisiología , Latencia en las Plantas/genética , Plantones/genética , Semillas/genética , Temperatura
16.
Plant Biol (Stuttg) ; 19(1): 41-45, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26998824

RESUMEN

Thermal time models for seed germination assume a continuum of rate responses in the sub-optimal temperature range. Generally, the models describe germination performance in non-dormant seeds at constant temperatures, yet alternating temperature (AT) is a feature of many natural environments. We studied the possible interacting effects of AT on germination progress in photoblastic seeds of three aromatic-medicinal Verbenaceae species in the genera Lippia and Aloysia. For Lippia turbinata f. turbinata and L. turbinata f. magnifolia seed, germination only occurred in light conditions, while for L. integrifolia and Aloysia citriodora it was significantly higher in the light than in darkness. Although relative light germination (RLG) was not different between constant and AT in the sub-optimal range, AT raised the base temperature for germination progress (Tb ) from ca. 3-6 °C in constant temperature to 7-12 °C in AT. Among the species, thermal time for 50% seed germination [θT(50) ] was 55-100 °Cd at constant temperature. Although AT resulted in slight modifications to θT(50) , the germination rate at comparable average temperatures in the sub-optimal range was slower than under constant temperatures. For all species, the proportion of germinated seeds was similar for constant and AT. Our results suggest that an interaction between cool temperature and darkness during AT treatment limits the temperature range permissive for germination in these positively photoblastic seed, reflecting both close adaptation to the natural ecology and niche requirements of the species.


Asunto(s)
Germinación , Semillas/fisiología , Verbenaceae/fisiología , Adaptación Fisiológica , Oscuridad , Ecosistema , Luz , Lippia/fisiología , Lippia/efectos de la radiación , Latencia en las Plantas , Semillas/efectos de la radiación , Temperatura , Verbenaceae/efectos de la radiación
17.
Plant Cell Environ ; 39(1): 26-37, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25346255

RESUMEN

Resilience of rice cropping systems to potential global climate change will partly depend on the temperature tolerance of pollen germination (PG) and tube growth (PTG). Pollen germination of high temperature-susceptible Oryza glaberrima Steud. (cv. CG14) and Oryza sativa L. ssp. indica (cv. IR64) and high temperature-tolerant O. sativa ssp. aus (cv. N22), was assessed on a 5.6-45.4 °C temperature gradient system. Mean maximum PG was 85% at 27 °C with 1488 µm PTG at 25 °C. The hypothesis that in each pollen grain, the minimum temperature requirements (Tn ) and maximum temperature limits (Tx ) for germination operate independently was accepted by comparing multiplicative and subtractive probability models. The maximum temperature limit for PG in 50% of grains (Tx(50) ) was the lowest (29.8 °C) in IR64 compared with CG14 (34.3 °C) and N22 (35.6 °C). Standard deviation (sx ) of Tx was also low in IR64 (2.3 °C) suggesting that the mechanism of IR64's susceptibility to high temperatures may relate to PG. Optimum germination temperatures and thermal times for 1 mm PTG were not linked to tolerating high temperatures at anthesis. However, the parameters Tx(50) and sx in the germination model define new pragmatic criteria for successful and resilient PG, preferable to the more traditional cardinal (maximum and minimum) temperatures.


Asunto(s)
Oryza/fisiología , Polen/fisiología , Calor , Modelos Teóricos , Oryza/crecimiento & desarrollo , Polen/crecimiento & desarrollo , Temperatura
18.
Glob Chang Biol ; 20(2): 408-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24038930

RESUMEN

Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this study, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models.


Asunto(s)
Cambio Climático , Oryza/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Temperatura
19.
Ciênc. rural ; Ciênc. rural (Online);38(9): 2464-2470, dez. 2008. graf
Artículo en Portugués | LILACS | ID: lil-498397

RESUMEN

A temperatura do ar é um dos elementos meteorológicos mais importantes que afetam o desenvolvimento da planta de melancia. Para representar o efeito da temperatura do ar sobre o desenvolvimento das plantas, tem-se usado o método da soma térmica, por ser um método simples e por ser uma melhor medida de tempo biológico que dias do calendário civil ou dias após a semeadura. O objetivo deste trabalho foi determinar a soma térmica de três subperíodos de desenvolvimento da planta de melancia por diferentes métodos de cálculo. Um experimento em campo foi conduzido em Santa Maria, RS, com duas datas de semeadura durante o ano agrícola 2006-2007 (05/09/2006 e 21/09/2006). Usou-se a cultivar "Crimson Sweet" no delineamento experimental de blocos ao acaso com seis repetições. Os subperíodos foram semeadura-emergência (SE-EM), emergência-florescimento (EM-FL) e florescimento-colheita (FL-CO). A soma térmica diária (STd, °C dia) foi calculada por três métodos considerando-se as temperaturas cardinais de 10°C, 33°C e 42°C. A soma térmica acumulada (STa, °C dia) para os três subperíodos foi calculada somando-se os valores de STd. Não se constatou diferença na duração (STa) do ciclo total e dos subperíodos entre os três métodos de soma térmica utilizados. A duração (STa) do subperíodo EM-FL foi similar nas duas datas de semeadura (417°C dia), mas a STa dos subperíodos SE-EM e FL-CO variou de 98 a 130°C e de 770 a 840°C dia, respectivamente.


Air temperature is one of the most important environmental factors that drive development in watermelon. Thermal time is usually used for representing the effect of the air temperature on plant development because it is a simple method and a better time descriptor than calendar days or days after sowing. The objective of this study was to calculate the thermal time of three developmental phases in watermelon using different methods. A field experiment was carried out in Santa Maria, RS, Brazil, with two sowing dates during the 2006-2007 growing seasons (09/05/2006 and 09/21/2006). The cultivar 'Crimson Sweet' was used and the experimental design was a complete randomized block with six replications. Developmental phases were sowing-emergence (SO-EM), emergence-flowering (EM-FL) and flowering-harvest (FL-HA). Daily degree-days (DDD, °C day) were calculated with three methods using the cardinal temperatures of 10°C, 33°C and 42°C. Thermal time (TT, °C day) during the three developmental phases was calculated by accumulating DDD. There was no difference in the duration, in TT, for the total cycle and the developmental phases among the three methods of thermal time used. The duration (in TT) of the EM-FL phase was similar (417°C day) in the two sowing dates, but the TT of the SO-EM and FL-HA phases varied with sowing date from 98 to 130°C day and from 770 to 840°C day, respectively.

20.
Braz. arch. biol. technol ; Braz. arch. biol. technol;51(4): 523-530, June-Aug. 2008. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-622659

RESUMEN

The effects of the temperature and light on the control of seeds germination in Tecoma stans was studied in the present work. The influence of constant temperatures from 10 to 45ºC, with 5ºC intervals, under the white light and darkness were tested. The optimum temperature for the germination of the seeds was between 25 and 30ºC, for both the light and the dark treatments. The maximal germination was reached in the range of 15 to 35ºC under the light and of 20 to 40ºC in the darkness. The seeds showed highest synchronization of the germination near the optimal temperature. The germination in the field was tested under the two light conditions. The highest percent of germination occurred under the direct sunlight (86.1%) than under the canopy (69%). However, under the canopy, the seedling presented 1.5% of the recruitment, while under the direct sunlight, 96.9 %. Results showed that T. stans seeds germinated well in the open areas with the occurrence of high seedling recruitment indicating the invasion potential of the species in such light conditions.


Os efeitos da temperatura e da luz na germinação de Tecoma stans foram determinados no presente trabalho. Foram testadas temperaturas constantes de 10 a 45ºC, com intervalos de 5ºC, sob luz branca e escuro. Verificou-se que a temperatura ótima para a germinação da espécie está entre 25 e 30ºC, tanto na luz como no escuro, já o intervalo de máxima germinabilidade está entre 15 e 35ºC na luz e 20 e 40ºC no escuro. Suas sementes apresentaram uma maior sincronização da germinação próxima à temperatura ótima. A germinação de sementes de Tecoma stans em condições naturais foi testada sob radiação solar direta e na sombra de vegetação. A maior porcentagem de emergência ocorreu no ambiente de sol (86,1%), porém com menor velocidade em relação à sombra, embora na sombra também ocorreu a emergência, mas em menor proporção (69%). Entretanto, o índice de recrutamento na sombra foi de 1,5% enquanto a pleno sol foi de 96,9%. Estes resultados indicam que as sementes de Tecoma stans germinam e recrutam suas plântulas em ambientes abertos confirmando o potencial invasor da espécie.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA