Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 674
Filtrar
1.
Biomaterials ; 312: 122720, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39084098

RESUMEN

Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.


Asunto(s)
Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nanopartículas , Osteoartritis , Péptidos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Osteoartritis/terapia , Osteoartritis/patología , Nanopartículas/química , Humanos , Diferenciación Celular/efectos de los fármacos , Péptidos/química , Trasplante de Células Madre Mesenquimatosas/métodos , Condrogénesis/efectos de los fármacos , Ratones , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Cartílago Articular/patología , Cartílago Articular/efectos de los fármacos , Proteína Morfogenética Ósea 7/química , Proteína Morfogenética Ósea 7/farmacología , Ingeniería de Tejidos/métodos , Regeneración/efectos de los fármacos
2.
Natl J Maxillofac Surg ; 15(2): 214-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234119

RESUMEN

Context: Human dental pulp stem cells (hDPSC) derived from dental pulp in conducive environment activated by chemicals can enhance chondrogenic cells for future animal model temporomandibular joint model. Aim: The study aims at evaluating the chemicals preconditioning (curcumin and rapamycin) efficacy toward chondrogenic proliferation of human dental pulp stem cells. Settings and Design: The in vitro study model with 10 premolar teeth extirpated pulp was processed under sterile chemical conditions. The cells viability was checked with calorimetric assay for adipogenic and chondrogenic, osteogenic lineages. The viability of the cells and the concentration of curcumin (CU) and rapamycin (RP) required for cell differentiation toward chondrogenic lineage were assessed. Material and Methods: The hDPSC was evaluated after explant long-term cultivation with characterization and chemical conditioning with dimethyl sulfoxide (DMSO) as control. MTT assay was used for cytotoxicity evaluation, cell viability, and proliferation. The dose optimization was observed with RP and CU. Chondrogenic proliferation was assessed with standard staining method of 0.1% Safranin O and 0.1% Alcian blue. Statistical Design: The flow cytometry analysis revealed good results for CD 90 compared to others. The intergroup analysis was done by ANOVA, and intragroup analysis was done by Post hoc Tukey's test. The intragroup analysis showed P value < 0.05 for RP in comparison between the various preconditioning agents CU and RP. The dosage of 10 µg/ml RP was considered statistically significant. Results: The flow cytometer analysis revealed good results for CD 90 compared to other surface markers. The dosage of 10 µg/ml RP was having good chondrogenic cell proliferation. The intragroup analysis showed P value < 0.05 for RP in comparison between the various preconditioning agents CU and RP. The calorimetric assay (MTT) quantitative analysis of the chondrogenic cells with Safranin O stain the standard deviation (SD = 0.017 for rapamycin), Alcian blue (SD = 0.49 for RP) in comparison to DMSO (control) and CU. Conclusion: RP activates mTOR pathway and hence stabilizes the stem cell maintenance of human dental pulp stem cell and the dose quantified can be used for future animal temporomandibular joint animal model.

3.
Regen Biomater ; 11: rbae097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220741

RESUMEN

Cartilage defects are frequently caused by trauma, illness and degradation of the cartilage. If these defects are not sufficiently treated, the joints will degrade irreversibly, possibly resulting in disability. Articular cartilage lacks blood vessels and nerves and is unable to regenerate itself, so the repair of cartilage defects is extremely challenging in clinical treatment. Tissue engineering technology is an emerging technology in cartilage repair and cartilage regeneration. 3D-printed hydrogels show great potential in cartilage tissue engineering for the fabrication of 3D cell culture scaffolds to mimic extracellular matrix. In this study, we construct a 3D-printed hydrogel loaded with nanoparticles by electrostatic interaction and photo cross-linking for the regeneration of cartilage, which has adaptable and drug-continuous release behavior. A photopolymerizable bioink was prepared using recombinant collagen, chitosan, nanoclay Laponite-XLG and nanoparticles loaded with Kartogenin (KGN). This bioink was added with KGN, a small molecule drug that promotes cartilage differentiation, and as a result, the 3D-printed CF/CM/3%LAP/KGN scaffolds obtained by extrusion printing is expected to be used for cartilage repair. It was shown that the 3D-printed scaffolds had good cytocompatibility for human bone marrow mesenchymal stem cells (hBMSCs) and exhibited excellent antimicrobial properties, the continuous release of KGN in the scaffold induced the hBMSCs differentiation into chondrocytes, which significantly enhanced the expression of collagen II and glycosaminoglycan. In vivo studies have shown that implantation of KGN-loaded scaffolds into cartilage-injured tissues promoted cartilage tissue regeneration. This study demonstrated that 3D-printed CF/CM/3%LAP/KGN scaffolds can be used for cartilage repair, which is expected to lead to new healing opportunities for cartilage injury-based diseases.

4.
J Colloid Interface Sci ; 677(Pt A): 632-644, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39116561

RESUMEN

Cartilage is severely limited in self-repair after damage, and tissue engineering scaffold transplantation is considered the most promising strategy for cartilage regeneration. However, scaffolds without cells and growth factors, which can effectively avoid long cell culture times, high risk of infection, and susceptibility to contamination, remain scarce. Hence, we developed a cell- and growth factor-dual free hierarchically structured nanofibrous sponge to mimic the extracellular matrix, in which the encapsulated core-shell nanofibers served both as mechanical supports and as long-lasting carriers for bioactive biomass molecules (glucosamine sulfate). Under the protection of the nanofibers in this designed sponge, glucosamine sulfate could be released continuously for at least 30 days, which significantly accelerated the repair of cartilage tissue in a rat cartilage defect model. Moreover, the nanofibrous sponge based on carboxymethyl chitosan as the framework could effectively fill irregular cartilage defects, adapt to the dynamic changes during cartilage movement, and maintain almost 100 % elasticity even after multiple compression cycles. This strategy, which combines fiber freeze-shaping technology with a controlled-release method for encapsulating bioactivity, allows for the assembly of porous bionic scaffolds with hierarchical nanofiber structure, providing a novel and safe approach to tissue repair.

5.
J Tissue Eng ; 15: 20417314241268189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157647

RESUMEN

Articular cartilage defect therapy is still dissatisfactory in clinic. Direct cell implantation faces challenges, such as tumorigenicity, immunogenicity, and uncontrollability. Extracellular vesicles (EVs) based cell-free therapy becomes a promising alternative approach for cartilage regeneration. Even though, EVs from different cells exhibit heterogeneous characteristics and effects. The aim of the study was to discover the functions of EVs from the cells during chondrogenesis timeline on cartilage regeneration. Here, bone marrow mesenchymal stem cells (BMSCs)-EVs, juvenile chondrocytes-EVs, and adult chondrocytes-EVs were used to represent the EVs at different differentiation stages, and fibroblast-EVs as surrounding signals were also joined to compare. Fibroblasts-EVs showed the worst effect on chondrogenesis. While juvenile chondrocyte-EVs and adult chondrocyte-EVs showed comparable effect on chondrogenic differentiation as BMSCs-EVs, BMSCs-EVs showed the best effect on cell proliferation and migration. Moreover, the amount of EVs secreted from BMSCs were much more than that from chondrocytes. An injectable decellularized extracellular matrix (dECM) hydrogel from small intestinal submucosa (SIS) was fabricated as the EVs delivery platform with natural matrix microenvironment. In a rat model, BMSCs-EVs loaded SIS hydrogel was injected into the articular cartilage defects and significantly enhanced cartilage regeneration in vivo. Furthermore, protein proteomics revealed BMSCs-EVs specifically upregulated multiple metabolic and biosynthetic processes, which might be the potential mechanism. Thus, injectable SIS hydrogel loaded with BMSCs-EVs might be a promising therapeutic way for articular cartilage defect.

6.
Stem Cell Res Ther ; 15(1): 261, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148121

RESUMEN

BACKGROUND: Human adipose-derived stem cells (ADSCs) exert a strong anti-inflammatory effect, and synovium-derived stem cells (SDSCs) have high chondrogenic potential. Thus, this study aims to investigate whether a combination of human ADSCs and SDSCs will have a synergistic effect that will increase the chondrogenic potential of osteoarthritis (OA) chondrocytes in vitro and attenuate the cartilage degeneration of early and advanced OA in vitro. METHODS: ADSCs, SDSCs, and chondrocytes were isolated from OA patients who underwent total knee arthroplasty. The ADSCs-SDSCs mixed cell ratios were 1:0 (ADSCs only), 8:2, 5:5 (5A5S), 2:8, and 0:1 (SDSCs only). The chondrogenic potential of the OA chondrocytes was evaluated in vitro with a transwell assay or pellet culture with various mixed cell groups. The mixed cell group with the highest chondrogenic potential was then selected and injected into the knee joints of nude rats of early and advanced OA stages in vivo. The animals were then evaluated 12 and 20 weeks after surgery through gait analysis, von frey test, microcomputed tomography, MRI, and immunohistochemical and histological analyses. Finally, the mechanisms underlying these findings were investigated through the RNA sequencing of tissue samples in vivo and Western blot of the OA chondrocyte autophagy pathway. RESULTS: Among the MSCs treatment groups, 5A5S had the greatest synergistic effect that increased the chondrogenic potential of OA chondrocytes in vitro and inhibited early and advanced OA in vivo. The 5A5S group significantly reduced cartilage degeneration, synovial inflammation, pain sensation, and nerve invasion in subchondral nude rat OA, outperforming both single-cell treatments. The underlying mechanism was the activation of chondrocyte autophagy via the FoxO1 signaling pathway. CONCLUSION: A combination of human ADSCs and SDSCs demonstrated higher potential than a single type of stem cell, demonstrating potential as a novel treatment for OA.


Asunto(s)
Autofagia , Condrocitos , Proteína Forkhead Box O1 , Células Madre Mesenquimatosas , Osteoartritis , Transducción de Señal , Humanos , Condrocitos/metabolismo , Animales , Ratas , Osteoartritis/terapia , Osteoartritis/metabolismo , Osteoartritis/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteína Forkhead Box O1/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Masculino , Ratas Desnudas , Condrogénesis , Membrana Sinovial/metabolismo , Membrana Sinovial/citología , Persona de Mediana Edad , Femenino
7.
Bioact Mater ; 41: 61-82, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39104774

RESUMEN

Despite numerous studies on chondrogenesis, the repair of cartilage-particularly the reconstruction of cartilage lacunae through an all-in-one advanced drug delivery system remains limited. In this study, we developed a cartilage lacuna-like hydrogel microsphere system endowed with integrated biological signals, enabling sequential immunomodulation and endogenous articular cartilage regeneration. We first integrated the chondrogenic growth factor transforming growth factor-ß3 (TGF-ß3) into mesoporous silica nanoparticles (MSNs). Then, TGF-ß3@MSNs and insulin-like growth factor 1 (IGF-1) were encapsulated within microspheres made of polydopamine (pDA). In the final step, growth factor-loaded MSN@pDA and a chitosan (CS) hydrogel containing platelet-derived growth factor-BB (PDGF-BB) were blended to produce growth factors loaded composite microspheres (GFs@µS) using microfluidic technology. The presence of pDA reduced the initial acute inflammatory response, and the early, robust release of PDGF-BB aided in attracting endogenous stem cells. Over the subsequent weeks, the continuous release of IGF-1 and TGF-ß3 amplified chondrogenesis and matrix formation. µS were incorporated into an acellular cartilage extracellular matrix (ACECM) and combined with a polydopamine-modified polycaprolactone (PCL) structure to produce a tissue-engineered scaffold that mimicked the structure of the cartilage lacunae evenly distributed in the cartilage matrix, resulting in enhanced cartilage repair and patellar cartilage protection. This research provides a strategic pathway for optimizing growth factor delivery and ensuring prolonged microenvironmental remodeling, leading to efficient articular cartilage regeneration.

8.
J Clin Med ; 13(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39200958

RESUMEN

Background/Objectives: Encouraging results have been reported for Platelet-Rich Plasma (PRP) treatment for knee osteoarthritis (KOA). This study reports the efficacy and safety of a high dose of neutrophile and red-blood-cell-depleted PRP to treat patients with KOA. Methods: A total of 212 consecutive patients diagnosed with Kellgren-Lawrence (KL) grading 1-3 KOA chronic knee pain for at least 1 year were treated with three injections at 15-day intervals with a high dose of neutrophil-depleted PRP (4 billion platelets). Clinical outcomes were retrospectively recorded as the percentage of responders at 3-, 6-, and 12-month follow-up, following the OMERACT-OARSI criteria. Pain, through the VAS score and WOMAC score, was also been recorded. Results: A total of 4 mL of PRP containing 4 × 109 platelets was obtained by single-spin centrifugation and injected intra-articularly into each patient with no preactivation. The overall responder rate of patients responding to the OMERACT-OARSI criteria at 3, 6, and 12 months was 68.9%, 72.7%, and 70.6%, respectively. A significant improvement in VAS and WOMAC scores at 3-, 6-, and 12-month follow-up compared to the pretreatment value (p < 0.01) was observed. The lowest VAS score was observed at 6 months overall and in all three KL-graded groups. The KL2 groups showed the best results regarding pain reduction and their WOMAC score at 6 months (p < 0.01). Conclusions: For KL1-3 KOA, a high dosage of neutrophil-depleted PRP is a successful treatment. It has long-lasting effects that last up to one year, relieves symptoms, and may slow the advancement of the disease.

9.
Gels ; 10(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39195037

RESUMEN

Stem cell-based therapy holds promise for cartilage regeneration in treating knee osteoarthritis (KOA). Injectable hydrogels have been developed to mimic the extracellular matrix (ECM) and facilitate stem cell growth, proliferation, and differentiation. However, these hydrogels face limitations such as poor mechanical strength, inadequate biocompatibility, and suboptimal biodegradability, collectively hindering their effectiveness in cartilage regeneration. This study introduces an injectable, biodegradable, and self-healing hydrogel composed of chitosan-PEG and PEG-dialdehyde for stem cell delivery. This hydrogel can form in situ by blending two polymer solutions through injection at physiological temperature, encapsulating human adipose-derived stem cells (hADSCs) during the gelation process. Featuring a 3D porous structure with large pore size, optimal mechanical properties, biodegradability, easy injectability, and rapid self-healing capability, the hydrogel supports the growth, proliferation, and differentiation of hADSCs. Notably, encapsulated hADSCs form 3D spheroids during proliferation, with their sizes increasing over time alongside hydrogel degradation while maintaining high viability for at least 10 days. Additionally, hADSCs encapsulated in this hydrogel exhibit upregulated expression of chondrogenic differentiation genes and proteins compared to those cultured on 2D surfaces. These characteristics make the chitosan-PEG/PEG-dialdehyde hydrogel-stem cell construct suitable for direct implantation through minimally invasive injection, enhancing stem cell-based therapy for KOA and other cell-based treatments.

10.
Acta Biomater ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178925

RESUMEN

Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in clinical settings, posing significant treatment challenges. Here, we fabricated a cartilage extracellular matrix mimic hydrogel (GHC, consisting of Gelatin, Hyaluronic acid, and Chondroitin sulfate) to avoid the exacerbation of cartilage deterioration, which is often driven by the accumulation of reactive oxygen species (ROS) and a pro-inflammatory microenvironment. The GHC hydrogel exhibited multifunctional properties, including in situ formation, tissue adhesiveness, anti-ROS capabilities, and the promotion of chondrogenesis. The enhancement of tissue adhesion was achieved by chemically modifying hyaluronic acid and chondroitin sulfate with o-nitrobenzene, enabling a covalent connection to the cartilage surface upon light irradiation. In vitro characterization revealed that GHC hydrogel facilitated chondrocyte adhesion, migration, and differentiation into cartilage. Additionally, GHC hydrogels demonstrated the ability to scavenge ROS in vitro and inhibit the production of inflammatory factors by chondrocytes. In the animal model of superficial cartilage injury, the hydrogel effectively promoted cartilage ECM regeneration and facilitated the interface integration between the host tissue and the material. These findings suggest that the multifunctional GHC hydrogels hold considerable promise as a strategy for cartilage defect repair. STATEMENT OF SIGNIFICANCE: Superficial cartilage defects represent the most prevalent type of cartilage injury encountered in the clinic. Previous cartilage tissue engineering materials are only suitable for full-thickness cartilage defects or osteochondral defects. Here, we developed a multifunctional GHC hydrogel composed of gelatin, hyaluronic acid, and chondroitin sulfate, which are natural cartilage extracellular matrix components. The drug-free and cell-free hydrogel not only avoids immune rejection and drug toxicity, but also shows good mechanical properties and biocompatibility. More importantly, the GHC hydrogel could adhere tightly to the superficial cartilage defects and promote cartilage regeneration while protecting against oxidation. This natural ingredients and multifunctional hydrogel is a potential material for repairing superficial cartilage defects.

11.
Indian J Orthop ; 58(8): 1009-1015, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39087051

RESUMEN

Introduction: Biologics like growth factors, stem cells, and platelet-rich plasma show potential in stimulating cartilage regrowth and reducing inflammation. By synthesizing preclinical and clinical studies, this study offers insights into how these biologics work and their effectiveness in treating knee osteoarthritis. Methods and Materials: Twenty-four participants with knee osteoarthritis (Kellgren - Lawrence grade II or III) were enrolled after obtaining consent. They received three doses of 2 ml intraarticular platelet-rich plasma at 1 month intervals. The clinical assessment involved the oxford knee score (OKS) and visual analogue scale (VAS) for pain on Days 0, 90, and 180. Ultrasound measured femoral and trochlear cartilage thickness pre- (Day 0) and post-PRP (Day 90-180). Results: Before treatment, the average pain score was 7.2 (p = 1.03). On Day 90 post-PRP, it decreased to 5 (p = 0.81), and by Day 180, it further reduced to 4.5 (p = 0.97). The initial total OKS was 33.5 (p = 1.76), which increased to 36 (p = 1.71) on Day 90 and 38.5 (p = 1.89) on Day 180. The femoral and trochlear cartilage thickness also showed improvement from baseline (0.92) to Day 90 (0.96) and Day 180 (1.01), indicating significant cartilage healing post-PRP administration. Conclusion: Our study highlights the probability of PRP in treating knee OA, highlighting their ability to alleviate symptoms, enhance joint function, and promote articular cartilage regeneration.

12.
Int J Biol Macromol ; 278(Pt 2): 134608, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134192

RESUMEN

The avascular nature of cartilage tissue limits inherent regenerative capacity to counter any damage and this has become a substantial burden to the health of individuals. As a result, there is a high demand to repair and regenerate cartilage. Existing tissue engineering approaches for cartilage regeneration typically produce either microporous or nano-fibrous scaffolds lacking the desired biological outcome due to lack of biomimetic dual architecture of microporous construct with nano-fibrous interconnected structures like the native cartilage. Most of these scaffolds also fail to suppress ROS generation and provide sustained bioenergetics to cells, resulting in the loss of metabolic activity under avascular microenvironment of cartilage. A dual architecture microporous construct with nano-fibrous interconnected network of cellulose aerogel reinforced with arginine-coated graphene oxide (CNF-GO-Arg aerogel) was developed for cartilage regeneration. The designed dual-architectured CNF-GO-Arg aerogel using dual ice templating assembly demonstrates 80 % strain recovery ability under compression. The release of Arginine from CNF-GO-Arg aerogel supported 41 % reduction in intracellular ROS activity and promoted chondrogenic differentiation of hMSCs by shifting mitochondrial bioenergetics towards oxidative phosphorylation indicated by JC-1 dye staining. Overall developed CNF-GO-Arg aerogel provided multifunctionality via biomimetic morphology, cellular bioenergetics, and suppressed ROS generation to address the need for regeneration of cartilage.

13.
Front Biosci (Landmark Ed) ; 29(8): 309, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39206920

RESUMEN

BACKGROUND: Articular cartilage has limited self-repair capacity, and current clinical treatment options for cartilage defects are inadequate. However, deer antler cartilage possesses unique regenerative properties, with the ability to rapidly repair itself. This rapid self-repair process is closely linked to the paracrine factors released by deer antler stem cells. These findings present potential for the development of cell-free therapies for cartilage defects in clinical settings. The aim of this study was to investigate a novel method for repairing cartilage. METHODS: A rat model with articular cartilage defects was established through surgery. Hydrogels loaded with exosomes (Exos) derived from antler stem cells (ASC-Exos) were implanted into the rat cartilage defects. The extent of cartilage damage repair was assessed using histological methods. The effects of ASC-Exos on chondrocytes and rat bone marrow mesenchymal stem cells (BMSCs) were evaluated using cell viability assays, proliferation assays, and scratch assays. Additionally, the maintenance of the chondrocyte phenotype by ASC-Exos was assessed using real-time fluorescence quantitative PCR (qPCR) and western blot analysis. The protein components contained of the Exos were identified using data-independent acquisition (DIA) mass spectrometry. RESULTS: ASC-Exos significantly promoted the repair of cartilage tissue damage. The level of cartilage repair in the experimental group (ASC-Exos) was higher than that in the positive control (human adipose-derived stem cells, hADSC-Exos) and negative control (dulbecco's modified eagle medium) groups (p < 0.05). In vitro experiments demonstrated that ASC-Exos significantly enhanced the proliferation abilities of chondrocytes and the proliferation abilities and the migration abilities of BMSCs (p < 0.05). ASC-Exos up-regulated the expression levels of Aggrecan, Collagen II (COLII), and Sox9 mRNA and proteins in chondrocytes. Analysis of ASC-Exos protein components revealed the presence of active components such as Serotransferrin (TF), S100A4, and Insulin-like growth factor-binding protein 1 (IGF1). CONCLUSIONS: ASC-Exos have a significant effect on cartilage damage repair, which may be attributed to their promotion of chondrocyte and BMSCs proliferation and migration, as well as the maintenance of chondrocyte phenotype. This effect may be mediated by the presence of TF, S100A4, and IGF1.


Asunto(s)
Cuernos de Venado , Cartílago Articular , Condrocitos , Ciervos , Exosomas , Células Madre Mesenquimatosas , Células Madre , Animales , Cuernos de Venado/metabolismo , Cuernos de Venado/química , Exosomas/metabolismo , Exosomas/trasplante , Condrocitos/metabolismo , Cartílago Articular/metabolismo , Cartílago Articular/patología , Cartílago Articular/lesiones , Células Madre/metabolismo , Células Madre/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratas , Proliferación Celular , Masculino , Ratas Sprague-Dawley , Supervivencia Celular
14.
Tissue Cell ; 90: 102507, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128191

RESUMEN

Osteoarthritis (OA) is a clinical state which is identified by the degeneration of articular cartilage. OA is a common condition (>500 millions of people affected worldwide), whose frequency is anticipated to continue to rise (> 110 % increase worldwide since 2019). The treatment for early-stage OA is based on a combination of therapeutic approaches, which can include regenerative medicine based on Adipose Derived Stem Cells (ADSCs). Germanium embedded Incrediwear® functional Cred40 fabric has been shown to have positive effects on OA clinically and is envisaged to give encouraging effects also on tissue regeneration. Still, the biological mechanisms underlying this therapeutic modality have not yet been fully defined. We tested the hypothesis that Germanium-embedded Incrediwear® functional Cred40 fabric could enhance chondrogenic differentiation. To this purpose, we applied Incrediwear® to human adipose-derived stem cells (hADSCs) induced to chondrogenic differentiation in vitro. Chondrogenic markers (ACAN, SOX9, RUNX2, COL2A1, COL10A1) were quantified following 21 days of treatment. We also assessed extracellular matrix (ECM) deposition (specifically Collagen and glycosaminoglycans (GAGs)) using Alcian Blue and Sirius Red staining. Here, we provide pilot data to demonstrate that Germanium-embedded Incrediwear® functional Cred40 fabric can enhance hADSCs chondrogenic differentiation and maturity and potentially induce events of cartilage regeneration.


Asunto(s)
Tejido Adiposo , Diferenciación Celular , Condrogénesis , Germanio , Células Madre , Humanos , Tejido Adiposo/citología , Células Madre/citología , Células Madre/metabolismo , Matriz Extracelular/metabolismo , Osteoartritis/terapia , Osteoartritis/patología , Osteoartritis/metabolismo , Textiles
15.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201763

RESUMEN

The aim of this study was to evaluate the chondrogenic potential of chondrocyte transplants cultured in vitro on polyethersulfone (PES) membranes. Forty-eight rabbits (96 knee joints) were used in the project. The synthetic, macro-porous PES membranes were used as scaffolds. Fragments of articular cartilage were harvested from non-weight-bearing areas of the joints of the animals. Chondrocytes were isolated and then cultivated on PES scaffolds for 3 weeks. The animals were divided into four groups. All the lesions in the articular cartilage were full thickness defects. In Group I, autogenic chondrocytes on PES membranes were transplanted into the defect area; in Group II, allogenic chondrocytes on PES membranes were transplanted into the defect area; in Group III, pure PES membranes were transplanted into the defect area; and in Group IV, lesions were left untreated. Half of the animals from each group were terminated after 8 weeks, and the remaining half were terminated 12 weeks postoperatively. The samples underwent macroscopic evaluation using the Brittberg scale and microscopic evaluation using the O'Driscoll scale. The best regeneration was observed in Groups II and I. In Group I, the results were achieved with two surgeries, while in Group II, only one operation was needed. This indicates that allogenic chondrocytes do not require two surgeries, highlighting the importance of further in vivo studies to better understand this advantage. The success of the study and the desired properties of PES scaffolds are attributed mainly to the presence of sulfonic groups in the structure of the material. These groups, similar to chondroitin sulfate, which naturally occurs in hyaline cartilage, likely enable mutual affinity between the scaffold and cells and promote scaffold colonization by the cells.


Asunto(s)
Cartílago Articular , Condrocitos , Polímeros , Regeneración , Sulfonas , Andamios del Tejido , Trasplante Homólogo , Animales , Condrocitos/citología , Andamios del Tejido/química , Conejos , Sulfonas/química , Polímeros/química , Condrogénesis , Ingeniería de Tejidos/métodos , Trasplante Autólogo , Células Cultivadas
16.
J Nanobiotechnology ; 22(1): 493, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160590

RESUMEN

This study investigated the mechanism of the extracellular matrix-mimicking hydrogel-mediated TGFB1/Nrf2 signaling pathway in osteoarthritis using bone marrow mesenchymal stem cell-derived exosomes (BMSCs-Exos). A GMOCS-Exos hydrogel was synthesized and evaluated for its impact on chondrocyte viability and neutrophil extracellular traps (NETs) formation. In an OA rat model, GMOCS-Exos promoted cartilage regeneration and inhibited NETs formation. Transcriptome sequencing identified TGFB1 as a key gene, with GMOCS-Exos activating Nrf2 signaling through TGFB1. Depletion of TGFB1 hindered the cartilage-protective effect of GMOCS-Exos. This study sheds light on a promising therapeutic strategy for osteoarthritis through GMOCS-Exos-mediated TGFB1/Nrf2 pathway modulation.


Asunto(s)
Condrocitos , Exosomas , Hidrogeles , Células Madre Mesenquimatosas , Osteoartritis , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Animales , Osteoartritis/terapia , Células Madre Mesenquimatosas/metabolismo , Ratas , Hidrogeles/química , Factor de Crecimiento Transformador beta1/metabolismo , Condrocitos/metabolismo , Exosomas/metabolismo , Masculino , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Trampas Extracelulares/metabolismo , Modelos Animales de Enfermedad , Humanos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas
17.
Proc Natl Acad Sci U S A ; 121(33): e2405454121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106310

RESUMEN

Regeneration of hyaline cartilage in human-sized joints remains a clinical challenge, and it is a critical unmet need that would contribute to longer healthspans. Injectable scaffolds for cartilage repair that integrate both bioactivity and sufficiently robust physical properties to withstand joint stresses offer a promising strategy. We report here on a hybrid biomaterial that combines a bioactive peptide amphiphile supramolecular polymer that specifically binds the chondrogenic cytokine transforming growth factor ß-1 (TGFß-1) and crosslinked hyaluronic acid microgels that drive formation of filament bundles, a hierarchical motif common in natural musculoskeletal tissues. The scaffold is an injectable slurry that generates a porous rubbery material when exposed to calcium ions once placed in cartilage defects. The hybrid material was found to support in vitro chondrogenic differentiation of encapsulated stem cells in response to sustained delivery of TGFß-1. Using a sheep model, we implanted the scaffold in shallow osteochondral defects and found it can remain localized in mechanically active joints. Evaluation of resected joints showed significantly improved repair of hyaline cartilage in osteochondral defects injected with the scaffold relative to defects injected with the growth factor alone, including implantation in the load-bearing femoral condyle. These results demonstrate the potential of the hybrid biomimetic scaffold as a niche to favor cartilage repair in mechanically active joints using a clinically relevant large-animal model.


Asunto(s)
Condrogénesis , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Animales , Andamios del Tejido/química , Ovinos , Factor de Crecimiento Transformador beta1/metabolismo , Condrogénesis/efectos de los fármacos , Polímeros/química , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Cartílago Articular/efectos de los fármacos , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Humanos , Materiales Biocompatibles/química , Condrocitos/efectos de los fármacos , Cartílago Hialino/metabolismo
18.
Bioact Mater ; 41: 455-470, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39188379

RESUMEN

Utilizing transplanted human umbilical cord mesenchymal stem cells (HUMSCs) for cartilage defects yielded advanced tissue regeneration, but the underlying mechanism remain elucidated. Early after HUMSCs delivery to the defects, we observed substantial apoptosis. The released apoptotic vesicles (apoVs) of HUMSCs promoted cartilage regeneration by alleviating the chondro-immune microenvironment. ApoVs triggered M2 polarization in macrophages while simultaneously facilitating the chondrogenic differentiation of endogenous MSCs. Mechanistically, in macrophages, miR-100-5p delivered by apoVs activated the MAPK/ERK signaling pathway to promote M2 polarization. In MSCs, let-7i-5p delivered by apoVs promoted chondrogenic differentiation by targeting the eEF2K/p38 MAPK axis. Consequently, a cell-free cartilage regeneration strategy using apoVs combined with a decellularized cartilage extracellular matrix (DCM) scaffold effectively promoted the regeneration of osteochondral defects. Overall, new mechanisms of cartilage regeneration by transplanted MSCs were unconcealed in this study. Moreover, we provided a novel experimental basis for cell-free tissue engineering-based cartilage regeneration utilizing apoVs.

19.
Biomimetics (Basel) ; 9(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39056824

RESUMEN

Cartilage defects present a significant challenge in orthopedic medicine, often leading to pain and functional impairment. To address this, human amnion, a naturally derived biomaterial, has gained attention for its potential in enhancing cartilage regeneration. This systematic review aims to evaluate the efficacy of human amnion in enhancing cartilage regeneration for full-thickness cartilage defects. An electronic search was conducted on MEDLINE-PubMed, Web of Science (WoS), and the Scopus database up to 27 December 2023 from 2007. A total of 401 articles were identified. After removing 125 duplicates and excluding 271 articles based on predetermined criteria, only 5 articles remained eligible for inclusion in this systematic review. All five eligible articles conducted in vivo studies utilizing rabbits as subjects. Furthermore, analysis of the literature reveals an increasing trend in the frequency of utilizing human amnion for the treatment of cartilage defects. Various forms of human amnion were utilized either alone or seeded with cells prior to implantation. Histological assessments and macroscopic observations indicated usage of human amnion improved cartilage repair outcomes. All studies highlighted the positive results despite using different forms of amnion tissues. This systematic review underscores the promising role of human amnion as a viable option for enhancing cartilage regeneration in full-thickness cartilage defects, thus offering valuable insights for future research and clinical applications in orthopedic tissue engineering.

20.
Artif Organs ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031117

RESUMEN

BACKGROUND: Cartilage is an avascular and alymphatic tissue that lacks the intrinsic ability to undergo spontaneous repair and regeneration in the event of significant injury. The efficacy of conventional therapies for invasive cartilage injuries is limited, thereby prompting the emergence of cartilage tissue engineering as a possible alternative. In this study, we fabricated three-dimensional hydrogel films utilizing sodium alginate (SA), gelatin (Gel), and chondroitin sulfate (CS). These films were included with Wharton's jelly mesenchymal stem cells (WJ-MSCs) and intended for cartilage tissue regeneration. METHODS: The hydrogel film that were prepared underwent evaluation using various techniques including scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, assessment of the degree of swelling, degradation analysis, determination of water vapor transmission rate (WVTR), measurement of water contact angle (WCA), evaluation of mechanical strength, and assessment of biocompatibility. The rabbit ear cartilage regeneration by hydrogel films with and without of WJ-MSCs was studied by histopathological investigations during 15, 30, and 60 days. RESULTS: The hydrogel films containing CS exhibited superior metrics compared to other nanocomposites such as better mechanical strength (12.87 MPa in SA/Gel compared to 15.56 in SA/Gel/CS), stability, hydrophilicity, WVTR (3103.33 g/m2/day in SA/Gel compared to 2646.67 in nanocomposites containing CS), and swelling ratio (6.97 to 12.11% in SA/Gel composite compared to 5.03 to 10.90% in SA/Gel/CS). Histopathological studies showed the presence of chondrocyte cells in the lacunae on the 30th day and the complete restoration of the cartilage tissue on the 60th day following the injury in the group of SA/Gel/CS hydrogel containing WJ-MSCs. CONCLUSIONS: We successfully fabricated a scaffold composed of alginate, gelatin, and chondroitin sulfate. This scaffold was further enhanced by the incorporation of Wharton's jelly mesenchymal stem cells. Our findings demonstrate that this composite scaffold has remarkable biocompatibility and mechanical characteristics. The present study successfully demonstrated the therapeutic potential of the SA-Gel-CS hydrogel containing WJ-MSCs for cartilage regeneration in rabbits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA